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 K This new and completely updated edition 

gives a detailed description of radiative 

transfer processes at a level accessible to 

advanced students. The volume gives the 

reader a basic understanding of global 

warming and enhanced levels of harmful 

ultraviolet radiation caused by ozone 

depletion. It teaches the basic physics 

of absorption, scattering, and emission 

processes in turbid media, such as the 

atmosphere and ocean, using simple  

semi-classical models. The radiative 

transfer equation, including multiple 

scattering, is formulated and solved for 

several prototype problems, using both 

simple approximate and accurate numerical 

methods. In addition, the reader has 

access to a power ful, state-of-the-ar t 

computational code for simulating radiative 

transfer processes in coupled atmosphere-

water systems including snow and ice. This 

computational code can be regarded as 

a power ful educational aid, but also as a 

research tool that can be applied  

to solve a variety of research problems  

in environmental sciences.

From reviews of the f irst edition

‘This book should not be missing on the 

desk of any person seriously interested in 

radiative transfer ... I would certainly use 

this book as a basic text and recommend it 

very highly to my students. I am sure that 

both instructor and student can profit a 

great deal from studying this excellent work.’

Meteorology and Atmospheric Physics

‘ ... should grace the shelves of all libraries 

of institutes concerned with research and 

teaching in atmospheric and oceanic science 

and it is an important part of the radiative 

transfer armoury.’       

International Journal of Climatology

‘The book is easy to read, and there are 

many examples to illustrate the concepts 

discussed...[It] should serve well as an 

introduction to radiative transfer.’

EOS

‘ ... a valuable resource for those interested 

in terrestrial radiative transfer.’

Physics Today

C O V E R  D E S I G N E D  B Y  H A RT  M c L E O D  LT D

stamnes

	Access to computational code for simulating 

radiative transfer processes

	Lecture slides based on the book and a 

solutions manual for instructor use

	PowerPoint and JPEG files of the figures in 

the book for instructor use

Based on Chapter 2 in K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the

Atmosphere and Ocean, Cambridge University Press, 2017.
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Basic State Variables – Scalar versus vector radiance
(1)

In many instances we are mostly concerned with the flow of radiative energy
through atmospheres and oceans. Then:

•We can ignore polarization effects: Disregard the Q, U , and V components
of the Stokes vector, I = [I,Q, U, V ]T , and consider only the first (radiance)
component I .

• This approach is known as the scalar approximation, in contrast to the
more accurate vector description.

• This scalar approximation is valid for longwave radiation where thermal emission
and absorption dominate over scattering processes.

•When scattering is important, the radiation is generally partially polarized:

• An accurate description of scattering of sunlight in a clear atmosphere or in pure
water requires the full Stokes vector representation.
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Basic State Variables – Scalar versus vector radiance
(2)

• In radiative transfer theory the scalar radiance plays as central a role as the
wave function in quantum theory.

• Its full specification as a function of: (i) position, (ii) direction, and (iii)
frequency conveys all of the desired information about the scalar radiation
field.

A brief description of our notation:

• Radiation state variables are described in terms of both spectral (or
monochromatic) quantities and frequency integrated quantities.

• Frequency, ν, is measured in cycles per second or Hertz, abbreviated as [Hz].
For spectral quantities, we may visualize a small frequency interval over which
all properties of the radiation and its interaction with matter are constant.

• Spectral quantities can also be expressed as a function of wavelength,
λ [nm] or [µm], or wavenumber, ν̃ = 1/λ [cm−1].
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Basic State Variables – Geometrical Optics (3)

It is important to point out that:

• The basic assumptions of the radiative transfer theory are the same as those of
geometrical optics.

A sharply defined pencil of radiation was first defined in geometrical optics:

• A radiation pencil is realized physically by allowing light emanating from a point
source to pass through a small opening in an opaque screen. This light may be
viewed by allowing it to fall on a second screen.

• If we were to examine this spot of light near its boundary, we would notice that
the edge would not be geometrically sharp. Instead we would find a series of
bright and dark bands, called diffraction fringes.

• The size of the region over which these bands occur is of the order of the wave-
length of light, λ.

• If the diameter of the cross-sectional area of the pencil is very much larger than
λ, diffraction effects are small, and we may speak of a sharply bounded
pencil of rays.
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Basic State Variables – Geometrical Optics (4)

• The propagation of light may then be described in purely geometrical terms,
and energy transport will occur along the direction of the light rays.

• These rays are not necessarily straight lines. In general, they are curves whose
directions are determined by the gradient of the index of refraction, m =
mr + imi.

• The real part mr = c/v is the ratio of the speed of light in vacuum (c) to that
in the medium (v). It is the most important light-matter interaction parameter
in geometrical optics.

• Absorption along the ray depends upon the imaginary part mi of the com-
plex index of refraction. The fact that m varies with frequency is known as
dispersion.

• In geometrical optics theory, interference and diffraction of light are
unimportant. The same is true of the radiative transfer theory.

• It is usually sufficient to set the index of refraction equal to a constant value per-
taining to either air or water, ignoring both dispersion and ray bending.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

5



Basic State Variables – Geometrical Optics (5)

• Refraction is also important in radiative transfer through the ocean–
atmosphere interface, at which the index of refraction changes abruptly.

• In this case, it is usually sufficient to assume that the index of refraction is unity
(mr ≈ 1.0) for air and equal to (mr ≈ 1.34) for water.

For our purposes the concept of incoherent (non-interfering) beams of radi-
ation is more convenient than the concept of ray pencils. We define a beam in
analogy with a plane wave:

• It carries energy in a specific propagation direction (the ray di-
rection) and has infinite extent in the transverse direction.

•We will use ray and beam direction synonymously. When a beam of sunlight
is incident on a scattering medium (e.g., the Earth’s atmosphere):

• it splits up into an infinite number of incoherent (non-interacting) beams prop-
agating in different directions.
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Basic State Variables – Geometrical Optics (6)

• Similarly, when a beam is incident on a diffusely reflecting surface (e.g., a
“rough” ocean surface or a plant canopy):

• the reflected radiation splits up in an infinite number of incoherent beams trav-
eling in different directions.

• On the other hand, if a beam is incident on a perfectly smooth, plane interface:

• it will give rise to one reflected and one transmitted beam.

• The directions of these two beams follow from the geometrical optics laws of
reflection and refraction (Snell’s Law), while

• their states of polarization follow from Fresnel’s Equations.

• It is also be convenient to define an angular beam as:

• an incoherent sum of beams propagating in various directions inside a small cone
of solid angle dω centered around the direction of propagation Ω̂ as illustrated
in Fig. 1.
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Figure 1: The flow of radiative energy carried by a beam in the direction
Ω̂ through a transparent surface element dA. The flow direction Ω̂
is at an angle θ with respect to the surface normal n̂ (cos θ = n̂ · Ω̂).
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Basic State Variables – Irradiance (7)

We consider the flow of radiative energy across a surface element dA, located at
a specific position, and having a unit normal n̂ (see Fig. 1).

• The energy flow is visualized as being carried by incoherent (non-interacting)
beams of radiation moving in all directions.

• Because the beams traveling in different directions do not interact, we may treat
them separately.

• The net rate of radiative energy flow, or power, per unit area within the small
spectral range ν, ν + dν is called the spectral net irradiance.

•We express the spectral net irradiance Fν in terms of the net energy d3E
which crosses the area, dA, in the time interval, t, t + dt, within the frequency
interval, ν, ν + dν, as:

Fν =
d3E

dAdtdν
[W ·m−2 · Hz−1].
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Basic State Variables – Irradiance (8)

The quantities d3E and dAdtdν are:

• third-order differential quantities, considered positive if the flow is into
the hemisphere centered on the direction n̂, and negative if the flow is into the
opposite hemisphere centered on −n̂.

• A general radiation field consists of angular beams traveling in all directions.

• It is convenient to separate the energy flow into oppositely directed, posi-
tive energy flows in two separate hemispheres: d3E+ and d3E−.

• Each of these partial flows carries a positive amount of energy. We define the
spectral hemispherical irradiancees F+

ν and F−ν as

F+
ν =

d3E+

dAdtdν
; F−ν =

d3E−

dAdtdν
.

The net energy flow in the positive direction is

d3E = d3E+ − d3E−.
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Basic State Variables – Irradiance (9)

• In the same way the spectral net irradiance is written as the difference of two
positive quantities

Fν = F+
ν − F−ν .

Summing over all frequencies, we obtain the net irradiance:

F =
∫ ∞
0 dνFν [W ·m−2].

• The spectral net irradiance Fλ within a small wavelength range λ, λ + dλ is
defined within the wavelength interval dλ, related to the frequency interval dν.
Thus, Fν |dν| = Fλ |dλ| and (ν = c/λ):

Fλ = Fν |dν/dλ| = Fν(c/λ
2)

[
W ·m−2 · nm−1

]
.

• Similarly, the spectral net irradiance per wavenumber (ν̃ = ν/c = 1/λ [cm−1])
is:

Fν̃ = Fν |dν/dν̃| = Fνc
[
W ·m−2 · cm

]
.
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Basic State Variables – Poynting Vector (10)

• The spectral net irradiance may also be considered to be the component of a
spectral irradiance vector ~Fν(~r) which points in the reference direction Ω̂,
i.e.:

~Fν(~r) = Fν(~r)Ω̂.

• ~Fν(~r) is the generalization of the Poynting vector (in electromagnetic theory)
to describe streams traveling in arbitrary directions.

• Clearly, the scalar spectral net irradiance is the component of ~Fν(~r) in the
direction Ω̂, that is:

Fν(~r) = Ω̂ · ~Fν(~r).
• That part of the net irradiance originating in reflection or emission from a surface

is sometimes referred to as the radiant exitance.
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Basic State Variables – Spectral radiance and its
Angular Moments (11)

• The net irradiance conveys little information about the directional depen-
dence of the energy flow. A more precise description of the energy flow is
desirable, especially in remote sensing applications.

• The directional dependence can be visualized in terms of a distribution of
energy flow in all 4π directions.

• In any particular direction the energy flow is associated with the angular beam
traveling in that direction.

•We denote by d4E any small subset of the total energy flow within
a solid angle dω around a certain direction Ω̂ in the time interval dt
and over a small increment of frequency dν, or energy.

•We require that this subset of radiation has passed through a surface element dA
whose orientation is defined by its unit normal n̂. The geometry is illustrated in
Fig. 2.
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Figure 2: The flow of radiative energy carried by a beam in the direction Ω̂ through a transparent
surface element dA. The flow direction Ω̂ is at an angle θ with respect to the surface normal n̂
(cos θ = n̂ · Ω̂). (Same as Fig. 1.)
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Basic State Variables – Spectral radiance and its
Angular Moments (12)

• The angle between n̂ and the direction of propagation Ω̂ is denoted by θ. The
energy per unit area, unit solid angle, unit frequency, and unit time is:

The radiance Iν defined as the ratio

Iν =
d4E

cos θdAdtdωdν

[
W ·m−2 · sr−1 · Hz−1

]
.

• Note that, in addition to dividing by dωdνdt, we have divided by the factor
cos θ = n̂ · Ω̂. This factor multiplied by dA is the projection of the surface
element onto the plane normal to Ω̂.

• Note also that if n̂ and Ω̂ are directed into opposite hemispheres, then cos θ =
n̂ · Ω̂ is negative. The energy flow is also negative in this case, by definition, so
that the ratio d4E/cos θ remains positive.

•Radiance is always positive.
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Basic State Variables – Spectral Radiance and its
Angular Moments (13)

• Note that radiance is a scalar quantity, describing an angular variation of
energy flow and how this angular variation itself changes with position.

• In addition to its dependence on the position variable ~r, the angular variable Ω̂,
and the frequency variable ν, the radiance I may also depend on time.

• Hence there are seven independent variables: three in space (x, y, z), two in
angle (θ, φ), one in frequency (ν), and one in time (t).

• Except in active remote sensing applications, such as lidar and radar, time
dependence may be confidently ignored (seven → six variables).

• Also planetary media have approximate planar uniformity. Therefore, it often
suffices to use only one position variable (height in the atmosphere and
depth in the ocean).

• Then, the number of variables is reduced from seven to four.
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Basic State Variables – Relationship between
Irradiance and Radiance (14)

• The relationship between Irradiance and Radiance follows from the previous
equation, which we rewrite as

d4E = Iν cos θ dA dt dω dν.

• The rate at which energy flows into each hemisphere is obtained by integration
of the separate energy flows into each hemisphere, i.e.:

d3E+ =
∫
+ d

4E+; d3E− =
∫
− d

4E−.

• The subscript (+) on the integral sign denotes integration over the hemisphere
defined by n̂, and (−) integration over the hemisphere defined by −n̂. The
previous definitions of F+

ν and F−ν yields positive half-range irradiances:

F+
ν =

d3E+

dAdtdν
=

∫
+ dω cos θIν; F−ν =

d3E−

dAdtdν
= −

∫
− dω cos θIν.
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Basic State Variables – Relationship between
Irradiance and Radiance (15)

Combination of the half-range irradiances yields the net irradiance:

Integration over all solid angles yields the spectral net irradiance

Fν = F+
ν − F−ν =

∫
4π dω cos θIν [W ·m−2 · Hz−1].

• If the spectral radiance Iν(~r, Ω̂) at a point is independent of direction Ω̂, it is said
to be isotropic. If it is independent of position ~r, it is called homogeneous.

• The spectral radiance is both isotropic and homogeneous in the special case of
thermodynamic equilibrium, where the net irradiance is zero every-
where in the medium.

• The reason is that even though the hemispherical irradiances are finite, they are
of equal magnitude and opposite direction. Therefore, no net energy flow can
occur in this equilibrium case.
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Basic State Variables – Average Radiance and Energy
Density (16)

• Averaging the directionally dependent radiance over all directions at a given
point, ~r, yields a scalar quantity called

The Spectral Average (Mean) Radiance

Īν(~r) = (1/4π)
∫
4π dω Iν(~r, Ω̂) [W ·m−2 · Hz−1].

• The overbar (̄ ) indicates an average over the sphere. Īν is proportional to the
spectral energy density of the radiation field Uν, the radiative energy that
resides within a unit volume.

• In the Ocean Optics community Īν is referred to as the “scalar irradiance”.

• The ‘actinic flux’ used by photochemists is simply 4πĪν. The spectral energy
density Uν can be related to the radiance in the following way.
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Basic State Variables – Average Radiance and Energy
Density (17)

• Consider a small cylindrical volume element of area dA having a unit normal n̂,
whose length,

cdt = the distance light travels in time dt (c is the light speed),

and let the direction of propagation Ω̂ be at an angle θ with respect to n̂.

• The volume of this element is

dV = dA cos θcdt,

where dA cos θ is the projection of the surface element dA onto the plane normal
to Ω̂.

• The energy per unit volume per unit frequency residing in the volume between
t and t + dt is therefore:

dUν =
d4E

dV dν
=
Iν cos θdAdt dν dω

dA cos θcdtdν
=
Iν
c
dω.
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Basic State Variables – Average Radiance and Energy
Density (18)

• If we consider the energy density in the vicinity of a collection of incoherent
beams travelling in all 4π directions, we must integrate this expression over all
solid angles dω to obtain:

Uν =
∫
4π dUν =

1

c

∫
4π dω Iν =

4π

c
Īν [J ·m−3 · Hz−1].

• The total energy density is the sum over all frequencies:

U =
∫ ∞
0 dν Uν [J ·m−3].
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Example 2.1 Isotropic distribution (19)

• Let us assume that the spectral radiance is independent of direction, i.e.,
Iν(Ω̂) = Iν = constant. This assumption applies to a medium in thermody-
namic equilibrium and is approximately valid deep inside a dense medium. The
irradiance and energy density are easily evaluated as:

F+
ν = F−ν = πIν

Fν = F+
ν − F−ν = 0

Uν =
4πIν
c
.

Note that:

• the two contributions to the irradiance from the opposite hemispheres cancel.
Mathematically, this cancellation occurs because cos θ is an odd function of
θ in the interval [0, π], and physically because of a balance between
upward and downward flowing beams.
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Example 2.2 Hemispherically-isotropic distribution (20)

• This example represents the simplest non-trivial description of diffuse radiation
having a non-zero net energy transport.

• Let I+
ν denote the (constant) value of the radiance everywhere in the positive

hemisphere, and let I−ν denote the (constant) value of the radiance everywhere
in the opposite hemisphere. I+

ν 6= I−ν by assumption.

• As in the isotropic case, we solve for the various moments:

Fν = I+
ν

∫ 2π
0 dφ

∫ π/2
0 dθ sin θ cos θ + I−ν

∫ 2π
0 dφ

∫ π
π/2 dθ sin θ cos θ = π(I+

ν − I−ν )

Uν =
I+
ν

c

∫ 2π
0 dφ

∫ π/2
0 dθ sin θ +

I−ν
c

∫ 2π
0 dφ

∫ π
π/2 dθ sin θ =

2π

c
(I+
ν + I−ν ).

• The angular distribution of radiance has been replaced by a pair of numbers at
each point in the medium.

• In some situations, this approximation is too inaccurate.

• However, in situations where the spectral radiance is close to being isotropic, it
leads to results of surprisingly high accuracy, as discussed in Chapter 7.
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Example 2.3 Collimated Distribution (21)

• Ignoring the finite size of the Sun, we write the radiance in the direction Ω̂ as:

Is
ν(Ω̂) = F s

νδ(Ω̂− Ω̂0)
[
W ·m−2 · sr−1 · Hz−1

]
.

• F s
ν is the irradiance carried by the beam across a plane normal to the direction

of incidence Ω̂0. Ω̂0 has the polar angle θ0 and the azimuthal angle φ0.

• δ(Ω̂− Ω̂0) = δ(φ−φ0)δ(cos θ−cos θ0) is the two-dimensional Dirac δ-function.
Since the delta-function has the ‘units’ of inverse solid angle, Is

ν has the correct
units (energy per unit area per unit frequency per unit time per unit solid angle).

• The moments for a collimated beam are (u ≡ cos θ and µ0 ≡ cos θ0):

Fν = F s
ν

∫ 2π
0 dφ δ(φ− φ0)

∫ 1
−1 du u δ(u− µ0) = F s

νµ0

Uν =
F s
ν

c

∫ 2π
0 dφ δ(φ− φ0)

∫ +1
−1 du δ(u− µ0) =

F s
ν

c
.
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Example 2.4 Azimuthally Symmetric Distribution (22)

• In this special case, the radiance distribution is constant as one varies the az-
imuthal angle φ, i.e., Iν 6= Iν(φ). Of course, all other variables are held constant.

• This case describes the singly scattered part of the radiation field in a coordinate
system in which the z-axis is along the incoming direction of a collimated beam.

• It is also valid for the multiply scattered radiation in a slab or plane-parallel
geometry when the scattering phase function is isotropic. Further, it applies
to a radiation field produced by thermal emission, and of course, to an isotropic
or hemispherically isotropic distribution.

• The angular moments are:

Fν =
∫ 2π
0 dφ

∫ +1
−1 du uIν(u) = 2π

∫ +1
−1 du uIν(u)

Uν =
1

c

∫ 2π
0 dφ

∫ +1
−1 du Iν(u) = (4π/c)Īν.
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Some Theorems on Radiance (23)

• Perhaps the most important property of the radiance is expressed in the following
theorem (see Fig. 3):

Theorem I:

In a transparent medium, the radiance is constant along a ray.

• Theorem I may be generalized to apply to a beam which is reflected any
number of times by perfectly-reflecting mirrors:

Theorem II:

The radiance remains constant along a ray upon perfect reflection

by any mirror or combination of mirrors.
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Figure 3: The energy crossing a transparent area dA and entering into solid angle dω is the same
as that which crosses the area dA′ and is contained within the solid angle dω′. r is the distance
between P and P ′.
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Some Theorems on Radiance (24)

• A third property of the radiance applies to refraction in a transparent medium
of variable index of refraction. The theorem applies for discrete changes in m(ν)
as long as reflection at the interfaces can be neglected:

Theorem III:

The quantity Iν/m
2(ν) remains constant along a ray

in a transparent medium, provided that the

reflectance at each interface can be neglected.

• The quantity Iν/m
2(ν) is called the basic radiance. Clearly, Theorem I is a

special case of Theorem III.
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The Extinction Law (25)

•We now introduce the specific interaction properties which are essential elements
in the radiative transfer theory.

• They are defined in terms of the most important principle in the theory, the Ex-
tinction Law, more commonly known as Beer’s Law, the Beer-Lambert
Law, or the Beer-Lambert-Bouguer Law.

• Consider a small volume dV containing matter described by n [m−3], the
concentration, defined as the ratio of the number of particles dN divided by
the volume dV .

• The particles are assumed to be optically significant, that is, they have a
non-negligible effect on radiation that passes through the volume.

• Other (optically insignificant) particles may be present, but they may be ignored
for the present purposes.
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The Extinction Law (26)

• For convenience, the volume dV is considered to be a slab of infinitesimal thick-
ness ds and area dA (Fig. 4). Suppose a beam of radiation is incident normally
on the slab. From Eq. (2.3) the differential of energy falling on the front surface
is:

d4E = Iν dA dt dν dω.

• As the beam of radiation passes through the slab, it interacts with the particles
through either absorption or scattering and a reduced amount of energy emerges
at the opposite side. The beam of radiation is said to have suffered extinction.

• The energy emerging from the back face of the slab is given by the original
energy, less an amount given by:

δ(d4E) = dIν dA dt dν dω

where dIν is the differential loss in radiance along the length ds.
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(b)

ν (s = 0)

ds

(a)

Iν (s = 0)e-k(ν)s

Iν (s + ds) = 1ν (s) - k(ν) Iν (s)ds

ds

(a)

s

Figure 4: (a) Radiance passing through a thin slab suffers extinction proportional to the path length
ds. (b) Radiance passing through a finite path length suffers exponential extinction.
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The Extinction Law (27)

• It is found experimentally that the degree of weakening depends linearly
upon both the incident radiance and the amount of optically active mat-
ter along the beam direction (proportional to the length ds):

The Extinction Law (Differential Form)

dIν ∝ −Iνds.

•We define the constant of proportionality to be the extinction coefficient k.
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The Extinction Law (28)

There are three different ways of defining extinction, in terms of:

• the path length itself ds;

• the mass path dM = ρds; or

• the column number dN = nds

of the absorbing/scattering species concentration.

• Here ρ is mass density [kg ·m−3] and

• n is particle density or concentration [m−3] of the optically significant gas.
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The Extinction Law (29)

• Hence, the following three definitions of extinction are obtained:

k(ν) ≡ − dIν
Iνds

extinction coefficient [m−1]

km(ν) ≡ − dIν
Iνρds

= − dIν
IνdM

mass extinction coefficient [m2 · kg−1]

kn(ν) ≡ − dIν
Iνnds

= − dIν
IνdN

extinction cross section [m2].

Note that:

• the extinction cross section kn is analogous to the collision cross section in atomic
physics.

• It is interpreted as the effective area of the molecule or particle presented to
the incident beam, resulting in some of the beam being absorbed or deflected
(scattered) into other directions.
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The Extinction Law (30)

• Let the total length of the straight-line path through an extended section of the
medium be s, and an intermediate path length be s′ ≤ s.

• Denoting the radiance entering the medium at s′ = 0 as Iν(s
′ = 0, Ω̂), we need

to find the radiance Iν(s
′ = s, Ω̂), where Ω̂ denotes the propagation direction of

the beam. Integrating the equations above from s′ = 0 to s′ = s, we obtain:

τs(ν) = − ln

Iν(s
′ = s, Ω̂)

Iν(s′ = 0, Ω̂)


where

τs(ν) ≡
∫ s
0 ds

′ k(ν) ≡
∫ s
0 ds

′ km(ν)ρ ≡
∫ s
0 ds

′ kn(ν)n.

• Here τs is the extinction optical path or opacity along the path s.

• τs (a dimensionless quantity) is a measure of the strength and number of optically
significant particles along a beam.
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The Extinction Law (31)

• Solving for the radiance at s′ = s by taking the antilogarithm we obtain:

The Extinction Law (integrated form)

Iν(s, Ω̂) = Iν(0, Ω̂) exp [−τs(ν)].

• The radiance is seen to decay exponentially with optical path along the beam
direction.

• The Extinction Law reduces to Theorem I when the optical path is zero,
resulting in the statement that

• the radiance remains constant along the beam direction in the absence of ex-
tinction.
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Extinction = Scattering plus Absorption (32)

•We have dealt with extinction as if it were one process, whereas it is actually
caused by two distinctly different phenomena.

• It is clear that the attenuation of a light beam in a specific direction can be
obtained by either absorption or scattering.

• This attenuation is obvious for absorption but some care needs to be given as to
how scattering also weakens the beam. Since this process diverts the radiation
into beams propagating in other directions, it must necessarily result in a loss
of energy in the initial beam along Ω̂.

• However, suppose a photon in the beam is ‘deflected’ only a very small amount.
A detector of finite angular resolution may then measure the presence of this
scattered photon along with the original (unscattered) beam photons.

• This small deflection can be a difficult experimental problem, since small-angle
scattering from particulate matter (the so-called “diffraction peak”) can be or-
ders of magnitude more efficient than large-angle scattering.
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Extinction = Scattering plus Absorption (33)

• It is also possible that photons in a different beam, propagating in direction Ω̂′′,
might be deflected into the direction Ω̂, and thus be confused with the original
beam. This deflection is a consequence of multiple scattering.

• The extinction optical path τs of a mixture of scattering/absorbing molecules
and particles is defined as the sum of the individual scattering optical path,
τsc(ν), and the absorption optical path, τa(ν), i.e.

τs(ν) = τsc(ν) + τa(ν)

where

τsc(ν) =
∑
i

∫ s
0 ds

′ σi(ν, s′) =
∑
i

∫ s
0 ds

′ σim(ν)ρi(s
′) =

∑
i

∫ s
0 ds

′ σin(ν)ni(s
′)

τa(ν) =
∑
i

∫ s
0 ds

′ αi(ν, s′) =
∑
i

∫ s
0 ds

′ αim(ν)ρi(s
′) =

∑
i

∫ s
0 ds

′ αin(ν)ni(s
′).
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Extinction = Scattering plus Absorption (34)

• The sum is over all optically significant species. ρi and ni are the mass densities
and concentrations of the ith optically significant species (either molecule or
particle).

The quantities αi, αim, α
i
n are called:

• the absorption coefficient, αi,

• the mass absorption coefficient, αim, and

• the absorption cross section, αin,

of the ith constituent (molecule or particle), respectively.

Similarly, the quantities σi, σim, σ
i
n are called:

• the scattering coefficient, σi,

• the mass scattering coefficient, σim, and

• the scattering cross section, σin.
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The Differential Equation of Radiative Transfer (35)

•We first define in a formal way the emission of radiative energy by a differential
volume element within the medium. We ignore any time dependence of the
radiation field.

• Consider again a slab of thickness ds, and cross-sectional area dA, filled with an
optically significant material emitting radiative energy of frequency ν in time
dt.

• This energy emerges from the slab as an angular beam with directions within
the solid angle dω around Ω̂.

• The emission coefficient is defined as the ratio:

jν(~r, Ω̂) =
d4E

dA ds dt dν dω
=

d4E

dV dt dν dω
[W ·m−3 · Hz−1 · sr−1].
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The Differential Equation of Radiative Transfer (36)

•We now have general definitions for both the loss and the gain of radiative
energy of a beam, and may therefore write the net rate of change of the
radiance along the beam direction.

• Combining the Extinction Law with the definition of emission, we have:

dIν = −k(ν)Iνds + jνds [W ·m−2 · Hz−1 · sr−1]

where k(ν) = σ(ν) + α(ν).

• Dividing by k(ν)ds, the differential optical path dτs, we find:

dIν
dτs

= −Iν +
jν
k(ν)

.

• The ratio jν/k(ν) is called the source function:

Sν ≡
jν
k(ν)

[W ·m−2 · Hz−1 · sr−1].
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The Differential Equation of Radiative Transfer (37)

• Our fundamental equation may be written in three mathematically equivalent
ways:

The differential equation of radiative transfer:

dIν
dτs

= −Iν + Sν;
dIν
ds

= −k(ν)Iν + k(ν)Sν;

Ω̂ · ∇Iν = −k(ν)Iν + k(ν)Sν.

• In the third form the gradient operator ∇ emphasizes that we are describing a
rate of change of radiance along the beam in the direction Ω̂.

• Ω̂ · ∇Iν is sometimes called the streaming term. A derivation of the extra term
(1/c)∂Iν/∂t that must be added to the LHS of the above equations when time
dependence cannot be ignored is provided in Example 2.6.
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