Appendix F

Elementary Concepts

AF.1 Coordinate Systems

We are interested in specifying the coordinates of the unit propagation
vector {2 in both the Cartesian coordinate system and the spherical-polar
coordinate system (see Fig. 3.3). The spherical-polar system defines (2
in terms of the two angles, 8 and ¢. The rectangular system defines Q
in terms of its three projections in the (z,y,z) directions, Q,, Q,, and
Q,. The relationships between these two sets of coordinates are

Q, = sinf cos ¢; )y = sinfsin ¢; Q, =cosf (F.1)

where 0 < ¢ <27, and 0 < 0 < 7.

AF.2 The Dirac Delta-function

A concept which is useful in the mathematical representation of unidi-
rectional or collimated light is the Dirac §-function. This ‘function’ has
the peculiar property that it is zero for finite values of its argument,
and unbounded (infinite) when the argument of the §-function is zero,
that is

d(z)=0 (z #0) and d(z) = o0 (z —0). (F.2)

Furthermore, the ‘area’ under the function is unity, that is, it is nor-
malized

b
/ deé(z) = 1 if a and b are of different sign.

= 0 if a and b are of the same sign. (F.3)
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2 Elementary Concepts

It is possible to define the dé-function for a wector argument. If we
want to represent the electric field from a concentrated ‘source’ of unit
strength (for example, an electron) at the point 7 = 74, we write 6(7—7%).
In rectangular coordinates 6(7— ) can be defined as a product of one-
dimensional é-functions, that is

(7 —70) = 6(z — z0)0(y — 0)d(z — 20). (F.4)

The integral properties analogous to those in eqn. (F.3) are

///d?»f’é(?:'—ﬁ)) = /dm/dy/dz §(z—20)0(y—y0)d(z—20) = 1 (F.5)

when the integration domain includes 7. The integral in eqn. (F.5) is
zero if the integration domain does not include 7.

In spherical polar coordinates we represent

d(7 —10) = 6(cos @ — cos6y)d(p — ¢o)d(r — ro). (F.6)

The volume element in spherical coordinates is dV = dAdr =
r2dr sin dfd¢ = —r2drd(cos 6)d¢. dA is the element of area normal to 7.
The normalization property is

27 m Tm
/dva(f'—f'o) - /0 dqﬁ/o d6 sino/o P25(F—fo)dr = 1 (rm > 10)
(F.7)
= 0 (rm <ro).

Tm is the (arbitrary) radius of a spherical volume centered at the origin.

A very important property applies to the integral of the product
of the §-function with an arbitrary function, say f. For example, if

f= f(xay)a then
[da [ dut @) s =20ty —w0) = flan ). (©8)

It must be kept in mind that the volume of integration must include the
‘source point’ (zg,y,) of the é-function for eqn. F.8 to apply(otherwise
the result is zero).

The one-dimensional §-function has the units of (length)~!, while
§(7 — 7) has the units of (length) 3. Other mathematical forms of the
d-function in terms of the solid angle are given in the next section.
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Fig. AF.1. Definition of the solid angle element dw = sin 8dfd¢.

AF.3 The Solid Angle

The solid angle w is defined as the ratio of the area A cut out of a
spherical surface (see Fig. AF.1) to the square of the radius of the
sphere, i. e. w = A/r?. The units of w are steradians [sr]. There are 27 sr
in a hemisphere, and 4= sr in a full sphere. We are usually interested in
a small (differential) element of solid angle, dw. As shown in Fig. AF.1,
dw is expressed in spherical-polar coordinates as dw = dA/r?. Since
dA = r?sin0dOd¢

dw = sin 6 d6 de. (F.9)

The integral of eqn. F.9 over the sphere, that is over 4x steradians, is

2w T
dw = / d(/)/ dfsin @ = 4. (F.10)
0 0
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Often we consider a solar beam (§2.2) of light travelling in a partic-
ular direction. This direction is called the propagation direction and is
specified by a unit vector )y, which points in the direction (6, ¢). If
we consider a general direction, described by the unit vector (6, 4), a
beam is a radiative energy flow which is zero for all directions except
Q. Thus, we can use a two-dimensional é-function §(Q — Qo) to specify
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this energy flow. In spherical-polar coordinates we have

8(€2 — Q) = (cos @ — cos ) 8(¢p — o) (F.11)
where € is specified by the angles (6g, ¢9). The normalization property
of the §-function in eqn. F.11 is

dwd(Q) — Q) = 1. (F.12)
A

While (€2 — €) is non-dimensional, it will be convenient to think of it
as having the ‘unit’ of inverse steradians [sr—1].



Appendix G
A Primer on Absorption and Scattering Opacity

One of the two fundamental properties of light-matter interaction is
absorption, wherein light energy disappears, and a like amount of energy
is converted to heat. The other property is scattering, in which the
path of the light ray is merely deflected by the matter. We might think
that specular reflection from a polished surface is a third type, but this
phenomenon can be shown to be a consequence of scattering. Thus two
(and only two fates) await a photon when it suffers an encounter with
matter. This is true regardless of the form the matter takes: whether in
a solid (land surfaces), in condensed form (the ocean) or whether it is
composed of gaseous molecules or suspended particles (atmospheres).
This book concerns itself with the dual influences of absorption and
scattering on radiation fields in planetary media.

Consider first the property of absorption, and imagine a medium in
which only absorption is important for the light field. Although it is
inherently easier to understand than scattering, it is difficult to find
many commonplace examples in which only absorption is present. Car-
bon soot is perhaps the best example. An object covered with soot ap-
proaches the ideal blackbody behavior, described in elementary thermo-
dynamic textbooks. However, since we are interested in atmospheres
and oceans in this book, let us first consider a medium consisting of
finely-dispersed soot particles.

Imagine sunlight to fall on such a medium, and consider the atten-
uation of the light as it passes through this soot cloud. The ability of
the medium to attenuate the light will depend upon three quantities:
(1) the number per unit volume n of the soot particles; (2) the particle
sizes, r; and (3) the distance along the light ray, s. For simplicity we
assume the particles are all the same size, and the cloud has uniform
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spatial density. The relevant attenuation quantity depends upon the
projected cross-sectional area of the soot cloud in the direction of the
light ray, nwr?s. This quantity is a pure number, and is the absorption
opacity, or optical depth, 7,. (Here we have assumed that the particles
act as simple geometric light obstacles, which applies for sizes much
larger than the sensing wavelength.) Another way to think of 7, is
the projected shadow area, per unit area, of all the particles along a
ray path. If we ignore mutual shadowing effects (and this is usually
permissible) a moments thought reveals that the actual distribution
of particles along the light ray is unimportant, only the product ns.
Thus the relevant quantity is the total column number per unit area N,
and 7 = 7r?N. A high opacity at a particular visible-light frequency v
means that sunlight will be absorbed high up in the atmosphere, and
a small opacity means that it will penetrate deeply. If 7(v) << 1, the
atmosphere is said to be optically-thin, or transparent at that frequency,
and if 7(v) >> 1, it is said to be opaque.

It remains to determine the degree to which the light is transmitted,
and this involves a function of 7. It is shown in Chapter 2 that for
sufficiently small frequency intervals Av, this function is the exponen-
tial function exp [—7(v)]. This familiar relationship is known popularly
as Beer’s Law, but for our own reasons, we call it the Eztinction Law.
Since absorption and transmission are opposite sides of the coin, the
absorption varies as 1 — exp [—7(v)]. The absorption process leads to a
heating of the particles, in contrast to the scattering process.

Atmospheres also emit their own radiation, as do all bodies whose
temperatures are above absolute zero. The solar atmosphere, due to
its high temperature, emits copiously in the visible spectrum, whereas
the cooler atmospheres of the earth and planets emit most of their
energy in the thermal infrared. The opacity also plays a key role in
the ability of media to emit radiation. This is one of many examples of
the principle of detailed balance which are considered in this book, and
is more familiar as Kirchoff’s Law, which says in brief, that an efficient
absorber is an efficient emitter. To be more precise, the ability of an
atmosphere to emit depends upon its opacity per unit length, or per
unit volume, and depends upon the local absorptive properties of the
medium.

Scattering processes add complexity to the above situation, in redi-
recting and modifying the radiation field without destroying it. Even
soot particles are not “mini-black holes”, but scatter a small amount
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of light. Otherwise we would not be able to distinguish soot particle
texture or color. If the particles were non-scattering, the soot cloud
would be invisible, except when viewing the light beam directly — it
would behave like a neutral density filter which progressively dims the
light as we move farther away from the light source.

Now consider the opposite extreme of finely-dispersed water droplets
(fog), which are efficient scatterers of visible radiation. “Reflection”
from a cloud of these particles causes an incident light beam to be
attenuated in a very similar way to the soot cloud, according to the
scattering opacity 7s. However, the light is not destroyed (or at least
only a small fraction) but only deflected from its original path. For
example around a fog-enshrouded lampost we witness this process as
a host of twinkling starlike points of light. In the original direction of
the light, the effect is the same as absorption, that is, a dimming of
the light in proportion to the number of scattering particles along the
path. The opacity is calculated in exactly the same way, except that
the physical process is not a heating of the particles, as in absorptionf.
In fact a measurement of the attenuation with an ideal detector of
small acceptance angle in the two cases of an absorbing soot cloud
and a totally-scattering water fog would be exactly the same. This
assumes that they have the same opacity. Furthermore if we were to
measure the radiation in directions away from the light source, the
scattering fog would be a source of secondary ‘emission’. The same
measurement for the soot cloud would register zero radiation. This
secondary light source is due to scattering of the light into our line
of vision, and is the reason why we can “see” the cloud itself — for
that matter, it explains why we are able to view the world around
us. A major complexity in a quantitative description of the scattered
light is the fact that every particle “sees” not only the original light
source, but also the light scattered from its neighbors. This gives rise
to higher orders of scattering, referred to as multiple scattering, and
this “diffusion” of the light tends to produce a more uniform spatial
distribution of brightness. Multiple scattering is one of the important
subjects of this book.

Consider some implications of the scattering and absorp-
tion/emission processes on the earth’s atmosphere and ocean. First,

t Actually, the process of scattering does alter the velocity of the particles through a momentum
exchange with the incident photons, and strictly speaking, this could cause a heating of the
gas. However, these radiation pressure effects are negligible for radiation energies of concern
in this book.
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because of the atmosphere’s high transparency in the visible spectrum
(0.4 — 0.7um), the earth’s land and ocean surfaces are subjected to
mostly direct solar heating on cloud-free days. On cloudy, overcast
days the light field consists of diffuse (multiply-scattered) photons. In
general, both effects provide the so-called short-wave radiative forcing
of the climate system. At the same time, the land and ocean radiate
infrared radiation to the atmosphere, and to space (depending upon
the infrared opacity as a function of wavelength). This gives rise to ra-
diative cooling, i.e. long-wave radiative forcing. The combined radiative
effects, when averaged over the diurnal cycle, lead to a net radiative
forcing, which is variable over the earth’s surface. Spatial and tem-
poral variations in this forcing give rise to weather and climate, which
themselves alter the radiative forcing, in a highly non-linear interactive
system (called feedback). Long-term changes in the long-wave forcing,
such as carbon dioxide increases, will alter the atmosphere and ocean
in ways which we do not yet fully understand.

In conclusion, absorption and scattering give rise to attenuation ac-
cording to the same basic formula, exp(—7). If both processes are
present, and this is always the case in the real world, the net opac-
ity is found to be the sum of the absorption and scattering opacities,
T = 7,+75. Absorption tends to destroy the radiation field, and heat the
absorbing particles. Because of their finite temperature, the particles
also radiate light into all directions, in proportion to their absorptive
properties as a function of frequency. Scattering redirects an origi-
nal beam of light into generally all 47 sterradians. Multiple scattering
causes the radiation field to become more uniform (diffuse). These
two processes give rise to short-wave and long-wave radiative forcing
of climate, as well as many other atmospheric phenomena. In this
book, we will deal with the “up-front” radiative processes, essential to
understanding climate and climate change.



Appendix H
Electromagnetic Radiation: The Plane Wave

We review in this appendix some basic aspects of light. We use light
as a shorthand for electromagnetic radiation, and do not mean to imply
visible light, which occupies only a small portion of the electromagnetic
spectrum. Some simple mathematical fundamentals are provided in
Appendix F, including a discussion of elementary concepts such as
coordinate systems, the Dirac delta-function, and the solid angle. In
this section we restrict our attention to a review of the plane wave, and
its polarization properties. More advanced topics concerning the Stokes
vector representation, partial polarization and the Mueller matrix are
described in Appendix I.

AH.1 Plane Electromagnetic Waves

Light is an electromagnetic phenomenon, along with gamma-rays, x-
rays, and radio waves. It is described by solutions of the famous set
of equations of J. C. Maxwell, formulated in 1865. These equations
in differential form and in mksae units for an isotropic, homogeneous,
source-free medium, are

. OE . . oH
VXHZGE-FO'E(a), VXE:—,U,E (b),
V-H=0/c); V-E=0/(d). (H.1)

Vx and V- denote the curl and divergence operators, respectively.f

1 The relationships between the electric and magnetic field quantities, and the medium properties
are called the constitutive relations, and are included in the equation set, H.1. See Stratton, J.
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E and H are the electric and magnetic fields, and t is time. e is the
permittivity, o is the conductivity, and p is the magnetic permeability, all
properties of the medium. A net charge of zero throughout the medium
is assumed. The basis of these equations and the medium properties
are described in various texts.

A solution of these coupled partial differential equations is sought for
this source-free case in which both E and H are functions of a single
spatial variable, and time. Let us assume a purely dielectric medium,
for which the conductivity o is zero. Taking the curl} of eqns. H.1a
and H.1b and using the vector identity V x (V x @) = V(V - @) — V%@
together with eqns. H.1c and H.1d, we find that both E and H satisfy
the same second-order wave equation

2 2
<V2_l8_)E'=O; <V2—la—>ﬁ=0 where ¢ = (H.2)

c? ot? VIE

c is the speed of propagation in the medium. In a vacuum, the speed
of light is ¢, = 1//Jio€o = 2.9979 x 10 [m - s~]. The subscript o denotes
the vacuum value. It can readily be shown that plane waves of the form

B 1) = R{Eyeltdmen}
A7) = R{He*™en} (H.3)

are solutions of eqn. H.2. Here i = v/—1 is the imaginary unit, ® denotes
the real part, and Ey and H, are complex constant vectors. The unit
vector {2 points in the propagation direction of the plane wave. k = w/c
is the wavenumber [cm™1], and w is the angular frequency [rad-s~1], related
to the ordinary frequency v, [cycles-s™!] or [Hz], by w = 27v. These
solutions are called plane waves because at any fixed time ¢ they have
the same value at each point in any plane normal to €, i. e. at any fixed
time ¢, E(7,t) and H(7,t) are constant vectors in each plane defined by
Q) - 7 = constant.

Note that we have restricted our attention to harmonic plane waves
having a sinusoidal variation in time and space. According to eqn. H.3,
each Cartesian component of E and H will be of the general form (with

A., Electromagnetic Theory, McGraw-Hill Book CO., New York, 1941. Jackson, J. D. Classical
Electrodynamics, New York, Wiley, 1975. A good modern text is Griffiths, D. J., Introduction
to Electrodynamics, Prentice-Hall, 1981.

1 For readers unfamiliar with vector analysis, see for example, Edwards, J. and D. E. Penney,
Calculus and Analytic Geometry, 3rd ed., Prentice-Hall, Englewood CLiffs, N.J., Chapter 17.
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7 denoting either z, y, or z)
E;(rt) = e cos(kS) - 7 — wt + ;)
Hi(F,t) = hjcos(kQ-7— wt+ ¢;) (H.4)
where e; and h; are arbitrary real coefficients, and ¢; and ¢; are arbi-

trary phase angles.

The harmonic plane waves in eqns. H.3 are solutions of the wave equa-
tion H.2 for arbitrary values of E, and Hy. But these solutions must
also satisfy Maxwell’s equations. Substituting eqns. H.3 in eqns. H.1a
and H.1b (with o = 0), we find that

\//_LQX}_I'OZ\/EE_:(); \/EQXE'OZ\/ﬁﬁO (H5)

from which it follows that E, - Hy = 0, and that both E, and H, are
orthogonal to the propagation direction Q2. In other words, Ey, Hy, and
Q) form a right-handed triad.

If we now choose the coordinate system such that 2 is along the
positive z-axis, we can write

E=E+E,; E =Eg¢; E =Ezé (H.6)

I'_I':I'_I'H-i-ﬁL; I_{'”:\/EéZXE_"”; ﬁL:\/EézXEL- (H7)

Here each of the components E, E,, H|, and H, satisfies the wave
equation, and é,, &, and &, are unit vectors forming a right-handed
triad

éL'éH:éL'éz:éH'éz:O, éLXéH:éz. (HS)
Ej and E, are the electric field components parallel and perpendicular

to a plane which contains the z-axis, and whose orientation is otherwise
arbitrary.t

From eqns. H.3 and H.6-H.7, it follows that

B =R{&}; E, =R{}. (H.9)
where the complex amplitudes & and £, are given by

5|| = q exp[i(kz —wt + (5”)] (H.l())

1 = ajexplilkz —wt+01)]- (H.11)

1 This plane will become the plane of incidence when we consider interactions with interfaces,
and the scattering plane when we consider interactions with scattering particles.
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Here a; and a, are the electric field amplitudes and &, and &, are the
[ Il
phase angles. Similar forms can be derived for the magnetic components.

We define the wave number in a vacuum, k, = w/c, = 27/),, where
Ao is the vacuum wavelength. Then we can express eqns. H.9-H.11 in a
more convenient form

EL =% {aH’J_ exp {z [(komz — wt) + 5”,4 }} (H.12)

where m = c¢,/c = A/N = k/ko = \/eopro/en is the index of refrac-
tion of the medium, the ratio of the propagation speed in vacuo to
that in the medium.f These solutions apply to an ideal harmonic,
monochromatic (single frequency) plane wave of infinite spatial extent
(—c0 < z,9,2 < +00) traveling in the positive z-direction. m is often
written as a complex quantity, m = m, + 4m;. The value of m, varies
slightly with frequency in natural media: in air it is very close to unity
— for example, m, (A =1 ym) = 1.0 + 2.892 x 10~*. In pure water,
my (A = 486 nm) = 1.3371.

The solution for a conducting medium (o # 0) is worked out in
Problem H.1. In this case, the wave is damped or attenuated along the
propagation direction. The solution can be expressed mathematically
in the same form as eqns. H.12. In this case the appearance of a
‘damping factor’ exp(—k,m;z) multiplying eqn. H.12 shows that the
presence of a finite conductivity is associated with absorption along the
wave direction.

AH.2 Energy Transfer

Light waves transmit energy. It is this feature that makes it possible
to detect light away from sources, and it explains how the sun warms
the earth and ultimately sustains life. The rate at which energy is
transported by light is expressed by the Poynting vector S. This quantity
is related to the electric and magnetic field vectors, E and H through
S = E x H. This expression gives both the magnitude and direction of
instantaneous energy flow. In other words, E x H is the radiative power
per unit area carried along the wave direction.

For time-harmonic plane-wave solutions it follows from eqns. H.6-H.9

t There are actually two light speeds to consider: the phase speed, vp = ¢ = w/k, and the group
speed, vy = Ow/0k. Since k = n(w)w/co, and m(w) is generally a function of frequency, w
(that is to say, the medium is dispersive) then v, # vy. However in a non-dispersive medium,
Up = Vg
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that

S’ZE_'XI:?:\/E[E”é”—f—EJ_éJ_] X [E||éz Xé||+EJ_ézXéJ_]

- \/E B\ Bl + ELEL e = \/E [RENRE)) +REDRED] Q0. (H13)

Here Q) is the propagation vector of the wave. We are seldom interested
in the instantaneous value of S. Of greater interest is the time-averaged
value

o 1 0 L
9= /0 dt3(t) (H.14)

where (t) is the averaging time. For a periodic function, (¢) is an
integral number of wave periods, where one period is 1/v. It is shown in
Problem H.2 that the time average of the product of two time-harmonic
functions of the same periodicity is

(R{a(t)} - R0} = gR{ab) = SR{a"b) (H.15)

where a(t) and b(¢) both are of the form in eqns. H.10 and H.11. The
asterisk denotes complex conjugation. Using this result in eqn. H.13,
we find that the flow in the general direction € is

=, m

(S = {%[5” & e 51]} 5(§2 — ) (H.16)

2pc,

where we have used ¢ =1/,/pe and m = ¢,/c = \/pe/po€o. The quantity
in the curly brackets is the energy density U = U, + U,, of the plane

electromagnetic wave, consisting of the sum of electric field (¢/) and
magnetic field (U,,) energy densities. Eqn. H.16 shows that the energy
density of the plane electromagnetic wave propagates with velocity ¢ =
¢o/m in the z-direction.

Also, eqn. H.16 shows that a plane electromagnetic wave may be
considered to have two components

I = (m/2,uco)\5|||2 and I, = (m/2pc,)|EL | (H.17)
I and I, are called the intensity components.t Eqn. H.16 tells us that

1 Here we are using the physicists definition of intensity. In fact this is closer to our definition
of the flux, or irradiance (Chapter 2).
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Fig. AH.1. A simple wave packet. (a) The wave acos(kz — wt). (b) The wave
packet 2a cos [5(20k — téw)] cos(kz — wt). The ordinate represents one of the two
independent variables (¢ or z) while the other is kept constant.

the average radiative power is (I + 1) 5(€1 — Q). The fact that light
waves have two independent components accounts for the phenomenon
of polarization. It distinguishes light waves from scalar waves, such
as sound waves in liquids or gases, which have only a single energy-
carrying component.

AH.3 Addition of Plane Waves

The monochromatic plane wave solutions are elementary solutions to
Maxwell’s equations. Clearly, they are idealizations. Any real wave is
a linear superposition of monochromatic plane waves of different fre-
quencies, directions, and phases. If all waves in a group have almost the
same frequency, we have a wave packet. Consider a wave packet consist-
ing of only two waves, both propagating along the z-axis, and having
slightly different frequencies and wave numbers. Let the waves have
the same amplitude g, and consider only one polarization component,
say Ej. The total electric field is the coherent sum of the individual
waves, i. e.
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EH(Z,t) =R {a”ei(kz—wH-Jl) + a|‘ei[(k+6k)z—(w+6w)t+52]} (H18)

where dw and dk are the (small) differences in frequencies and wave
numbers, and J; and d, are the respective phase angles. We may com-
bine the two terms by using the well-known relationship between the
cosine-function and the complex exponentials. The result is

Ej\(2,t) = 2a) cos[(1/2) (20k — tow + &) {!F=—=1+0)} (H.19)

where @ = w + 6w, k = k + £6k, and 6 = (§; + 65)/2. These are
the mean angular frequency, the mean wave number, and the mean
phase angle, respectively. ¢’ is the phase angle difference §; — d,. The
resultant wave is a plane wave of angular frequency w and wavelength
27 /k propagating in the z-direction. However, the amplitude of the
wave is not constant, but varies with time and position, between the
values of 2¢) and zero (see Fig. AH.1).

This is a mathematical description of the phenomenon of beats. The
two waves change from being totally in phase (where constructive inter-
ference occurs) to being totally out of phase (where destructive interfer-
ence occurs). If we set the two frequencies or wave numbers equal, we
have two monochromatic plane waves with differing phases, i. e.

Ej\(2,t) = 20 cos [(1/2) (81 — 85)] R {eilk=1+D) ] (H.20)

When the phases are equal, §; = d2, the amplitude in eqn. H.20 has
its maximum value, 2a. Again we have constructive interference for
in-phase waves. For 6, — dy = +nw (n = 1,2,---), we obtain a zero
amplitude for out-of-phase waves, and the destructive interference is
complete.

AH.4 Standing Waves

We now consider the superposition of two plane waves travelling in op-
posite directions. This will lead us to the concept of a standing wave, a
topic of importance to the subject of blackbody radiation. We imagine
two oppositely-directed waves of the same frequency, phase and am-
plitude (the latter we set equal to unity). Again, consider only one
component (say the parallel component) of the electric field. The total
E-field component is
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E” (Z, t) _ %{ei(k:sztfw/Q) + ei(szfwtfw/Q)} (H21)

where we have chosen the phase § = —m/2 for convenience. Using the
relationship cos kX = (1/2)[exp(ikX) + exp(—ikX)], we write eqn. H.21
as

Ej\(2,t) = 2cos(kz + m/2)R{e™ ™'} = 2sin(kz) cos(wt).

The result is a wave that neither moves forward or backward. It
vanishes at values of z for which sin(kz) = 0, that is, where kz =
nw (n=0,1,---). In between these nodes, the disturbance vibrates har-
monically with time. The maxima are located at the anti-nodes, at
kz=nn/2(n=1,3,---).

For a standing wave located in a finite cavity, the electric field must
vanish at the boundaries, say at z =0 and at z = L. The nodes will of
course correspond with the boundaries, so that k = nn/L (n =0,1,---).
For example, the two lowest-order wave-modes are given by

EW(2,t) = 2cos(mz/ L) cos(wt); E®)(2,1) = 2cos(2rz/L) cos(wt).

The n = 1 wave-mode is fixed at the two ends; the n = 2 wave-mode
is fixed at both ends and in addition is fixed at the center, z = L/2.
Higher-order wave-modes E(™ have n + 1 nodes, etc.

In a three-dimensional cavity (taken to be cubic of sides L for conve-
nience), there are three independent components (actually six, taking
into account the perpendicular component). Each has its own wave
number, so that

ky =ngm/L; ky=mnyw/L; k,=mn,7/L (ng,ny,n, =0,1,---).

In vector notation, we write k = n7i/L where 7i is a vector in a three-
dimensional pseudo-space with Cartesian components n,, n, and n,.

The above results are applicable to the study of blackbody radia-
tion and is used in the derivation of the Planck distribution in §4.3. A
radiation field may be thought of as a system of standing waves in a
large cavity, or hohlraum. The cavity ‘walls’ are unimportant except
for establishing the boundary conditions. In the quantum theory each
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standing wave may be associated with a photon, a particle of light hav-
ing a quantized energy and momentum given by

photon energy = &, =hv = _i;c = _Zl:rw = —2};C|E|
hv. h h -
h t t = = — = — = — k .
photon momentum Pp = 27r| |

where h is Planck’s constant=6.63x1073* [J - s].

In this appendix we found that the linear superposition of electro-
magnetic fields leads to the phenomena of beating, interference and
standing waves. These are all results of coherent addition of light waves,
and is to be contrasted with the very different situation of incoherent

addition. 1t is the latter situation we are mainly concerned with in this
book.

AH.5 Polarization

We now consider the way in which the electric field vector of a plane
wave varies in space and time. Defining the variable part of the phase
factor of eqns. H.9-H.11 as ¢ = kz — wt, we may write the electric field
components as

E” = q COS((]§ + 5H)’ El=a, COS(¢ + 5J_). (H.22)

We can determine how E varies in space by eliminating ¢. It is easily
shown that

2
E 2 _EE
( ||> N (EL) 92 IPL 056 = sin? § (H.23)

a” a | GJHGIL

where § = ¢ —d,. This is the equation of an ellipse, which is inscribed
into a rectangle whose sides are parallel to the coordinate axes, and
whose lengths are 2q) and 2a, (see Fig. AH.2).

At a given point in space, the tip of the electric field vector will
therefore trace out an ellipse — the wave is said to be elliptically polarized.
The properties of the ellipse are determined by three quantities: either
a|,ar and ¢ = § —d1; or by the major and minor axes, a and b, and
the angle . The latter is the angle the major axis makes with the
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Fig. AH.2. Elliptically polarized wave. The vibrational ellipse for the electric vec-
tor. The ellipse is inscribed into a rectangle whose sides are parallel to the co-
ordinate axes whose lengths are 2q and 2a; . The ellipse touches the sides at the

points (£ay,+a, cosd) and (+a) cosé, ta,).

horizontal (parallel axis) as shown in Fig. AH.2. It may be shown that
these quantities are related to the first set by

a? + b? :aﬁﬁ-ai; +ab = aja sin;
a

tan 21) = (tan 2a) cos 6; tana = — (H.24)
a|

AH.6 Polarization: linear and circular

The special cases of linear and circular polarization occur when the
ellipse in eqn. H.23 degenerates into either a straight line or a circle.
When the phase difference of the two components is an integral multiple
of m, that is when § = § — 6. = mx for (m = 0,+1,42,--+), eqn. H.23
yields

EL _ _ymoL
E a

In this case, E is linearly polarized. The two components bear a con-
stant ratio to one another. Considering the time-dependent factor ¢
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(see eqn. H.22), we see that the E-vector oscillates in magnitude (with
angular frequency w) along a straight line, from the value —a to +a.
When the components have equal magnitude, | = a; = a, and in ad-
dition the phase angles are in quadrature, that is § = ¢ — 6. = mn/2
where m = (+1,+3,45,--+), eqn. H.23 reduces to the equation for a
circle, i. e.

Eﬁ + E? = d?.

Additional information on the Stokes-vector representation of light,
and other advanced topics, is given in Appendix I and in other texts.}
In the natural environment light is partially-polarized or in some limiting
situations, unpolarized. Simply stated, the latter means that there is no
preference between the parallel- and perpendicular-directions, and no
permanent phase relationships exist between these two components.
Sunlight, diffuse visible light emanating from an optically-thick cloud
cover, and thermal IR emission are important examples of (nearly)
unpolarized light. Rayleigh scattering from a clear sky is a counter-
example, as the degree of linear polarization of scattered light can be
quite high. Despite its importance in some applications, we will ignore
polarization on the grounds that we are mainly concerned with the en-
ergy flow, rather than the accurate intensity distribution. This is called
the scalar approzimation. Even though caution is advised, it often pro-
vides reasonably accurate results even for the directional distribution
of radiation. In addition there are ways to estimate the polarization
by making first-order corrections to scalar solutions.

AH.7 Problems

H.1. Consider a plane electromagnetic wave propagating in the z-
direction through an isotropic, homogeneous medium with conductivity
o and permittivity e. For this geometry Maxwell’s equations simplify
to

1 Plane waves, polarization, and the Stokes parameters are discussed in the following references:
Born, M. and E. Wolf, Principles of Optics, Chapter 1, MacMillan, New York, 1964. Coulson,
K. L., Polarization and Intensity of Light in the Atmosphere, A. Deepak Publ., Hampton, Va.,
1988: Kliger, D. S., J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy,
Academic Press, Boston, 1990. A practical non-mathematical approach is found in Shurcliff,
W. A. and S. S. Ballard, Polarized Light, Van Nostrand, Princeton, 1964; An influential journal
review is Hansen, J. E. and L. D. Travis, Light Scattering in Planetary Atmospheres, Space
Sci. Rev., 16, 527-610, 1974.
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82EJ_ . 82EJ_ aEJ_
022 )

(a) Show that the electric field strength diminishes along the beam
according to the exponential Eztinction Law (§2.7), that is, the above
set of equations has a solution of the form

E| = a) exp{i[(wt — kom,z)] — kom;z}

where
2T w

k, b\ = — = Wy/lobo

Co

and m, and m; are the real and imaginary parts of the complex index
of refraction.

(b) Find the expressions for the two quantities, m, and m;, and for
the speed of light in the medium in terms of the electric and magnetic
properties of the medium. Show that the absorption coefficient a = k,n;
is given by

2

a=w |E {—1-&— 1+(1)2}.

H.2. (a) Show that the real part of the time-average of the product
of two complex quantities, A* and B* (having the same periodicity) is
given by

< R(A) - R(B) >= %?R(AB*). (H.25)

(b) Solve for the H-components of the plane wave travelling in a
dielectric medium. From these expressions, show that the Poynting
vector is given by eqn. H.16.



Appendix I
Representations of Polarized Light

AI.1 Stokes Parameters

In addition to the frequency, three independent quantities are needed to
completely specify a time-harmonic electromagnetic plane wave. Since
the quantities used in Appendix H are combinations of amplitudes and
angles, which have different units, it is more convenient to use quanti-
ties having the same dimensions. In 1852 G. G. Stokes introduced his
four parameters

Izaﬁ—l—ai; Qzaﬁ —a?; U = 2q)a_ cos d; V' = 2aja sind.

(L.1)
Only three of these are independent, since I? = Q?>4+U?+V?2. We already
found that I is the energy carried by the wave. The other parameters
are related to the angle ¢ (0 <1 < ) specifying the orientation of the
ellipse (Fig. AlL.2), and the ellipticity angle, x(—m/4 < x < w/4), which
is given by tan x = +b/a. The relationships are as follows:{

Q = I cos 2 cos 21); U = I cos 2 sin 2%); V = Isin2y. (1.2)

AI.2 The Poincaré Sphere

Eqns. 1.2 provide a simple geometrical representation of all the different
states of polarization: @, U and V may be regarded as the Cartesian
coordinates of a point P on a sphere of radius I, such that 2y and 2
are the spherical coordinates of this point (Fig. Al.2). Every possi-
ble state of polarization of a plane wave is represented by a point on
this Poincaré Sphere, developed by H. Poincaré in 1892. A point in the

t See Born and Wolf, Principles of Optics, pp. 24-31.

1
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Z

Fig. AL.1. Poincaré’s representation of the state of polarization of a monochromatic
wave. (The Poincaré sphere).

upper hemisphere (x positive) represents right-handed polarization, that
is, when the observer views the wave ‘head-on’, E rotates in a clock-
wise direction. Left-handed polarization corresponds to a point in the
lower hemisphere (x negative); when the observer views E ‘head on’,
it rotates in a counter-clockwise direction. Linear polarization occurs
when the phase difference § is zero, or an integral multiple of 7. From
eqn. 1.1, V is zero, and from eqn. .2, the z-component of the point P
on the Poincaré Sphere is zero. Linear polarization is represented by
points in the equatorial plane. For circular polarization, a; = ay, and
d =m/2 or § = —x/2, according to whether the polarization is right-
or left-handed. Thus right-handed circular polarization corresponds to
the north pole (Q = U = 0,V = I), and left-handed circular polariza-
tion corresponds to the south pole (Q = U = 0,V = —1I). Elliptical
polarization corresponds to a general point on the sphere, other than
those in the equatorial plane or at the poles.

The Poincaré Sphere is useful in giving a simple geometrical visual-
ization of the Stokes parameters. It applies only to a light wave which
is perfectly polarized, an idealization which seldom occurs in nature. We
now consider the general situation in which correlation between the
two electric field components is not perfect.
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Al.3 Partial Polarization and the Incoherency of Natural Light

So far we have assumed that light is a plane wave with constant am-
plitude and phase difference between the two components. However,
a more realistic view is that light is a mixture of plane waves, whose
E-field oscillates over a staggering number of cycles in one second. For
example for visible light of A\ = 500 nm, a wave oscillates at 6 x 10**
cycles in one second. Even a detector with a very short integration
time (say, 10~*s) will time-average over many oscillations. The effec-
tive Stokes parameters measured by a detector is therefore not the
instantaneous values (given by eqn. 1.2), but the time-averaged values

1= <aﬁ>—l—<aﬁ_>; Q= <aﬁ>—<aﬁ_>; U= <2a||aJ_ cos 6>; V= <2aHaJ_ Sl(l;fg

Generally, a light wave consists of a mixture of waves from different
sources, which are statistically uncorrelated over the averaging time of
a detector. Suppose we pass the light from such a ‘natural’ source,
e. g. a hot filament, through a filter which passes only a narrow band
of frequencies. Even though the frequencies of all the waves are prac-
tically equal, the phase angles will differ from one wave to the other.
We may visualize the E-components at a point in space as being har-
monic in time over immeasurably short time intervals (of the order
of 1078 —107% s), but ‘switching’ randomly from one phase angle to
another over longer time intervals. If this switching occurs in com-
pletely random ways, there will be as many positive phase differences
as negative phase differences, or in other words, the time averages of
the products 2qja, cosd and 2aja, sind will be zero. Similarly, we can
visualize the amplitudes being harmonic, and of specific amplitudes
over short time intervals, but in a mixture of uncorrelated waves, the
average intensities of the two polarization components will be the same,
that is, (aﬁ) = (a%). Thus, for an uncorrelated mizture of plane waves, @Q,
U, and V all vanish. This is known as unpolarized light. Examples of
unpolarized light are direct sunlight, diffuse skylight from an overcast
sky, and infrared thermal radiation. However, most scattered light in
natural media is partially polarized. It is clear that if some correlation
exists between amplitudes or phases, ), U, and V may be finite, but
smaller in value than in the case of a mixture of coherent waves. Thus,
we see that the difference between coherent and incoherent light is the
degree of correlation between the two E-field components. In this case,
the relationship I? = Q? + U? + V2 (valid for fully polarized light; see
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eqn. 1.1) becomes an inequality, 1> > Q* + U% + V2. This property gives
us a quantitative measure of the degree of polarization, defined as

Q*+ U2+ V?

P =
I

(1.4)

What is the physical significance of the Stokes parameters? We can
relate I, Q, U, and V to a set of ideal measurements, involving a lin-
ear polarizer (such as a polaroid filter), and a retardation plate (such
as a thin calcite crystal). The polaroid removes the E-field compo-
nent of light that passes through in a direction perpendicular to its
axis of polarization, and transmits the other component with 100%
transmissiont. The retardation plate will affect the relative phases of
the two components, i. e. it will introduce a relative phase shift, §. Sup-
pose we have a radiation detector which measures the radiative energy
which has passed through a polarizer-retarder combination. It may be
shownt that the intensity of transmitted light is given by

I(1,6) = (1/2) [I' + Q' cos 24 + (U’ cos § + V' sin §) sin 2¢)] (L.5)

where primed quantities represent the Stokes parameters of the incident
light, 6 = 4§ — ¢, is the retardation of the L-component, relative to
the ||-component, and v is the angle of the polarizer axis with the
horizontal (||) axis. It is clear from eqn. 1.5 that we can use a number
of measurements of the incoming beam (varying 1) to solve for the
Stokes parameters of the incident light. If we first consider only a
linear polarizer in the beam, so that there is no retardation (§ = 0),
and make measurements at ¢ = 0°, 45°, 90°, and 135°, the first three
Stokes parameters may be obtained from these four measurements of

I(¢,0):

I' = I(0°,0)+1(90°,0) (a)
Q' 1(0°,0) — 1(90°,0)  (b)
U = I(45°,0)—1I(135°,0) (c). (I.6)

It is clear from eqn. 1.6 that the fourth component V' cannot be
measured with a linear polarizer alone: a retarder is needed. Suppose

1 Ideally, a polaroid filter would have no effect on that component parallel to the polarization
axis, but in all real polaroids, some absorption will take place along this axis also.

1 The equivalent form of Eqn. 1.5 in S. Chandrasekhar, Radiative Transfer, Dover, eqn. 163
(p. 129) has been shown by Hansen and Travis (see endnotes) to have an error in sign. This
error arises in the inconsistency between Chandrasekhar’s definition of phase difference in his
eqn. 154 (p. 28) with the definition of phase difference employed for the Stokes parameters.
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we use a polarizer/quarter-wave plate combination. For § = 7/2, we
get

V' = I(45°,7/2) — I(135°, /2). (1.7)

The physical significance of the Stokes parameters can now be stated
in terms of preferences as follows: (1) @ gives preference to the |-
component over the L-component; (2) U gives preference to the com-
ponent making an angle of 45° over that making an angle of 135°; and
V gives preference to the 45° component over the 135° component when
passed through a polarizer-retarder combination. If unpolarized light
were subjected to these measurements, the intensities I(v,d) would be
independent of 4 and ¢, so that Q' =U' =V’ = 0.

If we were to add two polarized light beams together, what is the
polarization of the mixture? We found earlier that if we add together
two coherent plane waves of the same frequency and amplitude, we
obtained an intensity that varies between zero and twice the ampli-
tude of an individual wave. This occurred because of mutual inter-
ference, which depended upon the phase angle difference between the
two waves. However, if we add together two partially-polarized waves
with no (time-average) correlation between the phases, the net result is
that the Stokes parameters of the mizture is the sum of the individual Stokes
parameters. This is the most important property of the Stokes param-
eters. In this book we consider such light mixtures, or in other words,
we consider incoherent light fields.

Despite our emphasis on incoherent light in this book, it is important
to remember that coherent processes are also at work in the natural
environment; otherwise we would be deprived of a host of beautiful
phenomena, such as rainbows, iridescence, haloes, mirages, etc.f This
co-existence of coherent and incoherent light is explained by the no-
tion of partial coherence, and the spatial scales over which the various
phenomena occur. A natural radiation field is coherent over an inner
scale, called the coherence length, d (usually d ~ X). Thus, light trans-
mitted through a dielectric particle will undergo coherent interaction
with its mutual parts, provided the circumference of the particle is of
the order of A. On the other hand, if the particle is much larger than \,
the various beams will behave as if they are refracted and transmitted
t For a lucid description of coherent processes in nature, this classic text should be consulted:

M. Minneart, The Nature of Light and Colour in the Open Air, Dover Publications, New York,

N. Y., 1954. A new edition of this book was published in 1993 by Springer, with color photos
by Pekka Parviainen.
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independentlyf. In this case, the laws of geometrical optics provide a
good description of the overall interaction.

Al.4 The Stokes Vector Representation of Polarized Light

The Stokes vector I is a four-vector having the four Stokes parameters
as its components,

I

= | Q

=7l (L8)
v

In view of the linearity property of light fields, the Stokes vector of a
mixture of two incoherent light fields whose Stokes vectors are I; and
I is simply I = I + I, or

I I, L+ 1

= Q1 Q2 Q1+ Q-

I = = . I
o, | T o, Uy + Us (L.9)
%) Va i+V

The additivity principle also tells us that an unpolarized radiation field
can be represented as the sum of two linearly-polarized fields which have
equal E-field components and have their polarization directions normal
to one another. Thus, two linearly-polarized incoherent light fields of
equal intensity (//2) add together to give an unpolarized field:

1 1 1
I'=(1/2) (1) +(1/2) _01 =1 g (1.10)
0 0 0

Note that the first vector in eqn. 1.10 has its polarization direction in the
||-direction, so that from eqn. 1.6, the component in the 90°-direction
is zero. The second vector has a zero component in the 0°-direction, so
that @ is the negative of that of the first vector.

It is also easy to see that an arbitrarily-polarized light field may be
represented by the sum of an unpolarized (u) and a perfectly-polarized

i This assumes that the particle is optically homogeneous. If the particle is inhomogeneous,
scattering from irregularities causes the internal radiation field to be multiply-scattered, and
mutual interference complicates the description. See §3.2 for more discussion.
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(p) light field

U2+ Q2+ V2 VITF Q@+ V2
S 0
I=1,+1,= 0 + g . (L11)

0 v

In view of the additivity of Stokes parameters it is easy to see why it
is possible to represent any arbitrarily-polarized, incoherent radiation
field as the linear sum of an unpolarized part I, and a 100% polarized
part, I, I = I,,+1I,. The degree of polarization is then written P = I,,/1,
which gives us a more intuitive interpretation of P than provided by
eqn. [.4.

For perfectly-polarized light (I, = 0), I is a vector whose tip lies on
the Poincaré sphere. We may visualize partially-polarized light as a
vector I:,, to which is added a ‘smeared-out’ component of radius I,.
Over the averaging time period < ¢ >, the tip of the vector I, traces
out with equal probability all 4n steradians of the Poincaré sphere.

AI.5 The Mueller Matrix

The action of any optical device on an incoherent light beam can be
thought of as producing a Stokes vector which is a linear combination
of the Stokes components of the light. Formally, we can represent the
effect of an optical device in terms of a Mueller matriz operation on I,
or in mathematical terms

I My Mo Mz Mg I

> | Q| x| Mar My Moy Moy Q'

I= ul MIT= M3z Msy M3z Msy U’ (112)
1% My My Mz My 1’4

The input radiation field components are denoted by primes, and the
output radiation field components are unprimed. The components M;;
may be derived for various types of polarization analyzers, including
polaroid filters (or in general dichroic linear polarizers) and retarding
plates.t We are often concerned with the action of scattering particles
on the state of polarization of an incident radiation field. This can also
be represented as a linear matrix operator, called the scattering matriz,
S, whose elements depend upon the angle © between the incident and
scattered wave (the scattering angle), i. e., S;; = S;;(0©). In addition

t see Coulson, Polarized Light, pp. 577-584.
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Si; depends upon the light-interaction properties of the particles. For
the simplest type of scattering, i. e. Rayleigh scattering, the scattering
matrix is given by

1+cos?2@® cos?O@—1 0 0
30 [ cos2@—1 1+4cos?20O 0 0
Sray(©) = Ar 0 0 2cos © 0 (L13)
0 0 0 2cos©

where o is the scattering coefficient, defined in Chapter 3.

The radiation field in atmospheres and oceans can be highly po-
larized. For example, for clear skies or pure oceans where Rayleigh
scattering dominates the radiative transfer, eqn. 1.13 shows that for
scattering angles near © = /2, there is 100% linear polarization for
© = /2. However, in reality there are slight deviations from this ide-
alized Rayleigh scattering so that the light is about 96% polarized for
© = n/2. (The presence of aerosols reduces this number to no more
than 80% in actual cloud-free situations.) Reflection from water or ice
surfaces can also lead to high linear polarizations. However, the elliptic
component V is always very small, and it is seldom necessary to spec-
ify all four Stokes parameters. In fact, since I conveys the information
on the energy carried by the field, it is often permissible to ignore the
Q@ and U components as well. This is the principal approximation of
this book. We note, however, that although I ‘carries the energy’, it
is sometimes necessary to solve the full vector equation (for the Stokes’
parameters) to calculate it properly. The scalar equation is in many
cases adequate as can be confirmed by comparison between vector and
scalar solutions.

Al.6 Problems

I.1. (a) Find the Stokes vector for Rayleigh-scattered light from a
small volume element dV having a concentration of n molecules. Use
the equation I=ndVs Rayf’ , where Sgq, is given by eqn. 1.13. Assume
that the solar intensity is unpolarized and given by

F$§(cos By — cos 0)d(do — @)
0
0
0

I = (1.14)
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where F* is the solar flux [W -m™2] and (6, ¢o) is the direction of the
incoming solar beam.

(b) Describe the state of polarization for Rayleigh scattered light
evaluated at the scattering angles © = n/2 and © = 0.

[.2. Devise a number of ‘thought experiments’ to find the elements
of the Mueller matrix for the following optical instruments:

(a) an ideal linear polarizer, e. g. a polaroid filter, with its axis along
the horizontal (]|)-axis.

(b) the same as (a) but with its axis along the perpendicular (L )-axis.



Appendix J

Scaling Transformation for Anisotropic Scattering

We will show that the transfer equation is invariant under certain scale
changes of the optical depth and the phase function. The so-called
0 — N method, discussed in §6.8.4, turns out to be one such invariant
scaling transformation.
We start with the general radiative transfer equation for the total
intensity which in slab geometry may be written
dI(r,Q) A a

=I(r,Q) — — "o, I (T, Q) 1
o (7,9) i de (Y, Q) I(7, <) (J.1)

u
where we have ignored the thermal emission term. If we define a kernel

G, Q) ﬁ[—ap(cos 0) + 4ro(QY — )] (7.2)

then we may rewrite eqn. J.1 as

u = A G, Q)I(r,Q)dw'. (J.3)

Now, by introducing a new optical depth, #, and a new kernel, G,
through

we find that eqn. J.3 becomes

_ A G, I, Q) d! (J.6)
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In view of the definition of G (eqn. J.2) we may rewrite eqn. J.6 as

dI(#,Q) A a [ a4 o
=I1(7,Q) — — QN I(T,Q .
S = 10, = o [ 9@ D)1, V) (2.7

where
GY,Q) = %[—&ﬁ(cos 0) + 476(QY — Q)] = BG(Y, Q)
_ ipmmm@+mmmuﬂn (7.8)
which implies
ap(cos ©) = [Bap(cos ©) + 4 (1 — B)5(QY — Q). (J.9)

If we now require the scaled phase function to be normalized to unity
as usual, then integration of eqn. J.9 over 47 steradians yields

a=aB+(1-p) (3.10)
or
1—éa=p8(1—a). (J.11)

This last equation implies that if @ = 1, then @ = 1, i. e. conservative
scattering remains conservative under the scaling transformation.

Since expansion of the phase function in Legendre polynomials has
been shown to be an extremely useful way of “isolating” the azimuth
dependence in slab geometry, we proceed by expanding both phase
functions in this manner

oo

p(cos ©) = Z (2n + 1)xnPn(cos ©) (J.12)

n=0

o0
p(cos ©) = > (2n + 1)XnPr(cos ©) (J.13)
n=0
where P,(cos ©) is the Legendre polynomial, and the expansion coeffi-
cients are defined by eqn. 6.26. The §-function may also be expanded
in Legendre polynomials, i. e.

4md(Q — Q) = amd(u' — p)d(¢' — ¢) = 26(1 — cos ©) = i (2n + 1) P, (cos ©).

n=0

(J.14)
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We note that the expansion coefficients in this case are all unity.
Substitution of eqns. J.12 and J.14 into eqn. J.6 yields

o0

> @ — faxn — (1 - B2+ DPalcos®) =0 (J.15)

n=0

which implies

axn = Baxn + (1 — B) (J.16)

or
1—ax, =pB(1 —axn) (J.17)

or
7a(l — xn) = Ta(l — xn) (J.18)

where we have used eqns. J.3 and J.9 in the last step. Since xo = 1 eqns.
J.16 and J.10 imply axo = Bfa+1— 3 = a or xo = 1. This shows that
the expanded scaled phase function is correctly normalized as implied
by eqn. J.10.

Finally, by defining h, = (2n + 1)(1 — ax,) and using eqn. J.17, we
obtain

~

hn = (2n+1)(1 = axn) = Bhn = (7/7)hn (J.19)
or
Thy = Tha,. (J.20)

The radiative transfer equation is invariant under
scale changes of the optical depth

and phase function which leave invariant the parameter

M = hnT = 2n+ 1)(1 —ax,)T (J.21)

It is clear that =1 —af in the § — M method.



Appendix K

Approximate Solutions of Prototype Radiative
Transfer Problems

AK.1 Numerical Implementation of the Discrete Ordinate
Method

The solution of the radiative transfer equation described in previous
sections has been implemented numerically into a code written in FOR-
TRAN. This code applies to vertically inhomogeneous, nonisothermal,
plane-parallel media and it includes all the physical processes discussed
previously, namely thermal emission, scattering, absorption, bidirec-
tional reflection and thermal emission at the lower boundary. The
medium may be forced at the top boundary by direct (collimated)
or diffuse illumination and by internal and boundary sources as well.
The coded algorithm is called DISORT (DIScrete Ordinate Radiative
Transfer). To make the computer code as clean, robust, and reliable
as possible, it was decided to make it highly modularized by construct-
ing many individual subroutines. Each of these subroutines is focused
on a particular task, and they are designed to be self-contained, well
documented and readable.

The DISORT Fortran-77 code is vailable at:
ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple Scatt/

A comprehensive report providing a detailed documentation of the
methodology as well as the numerical implementation of the code is
also available at the web-site given above.



Appendix L
Spherical Shell Geometry

For solar zenith angles greater than about 80° and twilight situations,
we have to take the curvature of the earth into account and solve the ra-
diative transfer equation appropriate for a spherical shell atmosphere.f
The geometry is illustrated in Figure AL.1.

In spherical shell geometry, the derivative of the intensity consists of
three terms in addition to the one term occurring for slab geometry.
These additional terms express the change in the intensity associated

1 The treatment of spherical geometry is described in: V. V. Sobolev, Light Scattering in Plan-
etary Atmospheres (Transl. by W. M. Irvine), Pergamon, 256 pp., 1975.
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Fig. AL.1. Tllustration of plane versus spherical geometry. (a) In plane geometry
the slant path is the same for all layers of equal geometrical thickness. (b) In
spherical geometry the slant path changes from layer to layer.
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with changes in polar angle, azimuthal angle, and solar zenith angle.
Hence, for a spherical shell medium illuminated by a direct (collimated)
beam of radiation, the appropriate radiative transfer equation for the
diffuse intensity may be expressed as (see §6.4)

Q ’ VI(T"U’ 457 ”0) = —k(r)[I(r,u,gb, ”0) - S(r,u, ¢, MO)] (Ll)

Here r is the distance from the center of the planet and k is the ex-
tinction coefficient, while v and ¢ are the cosine of the polar angle
and the azimuthal angle, respectively. The symbol - V denotes the
derivative operator or the ‘streaming term’ appropriate for this geom-
etry. To arrive at this term we must use spherical geometry. If we
map the intensity from a set of global spherical coordinates to a local
set with reference to the local zenith direction, then as explained in
Appendix O, the streaming term becomest

R _ 0 1—u? 0
BV = et T
1 0 Ko ) 0
+ —f(u, po) |cos(d — ¢0)a—uo +1o 2 sin(¢ — ¢o)m
(L.2)

where the factor f is given by

Fluy0) = VI — w21 - i3, (L.3)

For slab geometry, only the first term contributes. The curvature
gives rise to additional terms. Thus, for spherically symmetric geome-
try, the second term must be added, while the third and fourth terms
are required for a spherical shell medium illuminated by direct (colli-
mated) beam radiation. The source function in eqn. L.1 is

a’(’r) m / L ! ! / ! /
S(T,Ua¢aﬂo) = F~/O d()b /_1dup(r,u,gi);u,qﬁ)I(r,u,qS,uo)
-I-a4(—r)p(7", 110, Go; u, §) e TR THO), (L.4)
T

1t The derivation of the ‘streaming’ term given in Appendix O is taken from: A. Kylling: Ra-
diation Transport in Cloudy and Aerosol Loaded Atmospheres, Ph. D. Thesis, University of
Alaska, Fairbanks, USA, 1992, and the discussion of the azimuthally-averaged equation from:
A. Dahlback and K. Stamnes, A new spherical model for computing the radiation field available
for photolysis and heating at twilight, Planet. Space Sci., 39, 671-683, 1991.
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The first term in eqn. L.4 is due to multiple scattering and the second
term is due to first-order scattering. We have used the diffuse/direct
splitting so that eqn. L..1 describes the diffuse radiation field only. We
note that for isotropic scattering, the primary scattering ‘driving term’
becomes isotropic, which implies that the intensity becomes azimuth
independent. The argument in the exponential, Ch(r,u), is the air-
mass factor or the Chapman function: the quantity by which the vertical
optical depth must be multiplied to obtain the slant optical path. For
a slab geometry, Ch(r, uo) = 1/po = secy. Other properties of Ch(r, p10)
are explored in Problems L.1 and L.2. Hence exp[—7Ch(r, uo)] yields
the attenuation of the incident solar radiation of flux F* (normal to the
beam) along the solar beam path.

We find that eqn. 1.4 may be written as follows

S(r,u, ¢a HO) =
2N—1

2w 1
o f, o [, L; (2~ dom)p™ (v, o u) cos m( — ¢) | 1(r, o, @)

2N—1
+ l > X§(7,u) cosm(¢p — ¢0)] e~ TCh(r,p0) (L.5)
m=0

where p™(7,v',u) and X{*(r,u) are defined by eqns. 6.33 and 6.36.

AL.1 “Isolation” of Azimuth Dependence

The extra derivative terms in eqn. L.2 makes the spherical geometry
case more difficult to treat than the corresponding slab problem. In
general, we could expand the intensity in a Fourier series containing
both sine and em cosine terms to account for the appearence of both
types of terms in the derivative operator. However, if the effects of
sphericity are small, it is useful to treat the second, third, and fourth
derivative terms in eqn. L.2 (which are due to the spherical geometry)
as a perturbation. Thus, if we ignore these terms, we are left with a
plane parallel problem to solve and the derivative terms can be included
in an iterative manner by utilizing the plane parallel solutions. Then,
since the first term in eqn. L.5 is essentially a Fourier cosine series,
and the diffuse intensity described by eqn. L.1 is driven by the second
term in eqn. L.5, which contains only cosine terms, we may expand
the intensity as previously expressed by eqn. 6.34 ignoring sine terms.
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This is because we have assumed that the third and fourth terms in
eqn. L.2, which contain sine terms, can be treated as a perturbation and
hence can be evaluated in an iterative manner from the plane parallel
solutions.

With these assumptions, eqn. L.1 becomes

25 {uafm<r,u,uo) L 1-ugorr
or T ou

m=0

+ E(r) [I™(r,u, po) — Sm(r,u,uo)]} cosm(pg — @) = J(r,u, d, po)-
(L.6)

Here

1
S™(r,u, po) = —a(;)/ pm(r,u',u)Im(r,u')du'+X6"(r,u)e_70h("“°) (L.7)
-1

and
o 2 o1 (1, o)
T dupi) = (o) costdo — @) 3 cosmig — ) gt
2N-1
—I—lﬂ% sin(¢ — ¢o) Z msinm(¢ — ¢o) ™ (r, u, ,uo)}.
o NO m=0
(L.8)

In the following example, we describe how the equations may be solved
in a simplified geometry.

Example: Zenith Sky and Mean Intensity — Iterative Approach

If we are interested in only the zenith sky intensity (which is azimuthally independent), then
only the m = 0 term in eqn. 6.34 contributes. For m = 0, the second term in eqn. 6.34 is identically
zero. Upon averaging over azimuth the first term becomes proportional to OI'(r,u, ug)/duo and
may also be discarded if our interest lies solely in the zenith sky intensity. Thus, the zenith sky
intensity is obtained by setting J(r,u, o) = 0 in eqn. L.6 and solving it for m = 0 only. Similarly,
for isotropic scattering there is no azimuth dependence and the complete solution is again arrived
at by setting J(r,u, po) = 0 in eqn. L.6 and solving the equation for m = 0 only.

If our interest is in photolysis and heating rates, only the mean intensity is needed. We therefore
average eqn. L.6 over azimuth to obtain (see also Appendix O):

210 pi0) | 1~ O1°
or T ou

1
= [T ol 1) + To(ry o 1] = —k(r) [1°(r, u, o) — S°(r, u, o)
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where SO(r,u, pg) is obtained by setting m = 0 in eqn. L.7 and

1 8I' (r,u, o
JI(T7U1N0|II) = _f(ualto)#
2 Opo
1 1o
Jz(’l‘,u,[_t0|11) = Ef(u’ﬂo)l 211(1"7“1“0)'
- g

We note that J; and Jy depend functionally on the first azimuth-dependent Fourier component
of the intensity, I', as indicated. Dividing by —k(r), and introducing dr = —k(r)dr, we obtain

1
w0 _ g0y - 20 / du'p(r, o u) (1, = S (7,)
or 2 .

where
1—w?dl 1

kr Ou + kr (J1 4 J2). (-9)
To simplify the notation, we have dropped the m = 0 superscript. If we ignore the three last terms
in the expression for S*(7,u), we are left with an equation which is identical to that obtained
for plane geometry except that the primary scattering term is evaluated in spherical geometry
using the correct path length. We shall refer to this approach, in which the primary scattering
driving term is included correctly but the multiple scattering is done in plane geometry, as the
‘pseudo-spherical’ approximation. Having obtained a ‘pseudo-spherical’ solution, we may proceed
to evaluate the terms we neglected and then solve the equation again including those terms.
Repetition of this procedure provides an iteration scheme that is expected to converge if the
perturbation terms (i.e., the three last terms on the right side of eqn. L.9) are small compared
with the driving term. We shall provide an example of this approach later in the book. Suffice
it to say here that this approach has been found to be quite useful for obtaining both the mean
intensity and the zenith sky intensity in twilight situations.

5*(1,u) = Xo(r(r),u)e~TCkHol 4

In a stratified planetary atmosphere, spherical effects (i. e., the angle
derivatives), become important around sunrise and sunset. Thus, the
first term in eqn. L.9 is the dominant one and the other terms may be
treated as perturbations. It has been shown (by using a perturbation
technique to account for the spherical effects) that in a stratified atmo-
sphere, mean intensities may be calculated with sufficient accuracy for
zenith angles less than 90° by including only the first term in eqn. L.9,
when spherical geometry is used to compute the direct beam attenua-
tion. Then, we may ignore all angle derivatives and simply write the
streaming term as

a.veul (L.10)
or
While this ‘pseudo-spherical’ approach works adequately for the com-
putation of intensities in the zenith— and nadir-viewing directions, and
mean intensities (for zenith angles less than 90°), it may not work for
computation of intensities in directions off-zenith (or off-nadir) unless
it can be shown that the angle derivative terms are indeed small.
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AL.2 Problems

1. The optical depth in a curved atmosphere is required to compute
the attenuation of solar irradiance. For an overhead sun, the vertical
optical depth between altitude zy and the sun is

T(20,v) = /Z:O dzk(z,v)

where k(z,v) is the extinction coefficient at frequency v, and dz is mea-
sured along the vertical. For a non-vertical path dz must be replaced
by the actual length along the ray path. In slab geometry the actual
path length along a ray is simply dz/uo where pg is the cosine of the so-
lar zenith angle. In spherical geometry the situation is somewhat more
complex. Then dz must be replaced by the actual ray path through a
curved atmosphere.

(a) For solar zenith angles 6y < 90°, use geometrical considerations
to derive the following expression for the optical depth between level
zp and the sun in a spherical atmosphere

k(z,v)
V- (52) -

where R is the radius of the planet and z, the distance above the Earth’s
surface.

(6 < 90°)

o0
T(ZOaVHU'O) = / dz
20

(b) Similarly for 6y > 90° show that the following expression applies

R+ 2z

1
© R+ z 2 2
_/20 dzk(z,v) ll - (R+z> (1—#%)]
where z; is a screening height below which the atmosphere is essentially
opaque to radiation of frequency v.

7(20, v, p0) = 2/:dzk(z,y) ll_(R+Zs>2]_%

For practical computations we may divide the spherical atmosphere
into a number of concentric shells. Let Ah; denote the (vertical) thick-
ness of the shell lying between r; (r; = R+2z;) and rj11 (rj41 = rj—Ah;)
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where z; is the vertical distance from the surface of the planet to loca-
tion r;. (Note that ry is at the top of the atmosphere and r;4; is at
the bottom of the deepest layer (shell) considered if the atmosphere is
divided into L concentric shells.)

(c) Show that approximate expressions for the optical depth that
may be used in practical computations are given by

p AS.-
T(T, v, po) = ZAT;’ (A—ij> 6o < 90°
j

AS; = AS; AS .
7(7, v, po) ZATj ( >+2 Z AT (Ah )—l—ATL (Ahi) (6o > 90°).

j=p+1

Here L is the layer in the atmosphere below which attenuation is com-
plete, 7; is the vertical optical depth of shell j, and

ASj = \fr2 —r2(1— pd) — \Jr2,, —12(1 — 1)
where r; and r;, are the distances from the center of the planet to the

upper and lower boundary, respectively of layer j, and r, is the distance
from the center to the point at which the optical depth is evaluated.

2. (a) Show that the Chapman function may be written

N(z,0)

n(z)

Ch(X,0) =

o0
=/ dY exp[—vV X2 +2XY cosf + Y2 + X].
0

Here X = Rg/H,Y = z/H, and N(z,0) is the slant column number for
a spherically-symmetric exponential atmosphere. (b) Defining InV =

—VX24+2XY cosf +Y? + X, show that

dV(1 —-InV/X)
h(X,6) .
/ \/ +sinf — 111V)( sm@—lnTV)

(c) Using the relationship

_g2

/1L —2652/00(156
0 V& —InV ¢
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show that, on neglecting terms of order X!,

Ch(X,0) = V2XeX " 0/2[] _ erf(,/X/2 cos 0)]
where erf is the error function.

(c) Show that, to order X 2, that

_ 2{652
" cosf

Ch(X,90) [1—erf(¢)]

where ¢ = /X/2cot 6.
(e) Show that Ch(X — o00,8) — sec@ for both forms (c) and (d).



Appendix M
Reciprocity for the Bidirectional Reflectance

In this appendix we prove the Principle of Reciprocity for the bidirec-
tional reflectance, that is

p(v;0',¢':0,0) = p(v; 0, ;0. ¢'). (M.1)

Referring to Fig. M.1, the proof first determines the exchange of radia-
tive energy between the black elements dA; and dAs in a hohlraum due
to reflection of energy by the surface dAs. The theorem is proven by
equating the energy exchange dFE, 23 from 1 to 3 via 2, and the energy

Black enclosure
at temperature T

Fig. AM.1. Exchange of radiative energy within a hohlraum.
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exchange dE,32; from 3 to 1 via 2, and equating these two quantities
(see Figure AM.1).

The energy exchange dFE, 193 must balance the reciprocal energy ex-
change dE, 301 in a TE situation. Otherwise there would be a net heat-
ing/cooling of one of the areas at the expense of the other, and this
violates the conditions of the hohlraum. Let’s first consider the exchange
from 1 to 3 via 2. The radiative energy reflected by dA, and intercepted
by dAj is given by that ‘emitted’ into the solid angle subtended by dAs,
dAs cos 03 /73,

dEy193 = I/ (6', 450, ¢) co dALQOSOBdudt. (M.2)
T

2
The reflected intensity I}, is related to the intensity I, (¢, ¢') arriving
at dA, through eqn. 5.15

1/72(91 ¢ ) = COS Hlp(y; 013 ¢I; 0, ¢)II/_1 (015 ¢I)dw21 (M3)
where

A
du)gl = d—21 COS 91 (M4)
r

1
is the angle subtended by dA; from the point dA;. Putting these to-
gether, we find that the rate of energy exchange per unit frequency
from 1 to 3 via 2 is

dEy123 . , ,[dA
Todi =1,00,8)p(v;0,4';6,¢)cos 72 cos 01

dA
cos 0 [ 23 cos 03] .
T3
(M.5)
Now consider energy exchange in the reverse direction, 3 to 1 via 2.

The rate of energy per unit frequency reflected at dA, into the direction
of dA; is

dE,301
dvdt

Ay
=1,(0,0;6',¢") cos0'dAs [d

cos 01] (M.6)
rf

But the reflected intensity at dAs is given by

I),5(0, 40", ¢') = 1,5(0,9))p(v; 0, $; 6", ¢') cos Odwas (M.7)
where dwq3z = dAszcosfs/r2 is the solid angle subtended by dAs at the
point dA,. Putting these together, we find for the energy exchange rate

dE, 321
dvdt

A A
=13(0,9)p(v;0,;0',¢') cos§ cos [d 3 cos 03] [—d 21 cos 01] )
7"2 1
(M.8)
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Equating the two rates of energy exchange, we find
1, (0, ¢)p(v; 0,450, ¢) = 1,3(0,4)p(v;0,;0",¢'). (M.9)

But in TE, the two intensities are just the Planck function, I,, =1 5 =
B,. Therefore

pv; 0,450, ¢) = p(v;0,4;0',¢'). (M.10)

Given the above reciprocity property for the BDRF, we now show
that reciprocity also applies to the flux reflectance. Placing the two
definitions together, we have

plv; =Y, 2m) :/ dw cos Op(v; =V, Q) (M.11)
_|_

pv; 21, Q) =/ dw' cos &' p(v; =¥, Q). (M.12)

The first quantity, p(v;—$,2x) is the directional-hemispherical re-

flectance, and the second quantity, p(v;27,Q) is the hemispherical-
directional reflectance. If we evaluate the first of the above equations
at ' = Q, and place primes on the angular integration variables (real-
izing that they are dummy variables), we have

p(v; =, 21) = / dw' cos 0'p(v; -, ). (M.13)

_I_
Invoking reciprocity of the BDRF, p(v; —, ) = p(v; =, ), we have
p(v; =, 27) = / dw' cos 0'p(v; -V, Q). (M.14)

_|_

But this is the same expression for the hemispherical-directional re-
flectance, eqn. M.12. Thus we find the desired reciprocity relationship

p(v; =, 21) = p(v; 2m; Q). (M.15)



Appendix N

Isolation of the Azimuth-Dependence

The purpose of this Appendix is to provide a derivation of the azimuthal
components of the intensity field. We start with the half-range equa-
tions for the diffuse intensity which we write in full-range form for the
present purpose

dI(7,u, )
Y dr

21 1
I )~ 4= [ g [ {du'p(u',qs';u,w(n o, )
aF'

47

a
47

p(—,ll(), ¢0; u, ¢)677/H0 } ‘
(N.1)

Since, as noted in §6.3 the expansion of the phase function in Legendre
polynomials is essentially a Fourier cosine series, i.e.

2N—1
p(u's¢5u,8) = Y (2= bom) p" (v, u) cos[m(p — ¢')], (N.2)
m=0
where
2N-1
P u) = Y (20 4+ D)X AT (w) AT () (N.3)

I=m
we expand the intensity likewise

2N—-1

I(1,u,¢) = Z I'"™(1,u) cos[m(po — ¢)]. (N.4)
m=0

1
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Substitution of eqns. N.2 and N.4 into the integral term of eqn. N.1
yields

L[ [ autnted, i D1l ) =

o 1 N1
%/0 d¢'/1du’{ 2_: (2 — dom) p™ (0, u) cos[m(¢—¢’)]}
{ Z_ I"(7,u') cos[r(do — </>’)]} ) (N.5)

Focussing on the integration over azimuth we find that for arbitrary
m-values only the r = m term contributes. Thus, we obtain 271°(r, ')
for m =0, 2nI* (1,u')cos(¢y — ¢) for m = 1, and in general

2N—-1 2N—-1

) [ (2~ o) S 170 coslin(p — )] costr(o — ) =
r=0
2N-1

27 Z I™(7,u') cos[m(¢o — ¢)]-

Therefore eqn. N.5 reduces to

a

2 1
[ ad [ il s g1 ) =
2N 1

2 — dom) { / du'p™(u' u) ™ (T, )} cosim(¢pg — ¢)].  (N.7)

It is now clear that substitution of eqns. N.2 and N.4 into eqn. N.1
yields the desired result given in Chapter 6, i.e. eqns. 6.33-6.36.

AN.1 Treatment of the Lower Boundary Condition

Since we are dealing with reflection it is natural to use half-range quan-
tities here. The diffuse reflectance at the lower boundary, r = 7*, is
written as (see §6.9.4)

pd( )u’Oad)Oa,u' d)) T o

21
+ — / d</>/ 't pa(—p's &5 p, )T (77,1, @)
(N.8)

() = ewBT) + P

(N.6)
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where py is the bidirectional reflectance and e is the emittance. First
we note that only the m = 0 component of the intensity contributes to
fluxes, since

27 1
re = [Vdg [ dput* e, 9)
2N—1

2m 1 m+t
_ / do / dpys mZ:oI (7, 1) cos[m(¢ — ¢o)]

1
= 27T/ dppI®* (1, ). (N.9)
0
Next we note that Kirchhoff’s law states
1 27 1
)+ [ dd | duul o=t 51 ) = 1 (N.10)

suggesting that we should use eqn. N.10 to compute the emittance from
the reflectance for consistency. Below we shall start by looking at the
simple case of a Lambert reflector before we consider the more general
case.

AN.2 Lambertian Surface

A Lambert reflector is defined such that the reflected radiation is
isotropic regardless of the directional dependence of the incident ra-
diation. This implies that the bidirectional reflectance is independent
of direction, i. e., pg(—p',¢'; 4, d) = pr, = constant. Now, integrating
the left side of eqn. N.8, we find that the reflected flux becomes

2T 1
FH) = [ dg [ dunl () =71 (VD)
0 0

since the reflected radiation is isotropic. Integration of the first term
on the right side yields neB(T;), where we have used Kirchhoft’s law
yielding e(u) + pr, = 1, which implies e=constant (independent of p) in
this special case. The second term yields pruoF*e~""/#0, and the third
term becomes

2m ! PL 2m ’ ! R Y.
[ ds [ |5 [T ag [ duar o8| =
0 0 ™ Jo 0
1
27pr, / dy' ' 1 (7%, ') (N.12)
0
where I7(r*,p') = 5 02” I=(t*,4,$)d¢ is the azimuthally-averaged
downward intensity (or the m = 0 azimuthal component since we have
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expressed the intensity in a Fourier cosine series). Thus, for a Lambert
reflector we have the following simple boundary condition relating the
intensity reflected by the surface to the downward intensity there

IO+(7. )_GB( )—f—MOFSp e T * /1o +2PL/ dHIHIIO ( *,,U,I). (N13)

AN.3 Non-Lambertian Surface

We shall assume that the bidirectional reflectance is azimuthally-
symmetric so that we may expand it in a Fourier cosine series as

2N-1

pa(—p', 451, ) = Z pd (=, p) cos[m(d’ — ¢)]. (N.14)

In this more general case we find that the third term on the right side
of eqn. N.8 becomes

27
—/ dd)/ dp'pa(—p', &5 p, )T (75,1, 4") =
2N—-1
[T / du'p { P (=i, 1) coslm(@ — 9]

IN—1
Z I' (1%, 1) cos[r (¢ —¢)]}. (N.15)
Since
2N-1 2N-1
)y [ X I costm(yl — ) eosir(n )] =
IN-1
m(1 4 dom) Y I™ (7%, 1) cos[m(do — ¢)] (N.16)
m=0
we find

2m
- / de / A p pa(—p s iy )T (7, ) =

2N 1
{ [ dnt ot ) I ) | costm(go — ),
(N.17)
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Finally, substitution of eqns. N.4 and N.17 into N.8 yields

2N—1 1 .
> {Im+(7*,u) — €(u) B(Ts)d0m — ;FSPQ”(—MO,M)G’T /i —

m=0
(1 + dom) /01 dp' i pg’ (=, p) I (77, u’)} cosm(¢o — ¢)] = 0. (N.18)

Thus, we see that each Fourier component of the intensity must satisfy
the boundary condition

* 1 s . m —T*
I (r*p) = e(1)B(Ts)dom + _F°pg' (—po, p)e fho

1
+ (1 + dom) / dl ! P (— i ) T (7, ). (N.19)
0

We note that for m = 0 and p; = constant = p;r we retain the
azimuthally-independent case pertinent for a Lambertian surface con-
sidered above as we should.



Appendix O

The Streaming term in Spherical Geometry

Since the Earth’s atmosphere has the form of a spherical shell, the ra-
diative transfer equation must be cast in a form applicable to spherical
geometry. The components of the streaming term (- V) in spherical
geometry are

Q = cos®sin® e, +sinPsinO e, +cosO e, (0.1)
o n 1 0 n 1 0
T or U9 190, | P rsin@®, 0%,
where
e, = sin®gcos ®g e, + sinOysin g ey + cos O e,
eg = co0sBOgcosPye; + cosOpsin®y e, —sinOg e,
ep = —sin®ge, + cosPpey

and the angles are defined in Fig AO.1.
Taking the dot product of Q and V gives

Q-V = [cos O cos O + sin O sin O cos(Pg — )] %
1 . . 0
—;[cos © sin Oy — sin O cos Op cos(Py — P)] 50,
1sin® 0
_;Sin @0 Sln(¢'0 — @)T% (02)

For practical reasons it is preferable to refer the system of spherical
coordinates to the local zenith direction. Thus we want to map the
intensity from the set of global coordinates (r, ©g, ®y, ©, ®) to the local

1
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ocn 2 A(1,0,®)

. n(l,0,d)
r=(r0,%,) 8

Fig. AO.1. The geometric setting. Note that in panel b the directional vector Q2
has been parallel shifted to have its starting point at the surface of the earth.

set (Ta HOaQSOa,u'ad))a 161‘
I(T7®0a¢0a®7@) = I(T,H0,¢0,M,¢) (03)

where

p = cosf=e, Q= cosOcosOp+ sin O sin O cos(Py — @) (0.4)
po = cosby (0.5)
and the local polar (6y,0) and azimuthal angles (4o, ¢) are defined in
Fig. O.1. In view of eqn. O.4 we may rewrite O.2 as
0 1oy 0 1 ou 0

OV =g+ 50,90, T r sin’ O 0, 9%, (0.6)
Since p is a function of both ©y and @,
8 8 o b
90, _ 00, " 90, 0p (1)
0 _ Op 0  Op 0
0By~ 0Pg gy OB O

and eqn. O.6 becomes

A a 1 op \2 1 ouN%l 0 10u 0
O.v = 4,2 .12 9 o9 9
Vo= gty l(a(ao) * in? 0 (a«po) o | 700, 90,

1 The global coordinates r, ©®g and ®p denote a point in Rs, whereas © and ® are the coordinates
of a point on the unit sphere S2 = {z,y : 22 + 42 = 1}, and similar for the local coordinates.
Hence both I(r, ©g, ®9, 0, ®) and I(r, po, ¢o, i, ¢) are real-valued functions defined on R3xs2




AO.1 The streaming term pertinent to calculation of mean intensities 3

1 Ou O¢o O
+ T SiIl2 0() 6(1)0 8@0 8¢0 ' (08)

Using eqn. O.4 and some relationships from spherical trigonometry

o \? 1 op \?| _ 2
[(89() + sin? 6, (3(I’o> =l (09)
0 . . /
8—(50 = —c0sOsinOg + sin © cos Og cos(Pg — @) = —/1 — p? cos(¢o — @)
(0.10)
0 : : : . .
Ti: = —sin®sinOpsin(®y — D) = —y/1 — p2sinbysin(dg — ¢) (0.11)
9o O(do—¢) _ (b —
20, @y — 0) = cos by sin(¢g — @) (0.12)

we may finally write the streaming term in spherical geometry refer-
enced to the local zenith direction as

0 1—;1,28 \/1—/12\/1—/102 0
Pt ot ; %W‘Wai
Ho . 0
e G il (0.13)

We note that in plane—parallel geometry only the first term in eqn. O.13
is included. For a spherically symmetric atmosphere the second term
must be added. The full expression is, as stated above, valid for an
inhomogeneous spherical shell, i.e. a planetary atmosphere.

AO.1 The streaming term pertinent to calculation of mean
intensities

Quite generally the intensity may be expanded in a Fourier series

I(TJHO’¢O71U’7¢) = Z {Ivcn('rHUOHU') COSm(¢—¢0)
m=0

+ Ifn('ra Ho, 1“‘) Sinm(¢ - ¢0)} : (014)
Combining eqn. O.13 and eqn. O.14 we find
0 1—p? — u2\/1 — po?
L u3+\/1 121 — po
or r Oy T
1= 2 /1 — u2
L Vi-m ;/ 0

COS(QZS — ¢O)Bi,uo} I(’I", Ho, (12503 H, ¢)

sl — do)



4 The Streaming term in Spherical Geometry

Y {=m I3, (v, po, ) sinm(¢ — o) + m Iy (r, o, i) cos m(¢p — o)} -
m=0

(0.15)
Since we are interested in the mean intensity
2T T
1,0.6) = o [ ddo [ sin6dty I(r,00, 0,6,

4m Jo 0

1 27 1

= 4_/ d¢0/ dl‘O I(Ta M07¢01(/)1 /1’) (016)
T Jo -1

we average eqn. O.16 over azimuth to get

1V — p2\1 = g OIE(r, po, )

oI§(r, po, 1 — p? 8I§(r, po,
y 5( Mo#)+ pe OI§(r, po, 1)

or r oy + 2 r o
VI =2\ 1= pd g
+ 5 r 1— HQIf('ra P‘Oaﬂ‘)' (017)
0

Note that only the cosine terms ‘survived’ the averaging over azimuth.



Appendix P

Reciprocity, Duality and Effects of Surface
Reflection

The purpose of this Appendix is to provide some details that were
omitted in §6.10 regarding the relationship between the reflection and
transmission for unidirectional (parallel beam or ‘solar’) and wuniform
(isotropic over the downward hemisphere) illumination of an inhomo-
geneous slab. The reflectance and transmittance for unidirectional il-
lumination of a slab will be shown to be equivalent to the angular
distribution of the azimuthally-averaged reflected and transmitted in-
tensities, respectively, pertaining to uniform illumination of the slab
with unit incident intensity. For an inhomogeneous slab the transmit-
tance for unidirectional illumination from one side (e.g. the top) is
equivalent to the angular distribution of the intensity pertaining to il-
lumination from the other side (the bottom) of the slab. We will then
derive an analytic expression for the intensity reflected from a Lambert
surface underlying an inhomogeneeous slab, which in turn is required
to derive simple analytic expressions for the reflectance and transmit-
tance of an inhomogeneous slab overlying a partially reflecting surface
in terms of the solution pertaining to the same slab overlying a black
surface.

AP.1 Principle of Reciprocity

If the angular scattering depends only on the scattering angle, i. e. the
angle between the direction of incidence and the direction in which the
photon is scattered, then the phase function may be written

M

p(©) = p(c0s®) = plur + (1~ u?)? (1 — /%) cos(¢ — @) (P.1)

1



2 Reciprocity, Duality and Effects of Surface Reflection

where we have used eqn. 3.22. We see that the phase function satisfies
the following relations

plp, s, ¢') =p(u', &' 1y 9) (P.2)
p(—p, s —p', ') =p(W', &5 11, 9) (P.3)
p(u, & —u', ¢ =p(—1', s 1, 0) = p(1', &5 — 11, ). (P.4)

The above relations are usually referred to as Helmholtz’ reciprocity
principle. They are a consequence of time reversal invariance and they
apply to a single scattering event.

AP.2 Homogeneous Slab

For a slab of finite thickness multiple scattering cannot, in general, be
neglected. Therefore we do not expect reciprocity to be directly appli-
cable. What is important here is, however, that the above reciprocity
relations imply the following reciprocity rules for the reflectance and
transmittance of a homogeneous slab of arbitrary (but finite) thickness

7_*

p(T"; 1y 45 110, d0) = p(T%; po, Gos 1, @) (P.5)
T (75 1, &5 po, do) = T (775 o, bo; 14, ¢)- (P.6)

The radiation reflected and transmitted by the slab may be expressed
as

10, 1y po, 3) = o Fp(T*; 1, 5 10, bo) (P.7)
I_(T*’Maﬂ‘oa(ﬁ) = NOFST(T*aMa(:ba M0a¢0) (PS)

where pgF* is the (vertical) flux of the incident ‘solar’ radiation. Av-
eraging over azimuth, we obtain

I7(0, i, o) = poF* p(T*5 15 o) (P.9)
I7(7%, py pro) = poF*T (775 13 o) (P.10)
where
1 2T
p(T*5 1, po) = 2 Jo dep(T*; 1, 5 o, $o) (P.11)
1 27
T(T%5 1y o) = 5= dpT (%5 1, &5 1o, o)- (P.12)

27 Jo



AP.2 Homogeneous Slab 3
AP.2.1 Collimated incidence

The reflectance and transmittance for collimated beam (‘solar’) inci-
dence are obtained by integration

eam * 27r ! ! *
P (T o) = Fs/ dqu+(0,u,uo)udu=27r/ dppp(T*, 1, o)
Ho 0 0
(P.13)
b * 2T ! — (% ! *
T (T, o) = Fs/ dppd ™ (7%, py o) = 2%/ dppT (7%, p1, po)-
Ho 0 0
(P.14)

Another integration yields the spherical albedo and transmittance

1 1 1
ﬁbeam(’r*) _ 2/0 dpopop(T*, o) = 47T/O dﬂp/o dpop(T*, 11, o) (P.15)

— 1 ! !
Tbea'IH(,r*) — 2/0 dlLO,UOP(T*Hu’O) = 47‘[’/0 dﬂu/o d'U,()T(T*,H,HO)- (P]‘6)

The superscript ‘beam’ is used to remind us that the illumination is
collimated, the tilde (7) sign that it is from below, and the overbar (")
sign that we are are dealing with a spherical quantity.

AP.2.2  Uniform incidence

The angular distributions of the reflected and transmitted intensities
for uniform illumination with unit incident intensity (F*® = 1) are

. 1 1
1m0, 1) = 2n /0 dpuo T (0, s, po) = 2 /O dpopop(T*, iy o) (P.17)

o 1 1
e (%, p) = 2m /0 dpol ™ (1%, iy po) = 2 /0 dpopoT (7*, 1y o). (P.18)

The flux albedo and transmittance (F~(*")(0) = 7) are given by

F+(um)(0) 1 N 1 1 .

— = 2/0 dppl ™ (0, p) = 47T/0 duu/ﬂ dpop(T*, 1, o) (P.19)
F—(uni) (T*) 1 1 1
— 0 = 2/0 dppl (%, p) = 47r/0 duu/o dpoT (7%, 1, o). (P.20)

The superscript ‘uni’ is used to remind us that the illumination is
uniform.



4 Reciprocity, Duality and Effects of Surface Reflection
AP.2.3  Duality

Since p(7%; p, po) = p(1%; po, p) and T (75 p, po) = T(7%; po, p), the dual-
ity relations given in §6.10 follow by comparing the above expressions
for collimated and uniform incidence.

AP.3 Inhomogeneous Slab

The expressions given above pertaining to a homogeneous slab will
now be generalized to apply to a vertically inhomogeneous slab. We
must distinguish between illumination from the top and the bottom.
Thus, considering first illumination from the top we find that the same
expressions as before (given by eqns. P.13-P.16 and eqns. P.17-P.20
above) apply for unidirectional and uniform illumination, respectively.
However, for unidirectional and uniform illumination from the bottom we
obtain the following expressions

1
ﬁbeam(,r*,#o) = 27T‘/0 dﬂﬂﬁ(T*aM7N0);

. i 1
T (>, ) = 27r/0 dpopop (™ 1y Ho), (P.21)

~ 1 ~
Tbeam (7.*’ /J‘O) = 2WA d/j-’/J‘T(T*, M’MO)’

~ . 1 -
I+ (0, ) = 2 /0 dpopoT (™, s o), (P.22)

1 1
~beam ; x ~( %
p (") =47r/0 duu/O dpop(T™ s 1, 1ho);
F—(um)(,r*)

™

1 1
= dm /0 dpp /0 dpop(T*, s o) (P.23)

~ beam 1 1 ~

(7%) = 47f/0 duu/o dpoT (77, i, pho);

Funi) (g 1 1 o

O 4#/ d/w/ dpoT (7%, s po)- (P.24)
™ 0 0

The superscript ‘beam’ is used to remind us that the illumination is

collimated, the tilde (~) sign that it is from below, and the overbar (")

sign that we are are dealing with a spherical quantity.



AP.4 Derivation of the Reflected Intensity Component I, 5
AP.3.1  Reciprocity and Duality

As noted in §6.10 for an inhomogeneous slab the reflectance and trans-
mittance satisfy the following reciprocity relations

(T, o) = p(7%, po, p); p(T*, 1y o) = p(T, o, 1);

T(T*a.uuu'O) = T(T*,,u,(),,u). (P25)
A crucial difference between the homogeneous and the inhomogeneous
slab is the reciprocity relating the transmittance due to illumination
from one side to the illumination from the other side. Of course, for
a homogeneous slab it makes no difference to which side we apply the
illumination.

By comparing the expressions pertinent for collimated and uniform
incidence and using these reciprocity relations we find that it is now
a simple matter to generalize the duality relations for a homogeneous
slab to obtain the expressions valid for an inhomogeneous slab provided
in §6.10.

AP.4 Derivation of the Reflected Intensity Component I,

In §6.11 we derived simple analytic expressions for the radiation re-
flected and transmitted by a slab overlying a partially reflecting (Lam-
bert) surface in terms of the reflected intensity reflected at the lower
boundary, I,. In fact, the quantity

L prT(po;2m) _ prT (=0, —2m)
poFs — w(l—ppr)  w(1—ppr)
appears in Eqgs. 6.79 and 6.80 for the bidirectional reflectance and tran-
mittance of a slab overlying a Lambertian surface. Below we derive an

expression for I, in terms of the reflectance and transmittance pertinent
to an inhomogeneous slab overlying a black (i.e non-reflecting surface).

In general, the intensity reflected at the lower boundary, I't(7*, u, ¢),
is related to the incident intensity, I~ (7%, u, ¢), through

2w 1
I d) = [ [ D () (P26)
or by averaging over azimuth

1
I ) =2 [ dpul ol )1 () = 1 (P:27)
0



6 Reciprocity, Duality and Effects of Surface Reflection

where p(— ; is the bidirectional reflectance of the surface, an
here p(—p', ¢'; 1, @) is the bidirectional reflect f th face, and
p(—p', ) its azimuthal mean. Here I, is a constant because we are
dealing with a Lambert surface for which p(—u', ) = pr, = constant.

Next we consider the total reflected intensity I;5,(0; i, ), which con-
sists of three separate components: (a) the contribution from the at-
mosphere assuming a non-reflecting or black lower boundary (p = 0);
(b) the diffusely-transmitted component arising from I, (see eqn. 5.30);
and (c) the directly-transmitted component arising from 7. In math-
ematical terms, we write

2 1
Lo (0 1, ¢) = I (05 1, 5 p =0)+/0 dqﬁ’/ﬂ ' W Ta('s &' s Q) Lo+ L™ ¥
(P.28)
since we have assumed that the reflected intensity is azimuth-
independent and given by eqn. P.27. Removing I, from the integral
(it is independent of angle), we combine terms (b) and (c), to obtain
the total transmittance

I, [e’“/ 4 /0 " ¢’ /0 1du’u’7?z(u';u)]- (P.29)

The second term is recognized as the diffuse part of the hemispherical-
directional transmittance Ty(2m; u) pertaining to radiation incident from
below. We note the absence of azimuthal dependence. As shown for
the flux reflectance in Problem 3.1(b), reciprocity also applies to the
fluz transmittance

Ta(2m; p) = Talp; 2m). (P.30)

In words, the hemispherical-directional transmittance is also the
directional-hemispherical transmittance. Therefore

I (0 1, ¢) = TH(0; 1, 5 p = 0) + I T (3 2) (P.31)

where T(u;2m) = e~ /% 4 Ty(p; 27), or the total transmittance is the
sum of the beam and diffuse transmittances. We note that the remain-
ing ¢-dependence of the total intensity is due to the first term, and
is traceable to a ¢-dependence of the collimated beam illumination.
The extra term in the above equation (arising from the boundary) is
azimuthally independent by assumption (Lambert reflector).

The first term may be expressed in terms of the incident radiation
field (assumed to be a collimated solar beam) and the atmospheric
reflectance as poF*p(—po, do; i, »). Therefore

L5 (0; 1, ) = poF* p(—po, dos s §) + LT (5 2m). (P.32)
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Proceeding in a similar manner we find that the transmitted intensity
can be expressed as

Lot (775 1, @) = poF°T (—po, do; 1y @) + I p(p; 27). (P.33)

Here the first term is the diffusely transmitted intensity, while the
second term stems from radiation reflected first from the surface and
then from the atmosphere above.

It remains to determine I,. Setting the reflected flux «I, equal to a
constant, pr,, times the downward flux at 7*, we have

wl. = pr, [,quse_T*/”O + poF ¥ Tq(po; 2m) + WITﬁ] . (P.34)

The first term on the left side is the directly-transmitted solar flux,
the second term is the diffusely-transmitted component for a completely
black surface, and the third term is the (downward) reflected compo-
nent due to the upward reflection from the Lambert surface followed by
downward reflection by the atmosphere. We recognize p as the spherical
albedo pertaining to illumination from below. Solving the above for I,
we obtain

 mFopp [6_7*/”0 + 7:1(H0§27T)] _ pHoFpr T (po; 2m)
r (1= ppr) (1 — pprL)

where we have once again combined the sum of the direct and diffuse
transmittances into a total transmittance.

(P.35)



Appendix Q

Removal of Overflow Problems in the Intensity
Formulas

We start looking at the homogeneous part of eqn. 8.67 for the upward

intensity, which we rewrite as (using k_;, = —kjp)
+ _
Ip (7, u) =
Z Z {Cij’ng ]TL +H) 7[ kjnTn—l'{'(Tn_l*T)/lL] _ 6_[_kJnTTL+(Tn_T)/lJ/}
n=pj=1 JnH

Gin (1) hnrat(rera)/u]  =lkinTnot+(r=Tn—1)/4]
_.l_ C in—————¢ jnin n)/K __ e inTn—1 n—1)/ 1 . Ql

Introducing eqns. 8.57 into eqn. 8.67, we find

_ ¥ Z{O_MQ i )E'_mm )

n=pj=1
+c;,nﬁl%mw< ) @2
where
E' (1, +1) = exp [ (kjn ATy 4 07/p)] — exp [~ (10 — 7) /1] (Q-3)
with

; (Q4)

ATy =Tp —Tp_1, O0T=T4_1—7 forn<p
A1y, =1, — T, dr =0 forn=p

Eil—]n(,r’ +p) = exp [~ (Tn—1 — 7)/p] —exp {— [kjn(Tn = Tn—1) + (Tn — 7)/p1]}
(Q.5)

for n > p and

Eff—]p(T’ +iu’) = eXp[_kjp(T - Tpfl)]
—exp{—[kjp(7p —7p—1) + (1, — 7)/p]}.  (Q.6)

1



2 Removwal of Overflow Problems in the Intensity Formulas

Since kj, > 0forn =p+1,p+2,...Land 7 > -+ > Tp—pi1 > Tn_1=p > 7
and also kj, > 0 and 7,_; < 7 < 7p, all the exponentials in eqns. Q.3—
Q-6 have negative arguments as they should.

Similarly, by introducing eqns. 8.57 into the homogeneous part of eqn
8.68, we find that the expression for the downward intensity becomes

Z Z{ *]ngl ink H)ELJR(T _ﬂ)

n=1j=1
g—l— n( )
where

Ely (1, —) = exp[—(kjn A1y + 67 /p)] — exp[—(T — To-1) /1] (Q.8)
with
7 (Q'g)

ATy =T —Tn1, O0T=7—71, forn<p
ATy =Tp — Tp_1, or =0 forn=p

E' j (7, —p) = exp[— (1 — 1) /] — exp{~[kjn(n — Ta-1) + (T — Tn—1)/u]}
(Q.10)

for n < p and

E' (7, —n) = exp[—kjp(7p — 7)] — exp{—[kjp(7p — Tp—1) + (T — 7p—1)/u]}.

(Q.11)

Again, we see that all exponentials involved in the scaled solutions

have negative arguments since kj, > 0 and 7 > 7, > 7,1 for n =

1,2,...,p—1, and also kj, > 0 and 7,1 < 7 < 7,. This ensures that
fatal overflow errors are avoided in the computations.



Appendix R

Integration of the Planck Function across an
Arbitrary Spectral Interval

Our problem in integrating the radiative transfer equation across a
spectral interval Av is that we must approximate integrals of the form

B, ¥, dv (R.1)

Av
where ¥, is the product of the radiative intensity and possibly other
frequency-dependent factors. The radiative intensity is given by the

Planck function (§4.4):

m?2 2h13
2 (ehv/kBT _ 1)

II/BB = B,(T)

A sound procedure which conserves energy and is rigorously correct
in the limit of zero or infinite absorption, is to approximate this integral
as

o é‘Au
By =32 | W (R.2)
where
12 v
fn = / Bydv=¢,—¢, and & = / Bydv/.  (R.3)
V1 0

Applying the mean value theorem by pulling B, through the integral
sign and evaluating it at some wavenumber inside Av is a much inferior
procedure that neither conserves energy nor gives the correct answer
in limiting cases (such as when there is no radiatively active medium
above a black surface).

A well-documented numerical procedure for evaluating the Planck

1



2 Integration of the Planck Function across an Arbitrary Spectral Interval

function is provided in the DISORT report available at the following
web-site:

ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple Scatt/

A FORTRAN-T77 subroutine for computing the Planck function is
also available at this web-site as part of the DISORT code.



Appendix S

Computation of the Normalized Associated
Legendre Polynomials

We follow the scheme introduecd by Dave and Armstrongf to compute
A7", the normalized associated Legendre polynomials.

The only stable recurrence for the Aj” is the one involving its sub-
script. We take it from Dave/Armstrong Eq. (10) but set [ = k+ 1 and
m =n — 1 to conform to usual notation
(20 — DA, (u) — T+ m = D — m — DA, (u)

({—m)(l +m)
l=m+2,...). (S.1)

A" (u) =

To initialize this recurrence, we need A]? and A7 ,. Dave and Arm-
strong express them as multi-step recurrences, but it is possible to
derive simpler expressions requiring only a single recursive step. These
derivations are provided in the DISORT report that is available at the
follwing web-site:

ftp://climate.gsfc.nasa.gov/pub/wiscombe/Multiple Scatt/

A FORTRAN-77 subroutine for computing the A" is also available
at this web-site as part of the DISORT code.

1 Dave, J. V. and B. H. Armstrong, Computation of High-Order Associated Legendre Polynomi-
als, J. Quant. Spectros. Radiat. Transfer, 10, 557-562, 1970.

1
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