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 K This new and completely updated edition 

gives a detailed description of radiative 

transfer processes at a level accessible to 

advanced students. The volume gives the 

reader a basic understanding of global 

warming and enhanced levels of harmful 

ultraviolet radiation caused by ozone 

depletion. It teaches the basic physics 

of absorption, scattering, and emission 

processes in turbid media, such as the 

atmosphere and ocean, using simple  

semi-classical models. The radiative 

transfer equation, including multiple 

scattering, is formulated and solved for 

several prototype problems, using both 

simple approximate and accurate numerical 

methods. In addition, the reader has 

access to a power ful, state-of-the-ar t 

computational code for simulating radiative 

transfer processes in coupled atmosphere-

water systems including snow and ice. This 

computational code can be regarded as 

a power ful educational aid, but also as a 

research tool that can be applied  

to solve a variety of research problems  

in environmental sciences.

From reviews of the f irst edition

‘This book should not be missing on the 

desk of any person seriously interested in 

radiative transfer ... I would certainly use 

this book as a basic text and recommend it 

very highly to my students. I am sure that 

both instructor and student can profit a 

great deal from studying this excellent work.’

Meteorology and Atmospheric Physics

‘ ... should grace the shelves of all libraries 

of institutes concerned with research and 

teaching in atmospheric and oceanic science 

and it is an important part of the radiative 

transfer armoury.’       

International Journal of Climatology

‘The book is easy to read, and there are 

many examples to illustrate the concepts 

discussed...[It] should serve well as an 

introduction to radiative transfer.’

EOS

‘ ... a valuable resource for those interested 

in terrestrial radiative transfer.’

Physics Today

C O V E R  D E S I G N E D  B Y  H A RT  M c L E O D  LT D

stamnes

	Access to computational code for simulating 

radiative transfer processes

	Lecture slides based on the book and a 

solutions manual for instructor use

	PowerPoint and JPEG files of the figures in 

the book for instructor use

Based on Chapter 3 in K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the

Atmosphere and Ocean, Cambridge University Press, 2017.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017



Basic Scattering Processes (1)

In the next two chapters we will study the physical basis for the three types of
light-matter interactions which are important in planetary media:

• scattering, absorption and emission.

In this chapter (Chapter 3) we concentrate on scattering, which may be thought
of as:

• the ‘first step’ in both the emission and absorption processes.

We use the classical concept of the Lorentz atom to visualize the process of
scattering, which encompasses both:

• coherent processes, such as refraction and reflection,

as well as the many

• incoherent processes, which are the main topic of this chapter.
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Basic Scattering Processes (2)

We use the classical interaction of a plane wave with an isolated, damped, simple
harmonic oscillator to introduce the cross section expressed in terms of:

• the frequency of the incident light, the natural frequency of the oscil-
lator, and the damping rate.

A simple extension is then made to scattering involving excited quantum states to
help understand three different scattering processes:

• Rayleigh, resonance, and Thomson scattering.

This approach also:

• gives the Lorentz profile for absorption in terms of the classical damp-
ing rate, which apart from a numerical constant agrees with the quantum
mechanical (QM) result;

• allows for a description of the two principal mechanisms responsible for broad-
ening of absorption lines in realistic molecular media: pressure broadening
and Doppler broadening.
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Basic Scattering Processes (3)

Radiation interacts with matter in three different ways through:

• emission, absorption and scattering.

We first contrast these three interactions in terms of their energy conversions
between:

• internal energy states of matter, EI (which includes kinetic energy), and

• radiative energy, ER.

It is convenient to consider monochromatic radiation:

• Emission converts internal energy to radiative energy (EI → ER).

•Absorption converts radiative energy to internal energy (ER → EI).

• Scattering is a ‘double-conversion’ (ER′ → EI → ER) in which

• the radiative energy ER′ is first absorbed by matter (ER′ → EI) and

• then radiated (EI → ER).
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Basic Scattering Processes (4)

Thus, the radiated (scattered) field, denoted by R, is generally:

•modified in frequency, direction of propagation, and polarization
relative to the absorbed (incident) field.

Some general relationships between these interactions follow from the energy-
conversion viewpoint:

• emission and absorption appear to be inverse processes;

• we may think of scattering as simply a combination of absorption, followed
by emission;

In the continuum view:

• matter can be divided into finer and finer elements with no limits on the smallness
of the values of the charge or matter within the elementary volumes, BUT

• the atomic theory is based on the notion of a fundamental discreteness of
matter, thus placing a limit on the size of these basic volume elements.
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Basic Scattering Processes (5)

Our microscopic description is based on:

• the interactions of light with these ‘building blocks’, assumed to
consist only of mass, and positive and negative electric charges
bound together by elastic forces.

If these basic volume elements are are assumed to have internal energy modes
(“excitation”), coinciding with those derived from quantum theory (or determined
from experiment), then:

•Maxwell’s theory provides all the tools we need to understand the
interactions of these elements with electromagnetic radiation.

Individual atoms are the agents of absorption, emission, and scattering, but:

• the mathematics of the classical theory often requires us to consider the matter
to consist of an infinitely divisible continuous distribution of charge.

• Fortunately: the dimensions of atoms are so small that these two contradictory
views never pose any practical problems.
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Basic Scattering Processes (6)

We choose volume elements (in either real space, velocity space or energy space)
sufficiently small that we can:

• consider the properties of matter to be uniform within each element, BUT

• these volumes will be large enough to contain a sufficiently large number of
atoms so that the granularity (discreteness) of matter can be ignored.

With regard to the radiation field, we take two apparently contradictory views.
Classically:

• the EM field is a continuous function of space and time, AND the
radiative energy within the small frequency range [ν, ν + dν] is a continuous
function of ν, and there is no limit to how small the energy differences can be.

Quantum mechanically:

• the radiation field consists of discrete values of energy, which are separated
in increments of the minimum energy hν at a given frequency. Here h is Planck’s
constant.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Basic Scattering Processes (7)

• The total energy density is determined by the total number of radiation quanta
(“photons”) times the energy hν per quantum.

• As in the case of atoms, we can define the interval dν to be sufficiently small
that the energy may be considered to be constant over dν, but large enough to
contain enough photons so that the discretization in energy is unobservable.

•We will sometimes refer to radiation in terms of a “field”, and other times in
terms of “photons”.

This deliberate looseness allows us a flexibility:

• we may visualize light-matter interactions, sometimes in terms of light par-
ticles, other times in terms of a continuous distribution of an electro-
magnetic field.

• However: our actual mathematical description will usually be based on the
classical theory. The classical approach can be extended to the description of
discrete spectral line absorption (a distinct quantum process).
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Basic Scattering Processes (8)

In this ‘semi-classical’ theory:

• the atom is described in quantum terms but the radiation is treated
as a classical entity.

•While this theory has been very successful, explanation of some phenomena (such
as spontaneous emission) requires that both matter and radiation be quantized
(called quantum electrodynamics).

• Fortunately, quantum effects can fairly easily be incorporated in the
classical approach, and this artifice usually leads to results consistent with
observation.

• For example, the Planck formula for the frequency distribution within a black-
body cavity stems from quantum theory. Its adoption in the classical theory is
straightforward.

•We will mix classical and quantum concepts.
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Lorentz Theory for Radiation-Matter Interactions (1)

In 1910, Lorentz put forth a very successful microscopic theory of matter, in which
he assumed that:

• the electrically neutral atoms of a substance consist of negative charges (elec-
trons) and equal positive charges (the nucleus) bound together by
elastic forces.

• These elastic forces are proportional to the distance of the charges from the
center of charge (Hooke’s Law).

• The Lorentz theory combined with the familiar Coulomb forces be-
tween electrical charges, and the Maxwell theory of the electromagnetic field:

• provided the pre-quantum world with a satisfactory explanation
of a vast number of phenomena.
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Lorentz Theory for Radiation-Matter Interactions (2)

• Some of the constants resulting from the Lorentz theory needed adjustment to
agree with experiments; later on they were explained in a more basic way with
quantum theory.

• In addition, the field equations of Maxwell served to explain nearly
all properties of radiation as an electromagnetic phenomenon.

• A dramatic failure of the classical theory was its inability to predict the
blackbody frequency distribution law. This failure eventually led
M. Planck in 1900 to his paradigm-shattering notion of quantized energy
states of matter.

• This advance, plus the failure of the classical theory to explain the photoelectric
effect, led A. Einstein in 1914 to postulate that light itself is quantized∗.

• The new quantum theory eventually replaced the old classical theory because of
its successful application to a very broad range of phenomena.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

∗Only later in 1925 did these light particles become known as photons.
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Lorentz Theory for Radiation-Matter Interactions (3)

• However, the Lorentz theory has survived to the present day, not because
it in any way competes with the newer theory, but because it has important
advantages of concrete visualization that the quantum theory often lacks.

• For this pedagogical reason (and because it usually gives the correct an-
swers when the unknown constants are provided by the accurate
quantum theory) we will use the Lorentz theory.

• Note, however, that the interpretation of many modern optical phenomena in-
volving so-called ‘coherent’ radiation requires quantum theory.

However:

• to explain the propagation of natural (incoherent) radiation we seldom need to
resort to these sophisticated descriptions.
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Lorentz Theory for Radiation-Matter Interactions (4)

Of course:

• accurate numerical values of many of the interaction parameters required in
the radiative transfer theory (for example molecular absorption cross sections)
cannot be provided by the classical theory, BUT

• aerosol cross section calculations for spherical particles are accurately described
by the classical Mie-Debye theory.

• Except in certain simple situations, we will consider the interaction parameters
to be given, either

– from quantum-theoretical calculations,

– from the Mie-Debye theory, or

– from laboratory measurements.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering and Collective Effects in a Uniform Medium
(1)

We will now use the Lorentz model and the classical radiation theory to visualize
how light is affected in its passage through matter.

•We consider atoms and molecules to behave in basically similar ways.

Consider a monochromatic plane wave incident upon a dielectric
medium† consisting of a uniform distribution of non-absorbing Lorentz
atoms. The plane wave has:

• a fixed frequency, phase, and polarization (orientation of the electric field direc-
tion).

The imposed electric field creates:

• within each atom an oscillating charge separation which varies in
time with the same period as that of the incident field.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

†A dielectric material is an electrical insulator that can be polarized by an applied
electric field.
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Scattering and Collective Effects in a Uniform Medium
(2)

The strength of the interaction is measured by:

• The induced dipole moment ~p which is proportional to two quantities:

1. the polarizability αp, which depends upon the bonding forces between the con-
stituent positive and negative charges; and

2. the imposed electric field ~E ′.

For simplicity we consider an isotropic medium, for which αp is a scalar.

• The induced dipole (the product of the electronic charge and its displacement
from the equilibrium arrangement within the atom) is mostly due to

• the oscillatory motion of the bound electrons which are much lighter than the
nucleus.

What is the effect of the incident wave on an isolated atom?

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering and Collective Effects in a Uniform Medium
(3)

Electromagnetic theory predicts that:

• an oscillating charge will radiate an outgoing electromagnetic
wave of the same frequency as the oscillation frequency.

In general,

• this radiated or scattered wave will have a definite phase shift
with respect to the incoming plane wave.

Thus,

• the scattered wave is coherent with the incoming wave. In this simplest of sit-
uations, it propagates outward as a spherical wave with the typical
dipole radiation pattern.

The effect of a single nonabsorbing atom is thus to:

• divert the flow of radiative energy, but not to destroy it.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering and Collective Effects in a Uniform Medium
(4)

• However, the collective action of a uniform, optically dense medium is quite
different. In fact, no overall scattering will occur!

This lack of scattering occurs despite the fact that each atom may interact quite
strongly in the manner just described. To understand this paradox, consider the
fact that:

• pure glass, water, or air transmit light freely with (at most) some bending of the
rays at interfaces where there is a change in the refractive index.

•Moreover, away from interfaces, the basic radiance (I/m2
r) is not attenuated

along the ray (see Theorem III).

To understand how the induced dipole picture is compatible with the notion of
an unattenuated refracted ray, we must

• consider the interactions of the scattered waves with the incident
field and with one another.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering and Collective Effects in a Uniform Medium
(5)

The medium is assumed to be perfectly uniform. Each atom is forced to
radiate spherically outgoing waves that are coherent with the incident wave:

• The net radiation field therefore is a coherent superposition of these scat-
tered waves and the incident wave. Because of the coherence, the separate
electric fields must be added with due regard to their relative phases.

Figure 1 illustrates light incident on a smooth plane boundary separating a vac-
uum (to the left) from a semi-infinite medium (to the right). We assume that the
plane wave falls on this boundary at normal incidence.

• If the medium is perfectly uniform, then for every point P ′ on the boundary
we can locate a second point P ′′ such that for a given direction of observation
the path length difference is λ/2, where λ is the wavelength.

• The two scattered waves from P ′ and P ′′ cancel in this direction through de-
structive interference.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Figure 1: The radiation fields scattered from the point P ′′ and P ′ are 90◦

out of phase and therefore interfere destructively.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering and Collective Effects in a Uniform Medium
(6)

For all other directions of observation (other than the forward direction):

• we can always find other pairs of points for which perfect cancellation occurs.
As a result of destructive interference the incident wave is completely ex-
tinguished inside the medium (the Ewald-Oseen Extinction Theo-
rem).

If the medium to the right is a slab of finite extension, then:

• all that remains of the incident light is the transmitted and reflected rays, in the
forward and backward directions, respectively.

We might expect the net result for the transmitted ray to be the same as if there
were no medium at all, but:

• as a result of the repeated scatterings and re-emissions along the ray, its for-
ward progress is slowed down by a factor 1/mr, where mr is the real
part of the refractive index of the medium (mr = c/vp, c is the speed of light in
vacuum, and vp is the phase velocity in the medium).

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering and Collective Effects in a Uniform Medium
(7)

If the incident light falls obliquely on the smooth planar interface of Fig. 1 and
the medium is assumed to be a finite slab, then:

• the scattered waves will survive in two directions outside the medium
corresponding to those of the familiar specularly reflected and trans-
mitted rays in geometric optics.

The direction of propagation of the refracted ray within the medium is given by
Snell’s law. Thus:

• both refraction and reflection are manifestations of a coherent superposition of
waves, each caused by a single, more fundamental scattering process.

In fact, any type of “reflection” when analyzed in detail will be found to be:

• the result of the same basic type of coherent scattering described above, although
the myriad of collective processes occurring in optical media “hides” the basic
underlying scattering pattern of each individual atom or molecule.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering from Density Irregularities (1)

Since no real substance is perfectly uniform, we ask:

• what is the effect of irregularities, or inhomogenieties, distributed throughout
the medium?

These irregularities can take various forms:

• even in pure solids, crystal defects may be present, or there may be irregu-
larities in the orientation of the atoms, or in the density (and thus
in the refractive index) from place to place.

• Fluctuations occur in the number density n (or in other thermodynamic proper-
ties depending upon density) because no actual substance is perfectly uniform.

• The atomic nature of the substance causes it to have statistical
variations in density that are present in all phases (gas, liquid,
solid), but are most apparent in gases and liquids.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering from Density Irregularities (2)

These density inhomogeneities, ∆n (whose spatial scales are small compared to
λ) give rise to:

• corresponding changes in the number of induced dipoles per unit volume,

~P = nαp ~E
′,

where

• ~P is the bulk polarization of the medium, αp is the polarizability, and ~E ′

is the imposed electric field.

The electric and magnetic fields at some distance away from two source points P
and P ′:

• will interfere as in a uniform medium (see Fig. 1), but in this case the result is
an incomplete cancellation.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

23



Scattering from Density Irregularities (2)

• The “excess” (surviving) electric field ~E in the scattered wave is proportional to

the change in the bulk polarization, ∆ ~P , so that:

~E ∝ ∆ ~P = αp∆n.

• Since the radiance of an electromagnetic wave is proportional to the square
of the electric field amplitude (averaged over a wave period), the change in the
radiance becomes:

∆I ∝ (∆E)2 ∝ (∆P)2 ∝ (∆n)2.

• The statistical theory for fluctuations in an ideal gas predicts
that:

(∆n)2 ∝ n.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering from Density Irregularities (2)

Thus, we are led to the conclusion that for an ideal gas the scattered radiance is
proportional to the number of atoms per unit volume:

• the scattering behaves as if the atoms scatter independently of
one another.

• This remarkable result was understood and used by Lord Rayleigh in his classic
explanation of the blue sky in a series of papers between 1899 and 1903.

•Mathematical proofs were provided by R. Smoluchowski in 1908 and by A.
Einstein in 1910.

• A consequence of this result is that light can be simultaneously refracted and
scattered by air molecules.

• This foremost example of scattering is called Rayleigh scattering.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering in Random Media (1)

We have seen that, although a uniform medium transmits light in a collective
transparent manner:

• the randomly distributed inhomogeneities or imperfections (in an oth-
erwise uniform medium) scatter light as if the individual atoms were unaf-
fected by the radiation from their neighbors.

With the exception of the forward direction, it can be shown that:

• for most planetary media, the individual scattered spherical
wavelets have no permanent phase relationships.

This randomness of the phases of the superposed scattered wavelets implies that:

• the net radiance due to all the scattering centers is simply the
sum of the individual radiences.

• This incoherent scattering property is typical for planetary materials, con-
sisting of mixtures of substances and of several types of inhomogeneities.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering in Random Media (2)

For example:

• the presence of small bubbles of air trapped in water or ice will give rise to a
milky appearance due to the spatial inhomogeneities in the index of refraction.

•We shall generally refer to the scattering centers in such substances (so called
random media) as particles.

• They are generally different in composition from the atoms of the ambient media,
and are distributed randomly within the ambient media.

• The assumption of independent scatterers is violated if the particles are
too closely packed.

• The average spacing between particles should be several times
their diameters to prevent intermolecular forces from causing correlations
between neighboring scattering centers.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering in Random Media (3)

• This requirement would appear to rule out independent scattering in aqueous
media where such short-range correlations are the very essence of the liquid
state.

• In particular, pure water is composed of transitory water clusters of random size
held together by hydrogen bond forces.

• Sea water contains a diversity of ion clusters, depending upon the various types of
dissolved salts. Scattering therefore occurs from the clusters rather
than from individual water molecules.

An important point is that:

• these clusters are much smaller than the wavelength of visible
light.

The dependence of scattering in pure water is λ−4.3 (it is λ−4 in air), suggesting
that there is indeed incoherency between the scattered wavelets:

• From the optical point of view the clusters are uncorrelated.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Scattering in Random Media (4)

• Aerosols (solid or liquid particles suspended in the atmosphere) may have im-
portant radiative effects.

Even though the concentrations of scattering ‘particles’ may be present only in
‘trace’ amounts:

• they usually have much larger scattering cross sections than the molecules. Thus
they often have an important influence on the transfer of radiation.

• The distribution of sky brightness may be severely altered by atmospheric
aerosols (dust, soot, smoke particles, cloud water droplets, raindrops, ice crystals,
etc.), which may be present only in the parts per million by volume.

Similarly:

• ‘trace’ amounts of suspended organic and inorganic particles in seawater may be
of dominant importance to the radiation field in ocean water.

•Most natural surface materials (soil, snow, vegetation canopies) are classified as
random media.
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Scattering in Random Media (5)

These materials are composed of:

• randomly-distributed collections of diverse scattering elements,
which scatter light incoherently.

A counter-example is the surface of calm water, for which:

• cooperative effects account for the specularly-reflected and transmitted light.
Then radiative transfer theory cannot be used; we must use Maxwell’s equations,
as for example, in the Fresnel theory of reflection.

In most media of interest to us:

• the dimensions of scattering particles are comparable to, or exceed the wave-
length of light. In such cases, their ‘radiation patterns’ are often very compli-
cated.
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Scattering in Random Media (6)

• As in the case of small density irregularities, the radiance of the direct beam is
largely a result of collective, coherent effects, but it is also weakened by the fact
that the secondary radiation diverts energy into other directions.

•We will refer to this secondary scattered radiation as diffuse radiation, be-
cause in contrast to direct (collimated or uni-directional) radiation it is dis-
tributed over many directions, in general through 4π sterradians.

• Scattering in random media occurs over the small spatial scales of the particles
themselves, in contrast with light interactions with irregularities having larger
spatial scale. For example:

• convection or overturning of air parcels causes a mixing of irregular warm and
cool air masses over scales of the order of centimeters to meters.

• Variations of air density and temperature lead to variations over the same scale
in the refractive index of the air, which in turn alters the direction of light rays
in a chaotic manner, and explains the twinkling of stars (scintillation).
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Scattering in Random Media (7)

On a still larger scale:

• the air density of a planetary atmosphere declines exponentially with height over
characteristic scales of the order of 5 to 8 km. The distortion of the image of
the setting sun is a result of the vertical gradient of the refractive index of air.

• Refraction must be dealt with by considering the coherent wave nature of the
radiation.
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First-order and Multiple Scattering (1)

• In uniform media: mutual interactions between the various scattered waves
and between each scattered wave and the incident wave are of utmost impor-
tance.

• In random media: the particles scatter independently of one another, and
their individual contributions add together as if there were no mutual interac-
tions.

Consider the illumination of the atmosphere by the Sun. Assume that the particles
are well separated, so that each is subjected to direct solar radiation. Then:

• A small portion of the direct radiation incident on the particle will be scattered,
giving rise to scattered or diffuse radiation.

• If the diffuse radiation arriving from all parts of the medium is negligible
compared with the direct radiation, the medium is said to be optically thin.

• If we were to double the number of scatterers in an optically-thin medium, the
scattered or diffuse radiation would also be doubled.
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First-order and Multiple Scattering (2)

However it often happens that:

• the diffuse radiation itself is an important additional source of radiation, be-
coming a source for still more scattering, etc. The diffuse radiation arising from
scattering of the direct solar beam is called first-order or primary scattering.

If additional scattering events need to be included:

• the radiation is said to be multiply scattered, and the medium in which this
is important is said to be optically thick.

Thus, in many situations of interest in planetary media:

• the radiation field is determined not only by the transmitted incident radiation
field, but also by the “self-illumination” from the medium itself.

This incoherent multiple scattering could be regarded as a collective effect,

• but it should not be confused with the coherent, collective effects already dis-
cussed.
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Interaction Cross Sections of Matter with Radiation (1)

We derive some basic equations for the interaction cross sections of matter with
radiation, and present a simple example of how the interaction works in a very
specific, simplified situation.

For an isolated molecule and including only the natural damping interaction, the
analysis yields:

• (1) a strong resonant interaction which occurs when the light frequency is very
near one of the natural oscillation frequencies of the molecule; and

• (2) a much weaker interaction which affects all light frequencies, and which
provides a very good model for Rayleigh scattering.

• In either case, the interaction is that of elastic scattering.

• Our treatment does not explicitly consider the coherence of the incoming and
outgoing waves, although such consideration is necessary in order to derive the
corresponding extinction of the incoming beam.
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Interaction Cross Sections of Matter with Radiation (2)

• The combination of both the direct and scattered fields is important in dense
media, where the oscillators themselves affect the local electric field. However
we ignore this effect.

• A simple generalization of the meaning of the damping constant to include col-
lisional effects provides a first-order description of pressure broadening.

• The Lorentz line profile predicted by this simple model is in very good agreement
with measurements of high spectral resolution.

•We also include the Doppler-broadening effects of thermal motions on the line
profile. We then describe the net result of pressure and Doppler broadening, the
so-called Voigt broadening.

• The Rayleigh angular scattering pattern is then derived from the same simple
model.
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Scattering from a Damped, Simple Harmonic Oscillator
(1)

In certain applications, we may treat a molecule as a simple harmonic
oscillator with a single natural oscillation frequency ω0:

• The molecule is assumed to consist of an electron bound to a positively-charged
nucleus with a certain ‘spring-constant’, related to the natural oscillator fre-
quency.

When this simple system is irradiated by a linearly-polarized monochromatic
plane electromagnetic wave of angular frequency ω:

• the electron undergoes a harmonic acceleration in response to the oscillating
electric field.

• The motion of the nucleus, being much more massive than an electron, is
considered to be a rigid support, and may be neglected.

• The relative displacement of positive and negative electrical charges causes the
formation of an induced electric dipole.
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Scattering from a Damped, Simple Harmonic Oscillator
(2)

According to classical theory:

• acceleration of an electric charge gives rise to the emission of electromagnetic
radiation.

• A large-scale example is a dipole antenna which emits radio waves. Without
energy loss, absorption of light by the oscillator increases its motion indefinitely.

• Loss of energy in a mechanical oscillator, such as a spring, occurs as the result
of a frictional damping force, which is approximated as being proportional
to the velocity.

• To account for the energy loss due to the emitted wave, a damping force must
exist. For an isolated molecule, this damping force may be thought of as a
radiation resistance.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

38



Scattering from a Damped, Simple Harmonic Oscillator
(3)

The classical radiative damping force (assumed to be suitably small) is given by

~F = −meγ~v,

where
γ = e2ω2

0/6πε0mec
3. (1)

Here

•me is the electron mass, ~v is its velocity,

• e is its charge, ω0 is the natural angular frequency,

• ε0 is the vacuum permittivity, and c is the speed of light in a vacuum.

In an insulating solid, or in a gas where the electron is subjected to an additional
force from collisions with the lattice, or with other molecules:

• the damping rate γ takes the form of a collisional frequency, given by the inverse
of the mean time between collisions.
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Scattering from a Damped, Simple Harmonic Oscillator
(4)

The power emitted by an accelerated charge, may be found by considering:

• the equation of motion of a damped, simple harmonic oscillator, subject to a
forcing electric field of amplitude ~E ′ and angular frequency ω.

According to classical theory:

• a charge set into accelerated motion radiates an electromagnetic wave with the
time-averaged power given by:

P (ω) =
e4ω4

12πm2
eε0c3

E ′2

[(ω2
0 − ω2)2 + γ2ω2]

[W]. (2)

The ratio of this scattered power to the power per unit area carried in the incident
field, ε0cE

′2/2, is just

• the total scattering cross section:

σn(ω) =
P (ω)

ε0cE ′2/2
=

e4

6πm2
eε

2
0c

4

 ω4

(ω2
0 − ω2)2 + γ2ω2

 [m2]. (3)
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Case I: Resonance Scattering; Lorentz Profile (1)

Here we allow the frequency of the incident light to be “tuned” to a discrete
energy level of a molecule (resonance scattering):

• In this case the strength of the interaction is typically many orders of magnitude
greater than the non-resonant interaction.

Let the driving frequency ω be very close to resonance with the natural oscillation
frequency ω0: δω ≡ ω0 − ω << ω.

Then:

• ω2
0 − ω2 = (ω + δω)2 − ω2 = 2ωδω + (δω)2 ≈ 2ω(ω0 − ω).

Substituting into Eq. 3, using the definition of γ from Eq. 1, we find:

σres
n (ω) =

e2

meε0c

 (γ/4)

(ω0 − ω)2 + (γ/2)2

 .
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Case I: Resonance Scattering; Lorentz Profile (2)

Returning to ordinary frequency ω = 2πν, ω0 = 2πν0, we have:

σres
n (ν) =

e2

4meε0c

1

π

 (γ/4π)

(ν0 − ν)2 + (γ/4π)2

 . (4)

The frequency-dependent part of this result is called:

The Lorentz profile:

ΦL(ν) =
γ/4π

π [(ν0 − ν)2 + (γ/4π)2]
. (5)

Φmax = ΦL(ν0) = 4/γ. Requiring:
(1/2)ΦL(ν0) = (2/γ) = ΦL(ν) =⇒ ∆ν = ν − ν0 = γ/4π.
Thus:
the frequency line width (full width at half maximum): 2∆ν = γ/2π [s−1] of the
Lorentz profile is proportional to the damping parameter γ.
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Case I: Resonance Scattering; Lorentz Profile (3)

ΦL(ν) is normalized. This can be seen by changing variables to x = 4π(ν − ν0)/γ.
Integrating over x, and noting that 4πν0/γ >> 1, one finds:

∫ ∞
0 dνΦL(ν) =

1

π

∫ ∞
−4πν0/γ

dx

1 + x2
→ 1

π

∫ +∞
−∞

dx

1 + x2
= 1. (6)

Since the Lorentz profile (Fig. 2) is normalized:

∫ ∞
0 dνσres

n (ν) =
e2

4meε0c
=⇒ (7)

• the integrated, or total classical cross section is constant, depending only upon
fundamental atomic constants.

Note that increasing the value of γ:

• decreases the strength of the spectral line in the line core, the region |ν −
ν0| ≤ γ/4π, BUT

• strengthens the line wings, the region where |ν−ν0| > γ/4π. In the distant
parts of the line, ΦL(ν) varies as ν−2.
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Figure 2: Comparison of normalized Lorentz, Voigt, and Doppler profiles versus x = (ν − ν0)/∆ν. ∆ν
is the Doppler width αD for both Doppler broadening and Voigt broadening and is the Lorentz
with αL for Lorentz boradening. a = αL/αD = 1 was used for the Voigt profile.
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Case I: Resonance Scattering; Lorentz Profile (4)

The above expression was derived from strictly classical considerations of a single
electron forced by the oscillating electric field of the incident wave. In actuality:

• there is more than one resonant frequency, so that we refer to the ith frequency,
or quantum transition: σres

n (ν)→ σres
ni (ν)

In addition:

• we have ignored the QM character of the process, which involves the notion of
a transition from a ground state to a quantized excited state.

• The correct QM derivation yields a nearly-identical expression, containing an
extra multiplicative factor, called the oscillator strength, fi.

Thus:

• we may write the cross section in the following form showing the relationship
between the line profile, the oscillator strength, and the line strength Si:

σres
ni (ν) =

e2fi
4meεoc

ΦL(ν) ≡ SiΦL(ν).
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Case I: Resonance Scattering; Lorentz Profile (5)

Conservative versus Non-conservative Scattering

It is convenient to classify scattering processes, depending upon:

• whether or not the photon changes frequency upon scattering.

In analogy with elastic and inelastic collisions between two material particles:

• the issue is whether or not there is a net change of energy and momentum
following the ‘collision’.

• Light carries momentum (of order hν/c), and one might expect that the ab-
sorption and subsequent re-emission of light would impart both a momentum
impulse and a change of energy (frequency) of the photon.

• For the UV/visible/IR radiation fields of interest to us, this process is negligible
compared with the damping (or more correctly, broadening) effects resulting
from the uncertainty of the upper state lifetime.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

46



Case I: Resonance Scattering; Lorentz Profile (6)

• For resonance scattering, Rayleigh scattering, and Mie-Debye scattering the
change in emitted frequency is very small, compared with the incident frequency.

• The term coherent scattering is sometimes used to describe this case, since
the process involves interference between the incident and scattered waves.

However:

• this term could lead to confusion, since it might lead one to believe that it does
not apply to scattering from random media.

Inelastic scattering involves:

• an exchange of internal energy of the medium with that of the radiation field.

• Typically, the exchange results in a net loss of radiative energy and a gain
of internal energy of the medium in the form of heat or chemical energy.
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Case I: Resonance Scattering; Lorentz Profile (7)

Such processes are possible when the matter contains a number of accessible
energy states. For example:

• rotational Raman scattering occurs when the excited ‘virtual’ state of a
molecule radiatively decays, not to the original state (Rayleigh scattering), but
to a state higher in rotational energy (the Stokes component) or lower in
rotational energy (the anti-Stokes component).

• For illumination by monochromatic light, the scattered spectrum will be a series
of closely spaced lines on either side of the central Cabannes line.

The basic aspects of rotational Raman scattering can be understood classically. We
replace our notion of an induced dipole fixed in space by one that is also rotating:

• The dipole will then emit not only its fundamental (‘carrier’) frequency, but
‘sideband’ frequencies consisting of sums and differences of the basic frequency
and the frequencies corresponding to the energies of rotation.

• Since rotational energy states are quantized, this combination results in a number
of discrete “beat frequencies” (see Exercise 3.4).
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Case I: Resonance Scattering; Lorentz Profile (8)

A closely-related process is fluorescence, which applies to two bound states:

• Here the molecule is originally in its ground (lowest energy) state, and returns
after scattering to a higher energy state.

Raman scattering and fluorescence are ‘cross-wavelength’ processes, in that:

• scattered photons of more than one discrete frequency are involved. Raman
scattering is important for some ocean and lidar applications.

Another classification is whether the scattering process results in partial absorption
of the light energy:

• If there is negligible absorption: the scattering process is said to be conserva-
tive or elastic, referring to the conservation of radiative energy.

• If there is some absorption, it is non-conservative or inelastic.

To avoid confusion of the terms ‘elastic’ and ‘inelastic’ with processes involving
collisions of molecules, we may use the terms ‘conservative’ and ‘non-conservative’
when referring to light scattering.
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Case I: Resonance Scattering; Lorentz Profile (9)

Natural Broadening

As seen from Eq. 5:

ΦL(ν) =
γ/4π

π [(ν0 − ν)2 + (γ/4π)2]
(8)

the shorter the upper-state lifetime, the broader the frequency line width of the
profile, ∆ν = γ/4π. (Recall: γ ∝ the inverse of the mean time duration of
the upper state, normally controlled by collisions.) This inverse relationship is
consistent with:

•Heisenberg’s Uncertainty Principle, relating the “uncertainty” in knowl-
edge of the energy of a quantum system ∆E = h∆ν to the “uncertainty” in
knowledge of the lifetime ∆t of the energy state. In this context:

• Heisenberg’s relationship is written ∆E∆t ≈ (h/2π). Thus, in the absence of
collisions ∆t ≡ tr ≈ (2π∆ν)−1, where tr is the radiative lifetime. This situation
is called natural broadening.
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Case I: Resonance Scattering; Lorentz Profile (10)

Pressure Broadening

Natural broadening applies to an isolated molecule, unperturbed by collisions
with its neighboring molecules within a radiative lifetime, tr. For a strong (al-
lowed) transition in the shortwave spectrum, a typical value is tr ∼ 10−8 s. Thus:

• the natural line width αN is ∼ 1/2πtr ∼ 1 × 107 s−1. In wave number units
αN = 1/2πtrc = 5 × 10−4 cm−1 which is very much smaller than observed in
atmospheric spectra.

For vibrational and rotational transitions in the IR, tr is much longer, of the order
of tr ∼ 10−1 to 101 s, with even smaller values of αN. Thus:

• natural broadening is completely negligible in atmospheric appli-
cations.

Collisions between molecules result in collisionally-induced transitions, which oc-
cur temporarily in the joint system of two molecules in close vicinity:
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Case I: Resonance Scattering; Lorentz Profile (11)

• The net effect of these nearly resonant transitions on the emitted energy is very
small, since roughly half of the transitions are excitations, and the other half
de-excitations of energy states. These processes effectively reduce the
lifetime of the upper state, and thus broaden the line.

• The reduced lifetime is called the optical lifetime topt. It may be shown that
under rather general conditions (see Exercise 3.6) the collision process leads to
a Lorentz profile with a line width αL ≈ 1/2πtopt:

ΦL(ν) =
αL

π [(ν − ν0)2 + α2
L]
. (9)

The theory of collisional line broadening is quite complicated. However, according
to theoretical predictions:

• αL depends linearly on the number density of the perturbing molecules, and
upon the relative speed of the collision partners, vrel.
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Case I: Resonance Scattering; Lorentz Profile (12)

Thus, we may scale the pressure-broadened Lorentz width for an arbitrary number
density, n and temperature T , since vrel ∼

√
T :

αL ≈ αL(STP)
nvrel

nLvrel(STP)
= αL(STP)

n
√
T

nL

√
To

(10)

where

• nL = 2.687 × 1019 cm−3 is Loschmidt’s number (the number density of air at
STP), and To = 273.16 K is the standard temperature.

A typical value for topt is 10−10 s at STP, yielding a line width of 2× 109 s−1, or
in wave number units αL = 0.05 cm−1:

• This value greatly exceeds both the natural line width (αN =
1/2πtrc = 5× 10−4 cm−1) and the Doppler line width (see below), so
that pressure broadening is dominant at STP for all wavelengths.
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Case I: Resonance Scattering; Lorentz Profile (13)

Doppler Broadening

The second major source of line broadening is that due to small Doppler shift-
ing of the emitted and absorbed frequencies. As shown later:

• the shift is of order vrelν/c = vrelν̃, where c is the light speed. For CO2 at STP,
in the strong 15 µm band, the Doppler shift is ∼ 8× 10−4 cm−1.

Thus:

• Doppler broadening is negligible near the surface, but grows in importance with
height, since it varies as

√
T and αL(z) falls off exponentially with z.

• Doppler and pressure broadening are equal in importance where n/no ≈ 0.016,
which occurs at a height of about 30 km (see Appendix C, Standard Atmo-
spheres). Below we examine the Doppler broadening in greater detail.
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Case I: Resonance Scattering; Lorentz Profile (14)

• Doppler broadening stems from the simple fact that molecules are in motion
when they absorb, and when they emit.

When a photon undergoes resonance scattering:

• there is a relative Doppler shift between the incident and the scattered photon.

Given that one always observes the net effect of an ensemble of scattering
molecules:

• the result will be a spreading of the frequency of an initially monochromatic
photon.

The velocity distribution of absorbing molecules will satisfy the Maxwell-
Boltzmann law. Therefore:

• they will absorb in proportion to the number having a certain velocity component
along the line-of-sight.
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Case I: Resonance Scattering; Lorentz Profile (15)

Finally, suppose the molecules are excited by collisions, and undergo many elastic
collisions so that the ‘memory’ of the direction of the colliding molecule is lost.
Then:

• the excited molecules will emit according to their velocity distribution, which is
Maxwellian by assumption.

In all three cases (scattering, absorption, and emission), we find that:

• the line profile is dominated by thermal Doppler shifts, if the spread in frequency
is larger than that caused by natural or pressure broadening.

To describe the effects of thermal broadening on absorption, consider the fre-
quency of the photon in two reference frames (ν and ν ′):

• ν is the frequency in the laboratory frame, which is the normal frame of an
observer. ν ′ is the frequency in the atom’s (rest) frame.
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Case I: Resonance Scattering; Lorentz Profile (16)

The relationship between these two frequencies is obtained by considering:

• an atom with speed v moving toward the observer with a line-of-sight velocity
v cos θ, where θ is the angle between the direction of motion and the line-of-sight.

Suppose the molecule receives a photon of frequency ν in the lab frame. Then, if
the molecule were at rest with respect to the lab frame:

• in one second it would ‘see’ exactly c/λ oscillations, where λ is the irradiating
monochromatic wavelength.

However, because the molecule is moving toward the emitter:

• it ‘sees’ an additional number of oscillations equal to the distance it travels in
one second, divided by the wavelength.

Thus:

• the number of oscillations the atom encounters is: (c/λ + v cos θ/λ).
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Case I: Resonance Scattering; Lorentz Profile (17)

This quantity is just:

• the frequency seen in the atom’s frame, ν ′ = c/λ′. Hence:

ν ′ = ν +
v cos θ

λ
= ν + ν(v/c) cos θ = ν[1 + (v/c) cos θ].

• The molecule will therefore absorb according to its absorption
cross section at the shifted frequency ν ′.

Suppose we align the rectangular coordinate system so that the x-direction coin-
cides with the line-of-sight. Then:

• the absorption cross section appropriate to the molecule moving
with the velocity component vx is σn[ν(1 + (vx/c)].
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Case I: Resonance Scattering; Lorentz Profile (18)

The number of molecules moving with this velocity component is given by the
Maxwell-Boltzmann distribution:

f (vx)dvx =
 m

2πkBT


1/2

e−v
2
x/v

2
odvx (11)

where

• vo =
√
2kBT/m is the most probable speed of the molecules.

The cross section at the frequency ν due to all line-of-sight components is given
by:

σn(ν) =
∫ +∞
−∞ dvxf (vx)σn[ν(1 + (vx/c)]

=
 m

2πkBT


1/2 ∫ +∞

−∞ dvxe
−v2

x/v
2
oσn[ν(1 + (vx/c)]. (12)

We now need to assume the functional form for the cross section in the molecule’s
frame.
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Case I: Resonance Scattering; Lorentz Profile (19)

For simplicity we first assume that the broadening in the molecule’s frame is much
less than the thermal (Doppler) broadening. In effect, we are assuming that:

• the molecule absorbs according to an infinitely narrow peak, that is
σn(ν) = SΦ(ν ′) ≈ Sδ(ν ′ − ν0) = Sδ[ν − ν0 + ν(vx/c)].

Substituting in the above integral and integrating, we obtain:

σn(ν) = S
 m

2πkBT


1/2

exp
[
−c2(ν − ν0)2/ν2

0v
2
o

]
. (13)

Letting αD ≡ ν0vo/c, which is called the Doppler width, we find:

σn(ν) = SΦD(ν) =
S√
παD

exp
[
−(ν − ν0)2/α2

D)
]
. (14)

It can be verified that the Doppler line profile ΦD(ν) is properly normalized. The
mathematical form of Eq. 14 is recognized as a Gaussian distribution, of (1/e)-
width αD, and line width αD

√
ln 2.
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Case I: Resonance Scattering; Lorentz Profile (20)

Consider now the more general case: the broadening in the rest frame
cannot be ignored compared with the thermal (Doppler) broaden-
ing. Suppose this is given by Lorentz broadening (Eq. 9), with a total line width
αL. Substitution of Eq. 9 (ΦL(ν) = αL

π[(ν−ν0)2+α2
L]

) into Eq. 12, yields:

σn(ν) = S a

π3/2αD

∫ +∞
−∞

dye−y
2

(v − y)2 + a2
≡ SΦV(ν) (15)

where the damping ratio is a ≡ αL/αD and v ≡ (ν − ν0)/αD.

• ΦV (ν) is called the Voigt profile, which can be shown to be properly normal-
ized. It represents the combined effects of both Lorentz and Doppler broadening.

• The Voigt profile shows a Doppler-like behavior in the line core, and Lorentz-like
(1/ν2) behavior in the line wings.

• For small damping ratios (a→ 0), we retrieve the Doppler result; for a > 1, the
Voigt profile resembles the Lorentz profile for all frequencies.
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Case I: Resonance Scattering; Lorentz Profile (21)

Realistic line-broadening processes

The collisional processes considered up to now are so-called adiabatic interac-
tions, implying only very gentle interactions with other molecules. Unfortunately:

• the quantum-mechanical line-broadening theory describing more realistic colli-
sional perturbations of the upper state is extremely difficult.

• The far wings of lines are most affected by non-adiabatic interactions.

Empirical corrections are sometimes applied:

• the power of the exponent b in the ν−b formula is altered from its canonical value
of b = 2 to obtain so-called super-Lorentzian (b < 2) and sub-Lorentzian
(b > 2) wing behavior.

Fortunately, the line core and near-wings remain Lorentzian even under severe
collisional interactions. Thus, with increasing gas pressure:

• line overlapping usually is more important than far-wing effects. The net effect

is greater line broadening, in agreement with Eq. 10: αL = αL(STP) n
√
T

nL
√
To

.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

62



Case I: Resonance Scattering; Lorentz Profile (22)

In liquids and solids, the effects of nearby molecules are of course even more im-
portant than in the densest gases:

• Their absorption spectra may be extremely complex resulting from the myriad
of energy states created by the mutual interactions. In most situations, first-
principles analysis is impossible. Fortunately:

• the spectra frequently overlap to the point where the absorption spectra appear
to be nearly continuous and slowly-varying with frequency.

Then the situation is simplified from the point of view of the radiative transfer:

• It is sufficient to use low spectral resolution measurements and tabulation
of the optical properties, provided one can collect samples of the material for
transmission experiments in the laboratory.

If materials are so opaque that standard transmission experiments are impossible:

• Reflection and absorption experiments are required, combined with the use of
Fresnel’s equations and various theoretical relationships.
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Case II: Rayleigh Scattering (1)

Suppose ω << ω0. Then Eq. 3: σn(ω) = e4

6πm2
eε

2
0c

4

 ω4

(ω2
0−ω2)2+γ2ω2

 [m2]

becomes:

σRAY
n (ω) =

e4ω4

6πm2
eε

2
0c

4ω4
0

=
1

6π

(ω
c

)4( e2

meε0ω2
0

)2
. (16)

• Note the well-known ω4 (or 1/λ4) dependence of Rayleigh scattering.

• σRAY
n (ω) may be related to the molecular polarizability, αp, defined in terms of

the induced dipole moment and the imposed electric field.

• For ω << ω0 we have αp = e2/4πmeε0ω
2
0 (see Exercise 3.1).

Using this result in Eq. 16, and the relation λ = c/ν = 2πc/ω, we find:

σRAY
n (λ) =

8π

3
(
2π

λ
)4α2

p. (17)

• Finally: we can add together the separate molecular contributions for a gaseous
medium consisting of scatterers with random orientations and positions.
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Case II: Rayleigh Scattering (2)

A dilute mixture of gases, such as air, can be described in terms of:

• a weighted average of the real refractive indices, denoted by mr, which may be
related to the mean polarizability through:

The Lorentz-Lorenz equation:

αp = (mr − 1)/2πn.

Our final form for the macroscopic Rayleigh scattering coefficient is thus:

σRAY(λ) ≡ σRAY
n n =

32π3(mr − 1)2

3λ4n
[m−1]. (18)

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

65



Case II: Rayleigh Scattering (3)

For purely-scattering dielectric spheres of radius a << λ, Lorentz showed that:

αp =
m2

r − 1

m2
r + 2

a3. (19)

The cross section then follows immediately from Eq. 17.

Other forms for the Rayleigh scattering cross section are obtained if the particles:

• are anisotropic, non-spherical, partially absorbing, inhomogeneous, etc.

Since mr varies with wavelength:

• the actual cross section departs somewhat from the λ−4 behavior. A convenient
formula (accurate to 0.3%) for the Rayleigh scattering cross section for air is:

σRAY
n = λ−4 3∑

i=0
aiλ
−2i × 10−28 [cm2] (0.205 < λ < 1.05 µm)

where the coefficients are a0 = 3.9729066, a1 = 4.6547659×10−2, a2 = 4.5055995×
10−4, and a3 = 2.3229848× 10−5.
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Case II: Rayleigh Scattering (4)

Although the classical Lorentz dispersion theory is still quite useful in under-
standing some phenomena in liquids and solids:

• it has been more profitable to treat them as continuous media.

The scattering is considered to occur as a result of:

• optical inhomogeneity arising from impurities and imperfections, as well as sta-
tistical fluctuations of density and concentration. These fluctuations:

• are due to various types of collective oscillations, set up by thermal motions.

This approach, pioneered by Smoluchowski and Einstein, is required even for
scattering from gases, because:

• the coherent interference of the scattered waves would predict zero scattering in
a homogeneous medium. However, gases in planetary atmospheres generally

scatter as if there were no mutual interactions (except in the forward direction).
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The Scattering Phase Function (1)

We wish to describe the amount of radiation emanating from a small volume
element as a result of:

• scattering due to radiation coming from the Sun or from other parts of the
medium.

The angle Θ between the directions of incidence Ω̂′ and observation Ω̂ is given by:

cos Θ = Ω̂′ · Ω̂.
This angle is called the scattering angle:

• Forward scattering refers to observation directions for which Θ < π/2, and
backward scattering for Θ > π/2.

The total scattering cross section was defined in

Eq. 3 σn(ω) = e4

6πm2
eε

2
0c

4

 ω4

(ω2
0−ω2)2+γ2ω2

 [m2] as:

• the total power per unit area scattered in all directions divided by the incident
power per unit area of the incident plane wave.
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The Scattering Phase Function (2)

Similarly:

• the scattered power per unit area per sterradian in a particular direction
of observation divided by the power per unit area of the incident plane wave

is called:

• the angular scattering cross section:

σn(Θ) [m2 · sr−1].

Azimuthal asymmetry (φ-dependence) of the scattering phase function:

• will usually disappear when averaging over all orientations of scatterers.

Thus, it is almost always permissible to assume that:

• the scattering cross section is the same everywhere along a cone of half-angle Θ.
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Ω z = cos θ

Ω x = sin θ cos φ
O

θ

φ
Y

Z

Ω y = sin θ sin φ

Figure 3: Ilustration of the relationship between Cartesian and spherical
coordinates. The rectangular components of the unit vector Ω̂ are
Ωx = sin θ cosφ, Ωy = sin θ sinφ, and Ωz = cos θ.
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The Scattering Phase Function (3)

To determine the scattering cross section as a function of Θ, we form the following
scalar product:

Ω̂′ · Ω̂ = cos Θ = Ωx′Ωx + Ωy′Ωy + Ωz′Ωz.

The rectangular components Ωx, Ωy and Ωz are illustrated in Fig. 3.

Carrying out the multiplications and noting that cos(φ′ − φ) = cosφ′ cosφ +
sinφ′ sinφ, we find:

cos Θ = cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ). (20)

This result is recognized as the familiar cosine law of spherical geometry.

For a medium consisting of just one type of particles of number density n [m−3],
σn(cos Θ) [m2 · sr−1] is the angular cross section per particle, and:

σ(cos Θ) = nσn(cos Θ) [m−1 · sr−1]

is the angular scattering coefficient.
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The Scattering Phase Function (4)

It is convenient to introduce a dimensionless quantity which characterizes the
scattering process. We define the scattering phase function as:

• the normalized angular scattering cross section:

p(cos Θ) ≡ nσn(cos Θ)

n
∫
4π dωσn(cos Θ)/4π

[sr−1]. (21)

The normalization is:

∫
4π dω

p(cos Θ)

4π
=

∫ 2π
0 dφ

∫ π
0 dθ sin θ

p(θ′, φ′; θ, φ)

4π
= 1. (22)

Since p(cos Θ) varies between 0 and 1, this suggests a probabilistic interpretation:

• Given that a scattering event has occurred, the probability of scattering in the
direction Ω̂ into the solid angle dω centered around Ω̂ is:

p(Ω̂′, Ω̂)dω/4π = p(cos Θ)dω/4π.
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The Rayleigh Scattering Phase Function (1)

The radiation pattern for the far-field of a classical dipole is:

• proportional to Π sin2 θ,

where

• θ is the polar angle as measured from the axis defined by the induced field, and

• Π is the induced dipole moment along that axis.

The scattered radiation therefore:

• maximizes in the plane normal to the dipole, and vanishes on the axis of the
dipole itself.

How does this translate into a normalized angular scattering cross section or
scattering phase function p(Θ)? As defined above, p(Θ) is:

• the probability of scattering per unit solid angle, which depends upon the projec-
tion of the induced dipole moment in the direction Θ of the scattered radiation.
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The Rayleigh Scattering Phase Function (2)

As usual we denote:

• the direction of propagation of the incident and scattered waves to be Ω̂′ and Ω̂,
respectively.

It is convenient to use as a reference:

• the scattering plane, defined as the plane containing Ω̂′ and Ω̂.

For the present purpose it is sufficient to consider:

• two linearly polarized incident waves:

• one with its electric field parallel with (or in) the scattering plane, and the
other with its electric field orthogonal to the scattering plane.

As indicated in Fig. 4:

• these incident waves give rise to induced dipoles (Π‖ and Π⊥) along the respective
incident fields.
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Figure 4: Illustration of the two transverse components of Rayleigh-scattered light. Ω̂′ and Ω̂ are
the incident and scattered propagation vectors, respectively. Π′⊥ and Π′‖ are the induced dipole
moments for incident electric fields that are linearly polarized in the directions perpendicular to,
and parallel with, the scattering plane (shown as the white rectangle), respectively. I⊥ and I‖ are

the corresponding scattered radiances in direction Ω̂ associated with the induced dipoles. The
plane defined by Π′⊥ and Π′‖ as well as by I⊥ and I‖ (both shown as shaded) are normal to the
scattering plane.
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The Rayleigh Scattering Phase Function (3)

Referring to Fig. 4, we see that:

• if the incident electric field lies in the scattering plane, then the angle θ between
the induced dipole and the direction of scattering is (π2 + Θ), where Θ is the
scattering angle.

Thus, the scattered light radiance is:

I = I‖ ∝ Π‖ sin2(
π

2
+ Θ) = Π‖ cos2 Θ.

On the other hand:

• If the incident plane wave is linearly polarized perpendicular to the scattering
plane, then the angle θ between the induced dipole and the direction of scattering
is π

2 , and the scattered radiance is simply proportional to the strength of the
induced dipole, i.e.:

I = I⊥ ∝ Π⊥.
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The Rayleigh Scattering Phase Function (4)

Since:

• natural, unpolarized incident light can be treated as a sum of two orthogonal,
linearly-polarized waves (having no coherent relationship),

and since:

• they are of equal magnitude: I⊥ = I‖ = I/2,

we find that for incident unpolarized light:

• the scattered radiance and the linear polarization become:

IRAY(Θ) ∝ (I⊥ + I‖) = I(1 + cos2 Θ)

PRAY(Θ) ≡ I⊥ − I‖
I⊥ + I‖

=
1− cos2 Θ

1 + cos2 Θ
. (23)
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Parallel
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Perpendicular
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Net+ =

cos2 Θ cos2 Θ+ +

+ =

=

Θ Θ Θ

1 1

Figure 5: Schematic three-dimensional diagram of the Rayleigh-scattered phase function, or scatter-
ing pattern, for the case of incident unpolarized light. The radiance of the parallel component
of the incident light is scattered according to the pure dipole (cos2 Θ) law, as a result of the
projection of the induced dipole along the scattered light direction Θ (see previous Figure). In
contrast, the radiance of the scattered component perpendicular to the scattering plane is the
same for all Θ and thus is isotropic. The sum of the two patterns yields the scattering pattern
for the unpolarized light.
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The Rayleigh Scattering Phase Function (5)

The proportionality constant follows from noting that:

• dω = dφ sin θdθ in a polar coordinate system where Ω̂′ is along the z-axis.

Therefore:

1

4π

∫
4π dω(1 + cos2 Θ) =

1

4π

∫ 2π
0 dφ

∫ π
0 dΘ sin Θ(1 + cos2 Θ) =

4

3
which implies that:

pRAY(Θ) =
3

4
(1 + cos2 Θ). (24)

Figure 5 illustrates how:

• the two components, one isotropic, the other a dipole, combine to yield the
Rayleigh scattering phase function.
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The Rayleigh Scattering Phase Function (6)

It should be kept in mind that:

• even though we assumed that the incident light beam is unpolarized, the scat-
tered light from a Rayleigh-scattering medium is polarized.

• This follows from Eq. (23) and the fact that I‖ is not usually equal to I⊥.

In fact, Eq. 23 shows that:

• for Θ = 90◦, the scattered light is 100% polarized, in the ⊥-direction.

However:

• the polarization is diminished in the presence of multiple scattering, which mixes
light beams of many polarization states.

In practise, if our interest lies primarily in the flow of energy through a Rayleigh-
scattering medium:

• errors in methods which ignore polarization, and which use Eq. 24 for all orders
of scattering are small, typically less than a few %.
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The Rayleigh Scattering Phase Function (7)

However:

• angular distributions are subject to more severe errors, depending upon the
optical thickness, among other factors.

Another consideration for air molecules is:

• the non-spherical shapes of N2 and O2.

This non-spherical shape introduces:

• a small anisotropic correction to the above formulas, since the two induced
moments are slightly unequal (Π‖ 6= Π⊥).

One consequence of anisotropy is that:

• the light scattered from air molecules through 90◦ is slightly depolarized (i.e.
only 96% polarized).
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The Rayleigh Scattering Phase Function (8)

The Rayleigh scattering phase function applies in general to scattering by small
particles. Thus:

•Whenever the size d of the scattering particle is small compared with the wave-
length of light (d < 1

10λ), the Rayleigh scattering phase function gives a good
description of the angular distribution of the scattered light.

• The Rayleigh scattering phase function for unpolarized light is given by

pRAY(cos Θ) =
3

3 + f
(1 + f cos2 Θ) (25)

where the parameter f is given by

f =
1− ρ
1 + ρ

and ρ is the depolarization ratio, attributed to the anisotropy of the scatterer
(molecule).
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