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 K This new and completely updated edition 

gives a detailed description of radiative 

transfer processes at a level accessible to 

advanced students. The volume gives the 

reader a basic understanding of global 

warming and enhanced levels of harmful 

ultraviolet radiation caused by ozone 

depletion. It teaches the basic physics 

of absorption, scattering, and emission 

processes in turbid media, such as the 

atmosphere and ocean, using simple  

semi-classical models. The radiative 

transfer equation, including multiple 

scattering, is formulated and solved for 

several prototype problems, using both 

simple approximate and accurate numerical 

methods. In addition, the reader has 

access to a power ful, state-of-the-ar t 

computational code for simulating radiative 

transfer processes in coupled atmosphere-

water systems including snow and ice. This 

computational code can be regarded as 

a power ful educational aid, but also as a 

research tool that can be applied  

to solve a variety of research problems  

in environmental sciences.

From reviews of the f irst edition

‘This book should not be missing on the 

desk of any person seriously interested in 

radiative transfer ... I would certainly use 

this book as a basic text and recommend it 

very highly to my students. I am sure that 

both instructor and student can profit a 

great deal from studying this excellent work.’

Meteorology and Atmospheric Physics

‘ ... should grace the shelves of all libraries 

of institutes concerned with research and 

teaching in atmospheric and oceanic science 

and it is an important part of the radiative 

transfer armoury.’       

International Journal of Climatology

‘The book is easy to read, and there are 

many examples to illustrate the concepts 

discussed...[It] should serve well as an 

introduction to radiative transfer.’

EOS

‘ ... a valuable resource for those interested 

in terrestrial radiative transfer.’

Physics Today

C O V E R  D E S I G N E D  B Y  H A RT  M c L E O D  LT D

stamnes

	Access to computational code for simulating 

radiative transfer processes

	Lecture slides based on the book and a 

solutions manual for instructor use

	PowerPoint and JPEG files of the figures in 

the book for instructor use

Based on Chapter 4 in K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the

Atmosphere and Ocean, Cambridge University Press, 2017.
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Absorption by Solid, Aqueous, and Gaseous Media (1)

Absorption by particles causes the incident radiation to be further weakened (in
addition to scattering) by losses within the particles themselves:

• the net effect of scattering and absorption is called attenuation or extinction.

Absorption is inherently a quantum process resulting from the fact that matter
contains energy levels that can be excited by the absorption of radiation:

• A transition from an initial quantum state to a higher-energy state is highly
dependent on the frequency or energy of the incident light.

If photon energy is close to the energy difference between initial and final state:

• the atoms and light are said to be in resonance, and absorption is high.

Conversely, if the photon energy is NOT close to the transition energy:

• absorption is often much weaker than scattering, and is not easily measurable.

• This energy selectivity is the outstanding characteristic of ab-
sorption.
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Absorption by Solid, Aqueous, and Gaseous Media (2)

Selective absorption leads to very complex molecular absorption spectra:

• The resonances are usually very sharp, and because of the many modes of ex-
citation of molecules, there may exist tens to hundreds of thousands of discrete
absorption lines in polyatomic molecular spectra.

The dominant characteristic of such spectra is:

• the presence of broad spectral features called molecular absorption
bands, in which lines are clustered closely in frequency groups. Under low
resolution these bands appear to be continuous functions of frequency.

Figure 1 shows the computed transmittance∗ spectrum of air, including the sep-
arate contributions from molecules (Rayleigh scattering and near-IR absorption by
water vapor and molecular oxygen) and aerosol scattering.
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∗The transmittance is the ratio between the computed irradiance and the extrater-
restrial solar irradiance.
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Figure 1: Upper panel: Computed low-resolution transmittance spectrum from three atmospheric
components: molecular scattering, aerosol scattering, and molecular absorption. The atmospheric
absorption bands are mainly due to IR absorption by H2O. Lower panel: The upper curve is the
extraterrestrial solar irradiance outside the atmosphere. The lower curve is the solar irradiance
observed vertically through the (clear) atmosphere.
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Absorption by Solid, Aqueous, and Gaseous Media (3)

We mainly consider radiative processes which occur in:

• the solar near infrared or near-IR (1 ≤ λ ≤ 3 µm) and

• the thermal infrared or IR (λ ≥ 3 µm).

In these IR spectral ranges, in contrast to the visible:

• extinction is dominated by absorption due to the multitude of quantum states
that become accessible to low-energy photons.

IR radiative transfer occurs as a series of emissions and absorptions:

• the temperature of the medium plays a vital role in the IR, because:

• in the high density media of interest to us, it controls the rate of emission through
Kirchhoff’s Law (Chapter 5).

•We briefly consider: absorption in the UV and visible, which involves not only
rotation and vibration, but also electronic excitation.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media (4)

The general physical consequence of light absorption is the deposition of energy
in the medium. If light absorption leads to excitation of a bound excited state:

• the energy of the excited state is usually promptly converted into thermal energy,
by means of a collision with a neighboring gas molecule, or

• for a solid or liquid, by a dissipation of the energy through vibrations of the
surrounding lattice, or fluid cluster.

Alternatively:

• the chemical energy of the medium may be altered. Because of its increased
reactivity:

• an individual excited molecule may participate in a so-called photo-induced or
photochemical reaction with its neighbors.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media (5)

At higher photon energies (in the UV and at shorter wavelengths) the excited
molecular state may be unbound:

• the kinetic energy of the resultant atomic (or molecular) fragment, is not quan-
tized, but is a continuous function of the incident photon energy.

• This process of photodissociation is important for the photochemistry (e.g.
ozone formation) and heating of the Earth’s middle atmosphere.

At still higher photon energies:

• the absorption into an unbound electronic state may cause an electron to be
removed from its parent molecule, leaving behind a positively charged ion.

• This absorption into an unbound electronic state – called photoionization –is
the basic mechanism giving rise to the ionosphere, and

• it accounts for the existence of free electrons whenever high-energy radiation is
present.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media: SOLIDS (6)

Absorption, reflection and transmission properties of solids vary with frequency
in a complex fashion. They may:

• vary smoothly with frequency, or

• sharply change in the neighborhood of resonances,

where the absorbed energy coincides with energy differences between various types
of quantized states of the solid.

Consider first the high energy process whereby:

• an electron is transferred from a lower energy state into an unoccupied higher
energy state.

•Many such states cluster together in “bands”, so that we speak of a transition
involving two bands.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media: SOLIDS (7)

We distinguish between conductors and insulators:

• Conductors (metals) have incompletely-filled bands, or bands which overlap in
energy with adjacent unoccupied bands: The availability of nearby unoccupied
energy levels makes it possible for low energy photons to be absorbed;

• Insulators (such as water and most soil minerals) have well-separated bands, such
that the low-energy bands are filled, and the upper energy bands are unfilled:
Only photons with energy greater than the “band-gap” may be absorbed.

Generally speaking:

• conductors are highly absorbing and reflecting in the visible and IR, whereas

• insulators are more or less transparent over this spectral range, becoming ab-
sorbing in the UV.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Example 4.1: Color and Brightness of an Object (8)

The overlapping of numerous absorption lines in solids does not mean that broad
spectral absorption features, absorption “edges”, etc. are absent. In fact:

• it is this selectivity that is responsible for nearly all color of objects in our
natural environment.

• Objects are red because of their selective absorption of blue light.

An exception to this general rule is:

• Rayleigh scattering, which is responsible for the blue color of clear skies, oceans,
blue-jay feathers, and the eyes of new-born infants. Scattering contributes to
the perception of the texture, sheen etc. of objects, but it is:

• the selective removal of various wavelengths that gives objects their characteristic
appearance. Most other BLUE colors are due to selective absorption of red and
yellow light by various absorbing pigments.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media: SOLIDS (9)

In the thermal IR:

• absorption causes excitation of lattice vibrations (phonons), molecular vibra-
tional states, and so-called

• intermolecular vibrations, associated with collective interactions between
molecules, that depend sensitively on the density and phase of the material.

For so-called polar substances, materials consisting of molecules which have
a permanent electric dipole moment (such as water):

• the oscillating electric field tends to align the dipoles. In the microwave:

collisional (Debye) relaxation of the water molecules tends to convert the ab-
sorbed energy of alignment into heat, and is responsible for

• intense absorption of microwave energy by liquid water.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media: SOLIDS (10)

Because the damping effects are much less significant in water ice:

• radar backscatter cross sections depend sensitively upon whether the particles
are raindrops or hailstones.

Most laboratory results for the reflectance, transmittance and absorbtance of solids

• apply only to “smooth” (polished) surfaces, BUT

Most natural surfaces are irregular over many size scales:

• laboratory results are not immediately applicable.

Determination of the boundary properties of a rough surface, or of small sus-
pended particles, requires:

• a more fundamental knowledge of the bulk properties of a substance, embodied
in the optical constants, the real (mr) and imaginary (mi) refractive indices.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media: SOLIDS (11)

For a plane wave propagating in an infinite dielectric medium:

•mi determines the absorption coefficient α through the dispersion relation

α = 2πmi/λ.

How are the optical constants (they are not actually constants, since they vary with
frequency) determined? Typically this determination might involve:

• working backwards from measurements of transmittance and reflectance of a
thin sample, via Fresnel’s equations (Appendix D).

Given the optical constants, it is possible to determine through theory:

• the scattering and absorptive properties of polished pure solids.

Since most natural substances are irregular and of mixed composition:

• it is usually necessary to perform experiments on the bulk samples.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media: AEROSOLS (12)

What happens to the optical properties when the material is finely divided into
small particles?

• If the particles are large compared to the wavelength of light, then geometrical
optics will apply: may use raytracing techniques to derive the optical properties.

• If the particle dimensions are smaller than several hundred wavelengths, the
concepts of transmittance, reflectance, and absorptance are not useful: Must deal
with the properties of dispersed matter: absorption and scattering coefficients.

Radiation that penetrates the particles undergoes interference effects which de-
pend sensitively upon the size and shape of the particles:

• Interference can affect both the absorption and scattering in very different ways
than in the bulk state.

• But are the bulk optical constants still relevant to small particles?

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media: AEROSOLS (13)

Experience shows that:

• the same bulk optical constants (mr and mi) apply down to the
smallest (0.1 µm radius) particles of practical interest to us.

Provided aerosol particles are homogeneous, spherical, and of known composition:

• their absorption and scattering coefficients can be determined by solving a clas-
sical boundary-value problem.

With the advent of fast computers:

• numerical solutions for other idealized shapes, such as spheroids have become
possible. Also, approximate techniques, such as the discrete-dipole method,
have been developed to handle arbitrarily-shaped particles.

• Thus, given an ensemble of independently scattering and absorbing particles, of
known shapes, sizes and optical constants (refractive indices), it is possible, at
least in principle, to compute the scattering and absorption coefficients.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media: LIQUIDS (14)

Absorption in pure liquids result from the mutual interactions between the inter-
molecular forces. The results of this added complexity are:

1. it is very difficult to calculate from first principles the quantitative details of
the transitions (such as absorption line strengths and band frequency positions):
Laboratory and/or in situ measurements of absorption spectra are essential;

2. the number of transitions is so large that overlapping of adjacent spectral ab-
sorption lines (or bands) yields an almost continuous absorption spectrum:
Paradoxically, their complexity causes condensed media to have a much simpler
absorption spectrum than that of its constituent molecules;

3. radiative transfer in aquatic media has a practical advantage over that in the
atmosphere: the spectral sampling interval for the aquatic radiation field can be
much larger than that required in atmospheric radiation problems.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Absorption on Surfaces, Aerosols, and within Aqueous
Media: LIQUIDS (15)

Unfortunately the above advantages are offset by the fact that:

• except for the purest waters, the optical properties of the ocean are largely
governed by dissolved and suspended impurities, of both inorganic and organic
origin.

The compositional variability from location to location:

• makes it difficult to create “standard” optical models, such as those used widely
in atmospheric studies.

An attempt to optically classify various water types is shown in Fig. 2:

• Generally speaking, sea water is most transparent in the 400− 600 nm region.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Figure 4.2 Left panel: Spectral variation of the total downward irradiance
(normalized by the TOA irradiance) at 1 m depth in deep ocean water.
The curves labeled I, II, and III refer to open ocean (Case 1) water with
CHL-a concentrations of 0.1 mg · m�3 (↵CDOM(443 nm) = 0.001 m�1), 1.0
mg · m�3 (↵CDOM(443 nm) = 0.01 m�1), 5.0 mg · m�3 (↵CDOM(443 nm) =
0.05 m�1), and MIN = 0.01 g ·m�3. The curves labeled 1, 2, and 3 refer to
turbid (coastal, Case 2) chlorophyll-dominated (CHL-a = 10 mg · m�3,
MIN = 0.1 g · m�3, ↵CDOM(443 nm) = 0.1 m�1), mineral-dominated
(CHL-a = 0.5 mg · m�3, MIN = 5.0 g · m�3, ↵CDOM(443 nm) = 0.1
m�1), and dissolved matter-dominated (CHL-a = 0.5 mg · m�3, MIN =
0.1 g ·m�3, ↵CDOM(443 nm) = 0.5 m�1) water, respectively (see §10.5.4D,
Appendix T, §T.1.4). Right panel: Same as left panel, but for the upward ir-
radiance. The computations were done using the AccuRT radiative transfer
model with a spectral resolution of 5 nm (see §10.5).

pler absorption spectrum than that of its constituent molecules. Radiative

transfer in an aquatic medium has a significant practical advantage over

that in the atmosphere: Due to the almost continuous absorption spectrum,

the spectral sampling interval for the aquatic radiation field can be orders of

magnitude coarser than that required in atmospheric radiation problems to

achieve the same accuracy. But this advantage is o↵set by the fact that, ex-

cept for pure water, the optical properties of ocean or lake water are largely

governed by dissolved and suspended impurities, of both inorganic and or-

ganic origin. The compositional variability from location to location makes

it di�cult to create “standard” optical models, such as those used widely in

atmospheric studies. An example of how the spectral irradiance depends on

the inherent optical properties, which can be described in terms of organic

and inorganic water constituents,2 is shown in Fig. 4.2. Generally speaking,

sea water is most transparent in the 400–600 nm region.

2 Note that CHL-a stands for chlorophyll concentration, CDOM for colored dissolved organic
matter, and MIN for mineral particles (see §10.5 and Appendix T for details).

Figure 2: Left panel: Spectral variation of the total downward irradiance (normalized by the TOA irradiance)
at 1 m depth in deep ocean water. The curves labeled I, II, and III refer to open ocean water with CHL-a
concentrations of 0.1 mg ·m−3 (αCDOM(443 nm) = 0.001 m−1), 1.0 mg ·m−3 (αCDOM(443 nm) = 0.01 m−1), 5.0
mg · m−3 (αCDOM(443 nm) = 0.05 m−1), and MIN = 0.01 g · m−3. The curves labeled 1, 2, and 3 refer
to turbid (coastal) chlorophyll-dominated (CHL-a = 10 mg ·m−3, MIN = 0.1 g ·m−3, αCDOM(443 nm) =
0.1 m−1), mineral-dominated (CHL-a = 0.5 mg ·m−3, MIN = 5.0 g ·m−3, αCDOM(443 nm) = 0.1 m−1), and
dissolved matter-dominated (CHL-a = 0.5 mg ·m−3, MIN = 0.1 g ·m−3, αCDOM(443 nm) = 0.5 m−1) water,
respectively. Right panel: Same as left panel, but for the upward irradiance. The computations were done
using the AccuRT radiative transfer model with a spectral resolution of 5 nm (see §10.5).
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Molecular Absorption in Gases (1)

Atmospheric molecules are highly selective in their ability to absorb radiation:

• This selectivity is particularly true in the thermal infrared (IR) part of the
spectrum, where a large number of spectral absorption features occur.

Figure 3 shows synthetic IR atmospheric radiance along a vertical path looking
down at the surface from several altitudes.

• The surface emits thermal radiation (dashed curve) approximately like a black-
body with a maximum near 10 µm.

• The solid lines show upward spectral radiances at moderate spectral resolution
(0.1 µm, or ≈ 2 cm−1) computed under different assumptions:

• LEFT PANELS: To delineate the effect of absorption on the transmitted radia-
tion field, the atmospheric emission was not included. Note that:

• highly opaque regions exist side-by-side with transparent regions: These molec-
ular bands exist where the excitation energies coincide with those of various
normal modes of molecular vibration.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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4.3 Molecular Absorption in Gases 101

Figure 4.3 Synthetic clear-sky atmospheric upward spectral radiance for a
vertical path from sea level to 1, 3, and 15 km. The computation was made
using the MODTRAN code (see §4.7.5). The dashed line shows the black-
body curve for a surface temperature of 294 K. Left panels: Atmospheric
emission was ignored. Middle panels: Same as left panels, but for atmo-
spheric emission (no surface emission). Right panels: Same as left panels,
but for emission from both surface and atmosphere.

4.3 Molecular Absorption in Gases

Atmospheric molecules are highly selective in their ability to absorb ra-

diation. This selectivity is particularly true in the thermal-IR part of the

spectrum, where a large number of spectral absorption features occur. Fig-

ure 4.3 shows synthetic thermal-IR atmospheric radiance spectra that would

Figure 3: Clear-sky upward spectral radiance for a vertical path from sea level to 1, 3, and 15 km
computed with MODTRAN. Dashed line: Blackbody curve for surface temperature of 294 K. Left
panels: Atmospheric emission ignored. Middle panels: Same as left panels, but for atmospheric
emission only (no surface emission). Right panels: Same as left panels, but for emission from
both surface and atmosphere.
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20



Molecular Absorption in Gases (2)

•MIDDLE PANELS: Here we show the synthetic spectrum computed in
the same way, except that we ignored the surface emission, but included the
atmospheric emission. Note that:

• the absorption features in the left panels appear as emission features, as a con-
sequence of Kirchhoff’s Law;

• in the opaque region between 5 and 7 µm, and between 14 and 16 µm, the
radiance in the lower atmosphere (1 km level) is close to the Planck curve.

•RIGHT PANELS: Here we show the total contribution to the upward radi-
ance from both surface and atmospheric emission. Note that:

• at high altitude (15 km level), the spectrum resembles what a downward looking
sensor above the atmosphere would observe.

• Regions of high transparency, called spectral windows, are very important
for atmospheric remote sensing of the planetary surface: The 10–12 µm window
evident in Fig. 3 is particularly significant for cooling the Earth’s surface.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Molecular Absorption in Gases (3)

At higher spectral resolution, molecular bands reveal their underlying structure
– that of closely-spaced lines. Figure 4 shows:

• a small portion of the transmittance in the strong 15 µm band of CO2 measured
by a Michelson interferometer on board the Space Shuttle Challenger in 1985.

• The transmittance is the ratio of the irradiance, measured along a line of sight
through the atmosphere, to the extraterrestrial solar irradiance.

• Each absorption line corresponds to a transition between two quantum states of
a specific molecule.

• The frequency of each transition is a unique “fingerprint” of the particular
species. Under still higher resolution (see Fig. 5), an individual line has a fi-
nite spectral width.

• At altitudes below about 50 km in the Earth’s atmosphere, both the strength of
the line and its spectral width depend upon atmospheric pressure and temper-
ature.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Figure 4: High-resolution (0.01 cm−1) transmittance spectrum of Earth’s stratosphere and mesosphere
measured by the ATMOS Michelson interferometer experiment from the NASA Space Shuttle.
Note that 666 cm−1 corresponds to 10,000/666 = 15 µm.
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1.2 Parts of the Spectrum 7

Wavenumber (cm�1)

Figure 1.3 Thermal emission spectra of Earth measured by the IRIS
Michelson interferometer instrument on the Nimbus 4 spacecraft (Hanel
and Conrath, 1970). Shown also are the radiances of blackbodies at several
temperatures: (a) Sahara region; (b) Mediterranean; (c) Antarctic.

Figure 6: Thermal emission spectra of the Earth measured by the IRIS Michelson interferometer in
the Nimbus 4 spacecraft. Also shown are radiances of blackbodies at several temperatures. (a)
Sahara region; (b) Mediterranean; (c) Antarctic.
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Molecular Absorption in Gases (4)

The effect of windows is evident in Fig. 6, which shows the emission spectrum of
the Earth measured by a high-resolution interferometer from an orbiting spacecraft.

• In the high transparency regions, the Earth’s surface emission is evident. The
contribution of the upwelling atmospheric radiation occurs within the opaque
bands, at an effective temperature lower than that of the surface.

• The emitted radiance is reduced in the regions of high opacity, because the
radiation received by the satellite instrument is emitted from the upper colder
atmospheric regions, where the lines are optically thin.

Notice that in the case of the Antarctic, where the surface is colder than the
atmosphere:

• more radiation is emitted from the warmer atmosphere in the vicinity of the
bands, than from the surface (in the windows).

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Thermal Emission and Radiation Laws (1)

Thermal emission is the inverse of absorption:

• Every particle of matter at a temperature greater than absolute zero contains
excited quantum states. The spontaneous decay of these states is accompanied
by the creation of radiative energy.

If only thermal emission were acting:

• all the molecules would eventually revert to their ground-state levels, and all the
energy would reside in the radiation field.

Of course, in reality:

• the medium and its radiation field are continually exchanging energy by absorp-
tion and emission. For example:

• solar radiation is absorbed by a planet, with some of the energy going into ther-
mal energy, some into mechanical energy (fluid motion) and some into chemical
energy (change of state). The remainder of the absorbed energy goes into emis-
sion of thermal radiation, which is re-absorbed or lost to space.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Thermal Emission and Radiation Laws (2)

When the incoming and outgoing radiative powers are in balance:

• the planet is said to be in planetary radiative equilibrium. A more re-
stricted equilibrium occurs when the amount of energy absorbed locally is equal
to that emitted locally. We call this situation radiative equilibrium.

Other kinds of equilibria refer to the temperature and motion fields, and to the
chemical composition:

• Thermal equilibrium occurs in a constant temperature medium. No heat
flows in the absence of a temperature gradient.

•Mechanical equilibrium occurs when there are no net forces or stresses
anywhere in the medium. Consequently there is no bulk motion of the fluid.

•Chemical equilibrium occurs when the rates of all chemical reactions are
balanced by their inverse reactions, so that the chemical composition is fixed
throughout the medium.
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Thermal Emission and Radiation Laws (3)

When all these equilibria occur, we have the most general state of:

• thermodynamic equilibrium.

To attain this situation requires a closed system, called:

• a blackbody cavity, or a hohlraum,

with insulating walls completely isolating it from external influences. Planetary
media, being “open” systems in the thermodynamic sense:

• would at first glance appear to be far from such an artificial condition.

However, as we shall see:

• atmospheres and oceans do share certain properties with a medium in thermo-
dynamic equilibrium. Therefore:

• we are particularly interested in the properties of the equilibrium radi-
ation field, and its interaction with matter within a hohlraum.
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Planck’s Spectral Distribution Law (4)

These properties of the equilibrium radiation field, expressed in the famous Ra-
diation Laws, first established by Kirchhoff in 1860, depend only upon:

• the temperature of the medium and are totally independent of the
nature of the matter occupying the hohlraum.

Suppose that a tiny opening is made in a containing wall of a hohlraum, and
consider first the effect it has on incident radiation. Clearly:

• opening will completely absorb the incident radiation, because its likelihood of
being reflected inside the hohlraum, and making it back out is negligibly small:

• opening is perfectly absorbing, or “black”.

• Radiation escaping enclosure through the opening will have reached thermal
equilibrium with the matter inside enclosure, BUT loss of energy due to this
leakage is assumed to be very small compared with the total energy.

• Radiation emanating from this “black” surface is called blackbody radiation.
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Planck’s Spectral Distribution Law (5)

Planck derived the hemispherical blackbody spectral irradiance FBB
ν :

FBB
ν =

m2
r

c2

2πhν3

(
ehν/kBT − 1

) (1)

where h is Planck’s constant, mr is the real part of the refractive index, and kB is
Boltzmann’s constant. Throughout the hohlraum:

• Radiation field is isotropic and unpolarized, and net irradiance is everywhere
zero.

Approximations for FBB
ν are Wien’s limit, for high photon energies, Eν = hν:

FBB
ν ≈ m2

r

c2
2πhν3e−hν/kBT (hν/kBT � 1) (2)

and the Rayleigh-Jeans limit, for very low energies (useful for λ > 1 mm
=⇒ hν/kBT � 1, and thus: ehν/kBT ≈ 1 + hν/kBT )

FBB
ν ≈ 2πν2m2

rkBT

c2
(hν/kBT � 1). (3)
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Planck’s Spectral Distribution Law (6)

As a result of the isotropy, the blackbody radiance is related to the hemispherical
irradiance through FBB

ν = πIBB
ν where:

IBB
ν = Bν(T ) ≡ m2

r

c2

2hν3

(
ehν/kBT − 1

). (4)

• Bν(T ) is called the Planck function (same units as radiance). The closely
related function Bλ(T ) is illustrated in Fig. 7 for a range of temperatures.

Note:

• preceding equations apply separately to each polarization component of the elec-
tric field.

•We usually deal with unpolarized light, which is the sum of these (equal) com-
ponents.

• Also: when we deal with gases we will set mr = 1.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

32



Figure 7: The blackbody radiance Bλ versus wavelength λ. The relationship between Bν and Bλ is
Bλd|λ| = Bνd|ν|. Since λ = c/ν then |dν| = (c/λ2)d|λ|.
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Planck’s Spectral Distribution Law (7)

By differentiating the Planck function (Eq. 4), one finds that the spectral distribu-
tion of blackbody radiation has its maximum value at frequency νm, or wavelength
λm, where (Wien’s Displacement Law):

νmT = 5.88× 1010 [Hz · K] or λmT = 2897.8 [µm · K]. (5)

•Wien’s Displacement Law states that the wavelength of peak black-
body emission is inversely proportional to temperature.

The frequency-integrated hemispherical irradiance leaving the hohlraum is:

FBB =
∫ ∞
0 dν

∫

2π dω cos θIBB
ν = π

∫ ∞
0 dνBν(T ). (6)

Substituting Eq. 4 in Eq. 6, setting x = hν/kBT and mr = 1, we obtain the
expression for the frequency-integrated emergent blackbody irradiance:

FBB =
2π(kBT )4

h3c2

π4/15
︷ ︸︸ ︷
∫ ∞
0

dx x3

(ex − 1)
=

( 2π5k4
B

15h3c2

)
T 4.
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Planck’s Spectral Distribution Law (8)

We have derived the important

Stefan-Boltzmann Law

FBB = σBT
4 (7)

where:

σB = 2π5k4
B/15h3c2 = 5.6703× 10−8 [W ·m−2 · K−4]

is the Stefan-Boltzmann constant.
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Radiative Excitation Processes in Molecules: General
(1)

A rigorous treatment of the interaction of matter and radiation requires both the
matter and the radiation to be a fully-coupled, quantized assembly.

We use the semi-classical theory, in which:

• the radiation is described by the classical electromagnetic theory, whereas

• the structure of matter is specified by the quantum theory.

In the modern theory:

• the coefficients of interaction are calculated by quantum mechanical Pertur-
bation Theory.

In the semi-classical theory we will continue to describe:

• the radiation field in terms of its radiance, irradiance, and energy density, and

• the “matter field” in terms of the populations of the excited states, either discrete
or continuous.
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Radiative Excitation Processes in Molecules: General
(2)

Absorption of a photon of energy E = hν results in excitation of a state, thus:

• reducing the population of the initial state population n0 (normally the ground
state) by one

• increasing the excited state population ni by one.

Here ni (i = 1, 2, · · ·) is the number of molecules (atoms) per unit volume in the
state having energy Ei. BUT:

• an excited state can decay, either by spontaneous or induced emission (to be
described in detail later), and the reverse will happen.

• The continual exchange of energy between the matter and radiation is described
in terms of rate equations for the various processes.
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Radiative Excitation Processes in Molecules: General
(3)

Photon-matter processes are classified in terms of three basic kinds of interactions:

• (a) bound-bound processes – the exchange of energy when the initial and
excited states are both discrete states, schematically (Ei → Ej);

• (b) bound-free processes – transitions between discrete and continuous
states, schematically (Ei → Ej, Ej + dEj); and

• (c) free-free processes– transitions between two continuous states,
schematically (Ei, Ei + dEi → Ej, Ej + dEj).

Only the bound-bound processes are important in infrared radia-
tive transfer in planetary atmospheres.

Process (b) is important in some ultraviolet absorption processes, such as the
absorption by ozone in the Hartley bands (200− 300 nm), in which an oxygen
atom is removed from the ozone (O3) molecule in the process of photoabsorption.
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Radiative Excitation Processes in Molecules: Inelastic
Collisional Processes (4)

Let AB be a molecule with atoms A and B bound together, and M be a second
molecule (‘third body’). Consider the following collisional “reaction”:

AB + M + (KE)′ → (AB)∗ + M + (KE)

where

• (KE)′ and (KE) are the sum of the kinetic energies of the reactants and prod-
ucts, respectively, and

• (AB)∗ indicates internal excitation of the AB molecule (electronic, vibration,
rotation, or some combination)

The above reaction describes:

• a collisional excitation of the molecule AB.

In this case, (KE) < (KE)′ of course, and energy is extracted from the thermal
“pool”, and placed into energy of excitation.
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Radiative Excitation Processes in Molecules: Inelastic
Collisional Processes (5)

The inverse reaction is:

(AB)∗ + M + (KE)→ AB + M + (KE)′

which is called collisional de-excitation, or collisional quenching. The

above are examples of inelastic collisions, in which:

• energy is transferred from kinetic to internal excitation energy, or vice versa.

By contrast, in an elastic collision:

• there is no net transfer of energy from kinetic to excitation energy;

• exchanges of momentum and kinetic energy occur, but the totals of each remain
the same.

To quantify the collisional and radiative processes, we describe the rates at which
the various reactions occur in terms of:

• cross sections.
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Radiative Excitation Processes in Molecules: Inelastic
Collisional Processes (6)

• The collision cross section σ is defined analogously to the radiative cross
section, in terms of the differential flux of incoming particles.

• The change of this flux over a distance (say ds) is proportional to the product of
the flux, and the number of target molecules within a cylinder of unit
cross section having a length ds. The constant of proportionality is σ.

• The cross section σ depends upon the properties of incident and target molecules,
as well as their relative speeds.

• If we specify that the incident molecules change their directions, but not their
speeds, we get the elastic cross section.

• If we also specify that the molecules be deflected in a particular direction Θ (per
unit solid angle), we get the differential elastic collision cross section:

dσel(Θ)

dω
.
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Radiative Excitation Processes in Molecules: Inelastic
Collisional Processes (7)

The total elastic cross section is given by:

σel =
∫

4π dω
dσel(Θ)

dω
.

Alternatively:

• the inelastic cross section σin involves a change in the molecules’ internal
excitation. It is important to indicate the particular excited state of interest,
in which case we have a smaller partial cross section.

• The total inelastic cross section is the sum of all the partial cross sections.

Typical orders-of-magnitude of collisional cross sections are:

• Elastic cross sections are of order 10−19 m2.

• Inelastic cross sections are much smaller of order 10−23 − 10−25 m2.

• This large difference will be important later on when we consider the mainte-
nance of various thermal equilibrium distributions.
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Radiative Excitation Processes in Molecules: Inelastic Collisional
Processes (7b): Digression (1)

Collision Time and Scattering Cross Section

Figure 8: Scattering process viewed from the frame of reference where the target particle 2 is at rest.
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Radiative Excitation Processes in Molecules: Inelastic Collisional
Processes (7b): Digression (2)

Consider two particles of masses m1 and m2, with position vectors ~r1 and ~r2, and
velocities ~v1 and ~v2.

From a frame of reference fixed with respect to particle 2, the motion of particle
1 relative to 2 is described by:

~R = ~r1 − ~r2 ←− relative position vector
~V = ~v1 − ~v2 ←− relative velocity vector

V = |~V | ←− relative speed.

Consider a uniform flux F1 of type 1 particles per unit area per unit time incident
with relative velocity ~V on target particle 2. Then:

• dN = number of type 1 particles emerging per unit time at a large distance
from the target with final velocity between ~V ′ and ~V ′ + d~V ′ within solid angle

dΩ′ about direction ~̂V ′ ≡ ~V ′/|~V ′| of the scattered beam.

dN is proportional to the incident flux and the solid angle:

dN = F1σdΩ′

σ = factor of proportionality = “differential scattering cross section”

σ = σ(V ; ~̂V ′)←− depends on the magnitude of the relative speed V of the incident

particle and on the direction ~̂V ′ of the scattered beam relative to the incident beam.
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Radiative Excitation Processes in Molecules: Inelastic Collisional
Processes (7b): Digression (3)

Note: σ (dimension of area) can be computed by classical or quantum mechanics
if interaction potential is known. Integration over all directions yields:

N =
∫

Ω′F1σ(V ; ~̂V ′)dΩ′ ≡ F1σ0(V ) (8)

= total number of particles scattered, where (9)

σ0(V ) =
∫

Ω′ σ(V ; ~̂V ′)dΩ′ ←− total scattering cross section,

which in general depends on relative speed V of the incident particles. For a “hard
sphere” collision, the interaction potential is:
V (R) = 0 R > (a1 + a2)
V (R)→∞ R < (a1 + a2).
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Radiative Excitation Processes in Molecules: Inelastic Collisional
Processes (7b): Digression (4)

Hard sphere scattering occurs only if impact parameter b < (a1 + a2).
Hence, of an incident flux of F1 particles per unit area per unit time, only that
fraction of particles incident on the circular area π(a1 + a2)2 is scattered. Thus:

σ0 =
N
F1

= π(a1 + a2)2 “hard sphere” cross section.

For two identical spheres, σ0 = πd2 where d = 2a, diameter of the spherical particle.

Relation between collision time and scattering cross section
Consider a gas consisting of only a single kind of molecules. Let
n = mean number of molecules per unit volume
v̄ = mean speed, and V̄ = mean relative speed of these molecules
σ0 = mean total scattering cross section (at relative speed V ).
Focus attention on a particular type of molecule (type 1), and consider how this
type is scattered by all the molecules in an element of volume d3~r of the gas. Then:

F1 =
n1(V̄ dtdA)

dtdA
= n1V̄ =

relative flux of type 1 molecules incident on any one molecule in d3~r.
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Radiative Excitation Processes in Molecules: Inelastic Collisional
Processes (7b): Digression (5)

Figure 9: If there are n1 molecules per unit volume with relative velocity near V , all of these contained in the volume
(V dtdA) collide with the area dA in time dt and thus constitute a flux n1V incident upon the scattering molecule.

But a number F1σ0 = n1V̄ σ0 of these type 1 molecules is scattered per unit time
in all possible directions by this one target molecule. Thus:

(n1V̄ σ0)(nd3~r) =

total number of type 1 molecules scattered by all nd3~r molecules in d3~r.

Dividing by n1d
3~r of type 1 molecules in the element of volume under consideration,

we obtain:

w = τ−1 ≡ V̄ σ0n = collision probability per unit time for one molecule of type 1.
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Radiative Excitation Processes in Molecules: Inelastic Collisional
Processes (7b): Digression (6)

The average mean free path becomes (w = τ−1 ≡ V̄ σ0n):

l = τ v̄ =
v̄

V̄

1

nσ0
.

To estimate v̄/V̄ :

~V = ~v1 − ~v2 =⇒ V 2 = v2
1 + v2

2 − 2~v1 · ~v2, which upon averaging gives

V 2 = v2
1 + v2

2

since ~v1 · ~v2 = 0.
Neglecting distinction between rms and mean values (i.e. setting v2 ≈ v̄2), we

have [V̄ =
√
v̄2

1 + v̄2
2 ≈
√

2v̄ if v̄1 = v̄2 = v̄ (identical molecules)]:

V̄ ≈
√

2v̄.

Thus:
Mean free path:

l =
1√

2 nσ0
.
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Radiative Excitation Processes in Molecules: Inelastic Collisional
Processes (7b): Digression (7)

For a typical gas at room temperature (300 K) and atmospheric pressure (106

dynes cm−2):

n =
p̄

kT
=

106

(1.4× 10−16)(300)
= 2.4× 1019 molecules/cm3

d ≈ 2× 10−8 cm (twice Bohr radius) molecular diameter.

Hence:
σ0 = π(2× 10−8)2 ≈ 12× 10−16 cm2 imply

l =
1√

2 nσ0
= 3× 10−6 cm→ l� d =⇒

approximations based on relatively infrequent encounters between molecules are
justified.
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Radiative Excitation Processes in Molecules: Inelastic
Collisional Processes (8)

The rate of increase of the population of excited states, d[AB]∗/dt, due to a
particular inelastic process is defined in terms of:

• the product of the reactants, and because of the dependence on relative speeds,
the sum (integral) over all possible relative speeds vrel = |~vAB − ~vM |:

d[AB]∗

dt
= [AB][M ]

∫
d3 vrel fAB(~vAB)fM(~vM)

dσin
dω︸ ︷︷ ︸

kin

. (10)

• [AB] denotes the concentration of species AB. fAB and ~vAB are the velocity
distribution and velocity of species AB, etc..

The integral is over all possible relative speeds vrel = |~vAB − ~vM | of AB and
M , i.e. over all relative velocities of the colliding particles, given by the Maxwell-
Boltzmann distribution of velocities of a species of mass m in thermal equilibrium:

fMB(~v) =



m

2πkBT



3/2

exp

−Ekin

kBT


 , Ekin =

1

2
mv2. (11)
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Radiative Excitation Processes in Molecules: Inelastic
Collisional Processes (9)

• The Maxwell-Boltzmann distribution of velocities, given by Eq. 11, is maintained
by elastic collisions between molecules of the gas.

• Equation 10 can be written more compactly as:

d[AB]∗

dt
= kin[AB][M ] [cm−3 · s−1]. (12)

• kin is the collisional excitation coefficient, which can be approximated as:

kin ≈ a


T

300




b

e−c/T [cm3 · s−1]. (13)

• a is a combination of molecular constants, b is a dimensionless constant of order
unity. c ≡ ∆E/kB is called the activation temperature in Kelvins, ∆E is
the energy of excitation, and e−c/T is called the Boltzmann factor.
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Radiative Excitation Processes in Molecules: Inelastic
Collisional Processes (10)

• A similar expression is obtained for the decrease of the excited-state popula-
tions due to collisions (collisional quenching):

d[AB]∗

dt
= −k′in[AB∗][M ]. (14)

• k′in is the quenching coefficient, which is related to the excitation coefficient
kin through the Principle of Detailed Balance.

• The coefficients for either elastic or inelastic collisions are written in terms of
the mean molecular speed:

〈v〉 =
∫
dvvFMB(v) = (8kBT/πm)1/2 (15)

where FMB(v) = 4πv2fMB(v), and fMB(v) = ( m
2πkBT

)3/2e−mv
2/kBT (see Eq. 11) is

the MB distribution of speeds given by:

FMB(v) = 4π(
m

2πkBT
)3/2v2e−mv

2/kBT . (16)
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Radiative Excitation Processes in Molecules: Inelastic
Collisional Processes (11)

From the units [cm3 · s−1] of the collisional coefficient (kin or kel), it is clear that:

• k is just the effective volume swept out by a moving molecule per unit time.

If we imagine the other molecules to be stationary, this volume is:

• the product of the cross section and the relative speed, 〈v〉. Then:

• kel ≈ σel〈v〉, and kin ≈ σin〈v〉.
For T = 300 K, and assuming N2 molecules as third bodies, then:
〈v〉 ≈ 480 [m · s−1], σel ≈ 1 × 10−15 [cm2], and the values for the reaction rate

coefficients become:

kel ≈ 5× 10−11 (T/300)1/2 ; kin ≈ 5× 10−15 − 10−17 [cm3 · s−1]. (17)

• Thus: inelastic collisions proceed at about 10−4 to 10−6 the rate of
elastic collisions.
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Maintenance of Thermal Equilibrium Distributions (1)

A second important statistical distribution valid in thermodynamic equilibrium
is the Boltzmann distribution of excited states:

nj
ni

=
gj
gi
e−(Ej−Ei)/kBT (18)

where nj, Ej, and gj denote the volume density, energy, and the statistical weight
of the jth excited state, respectively.

Since the excited-state populations are established by inelastic collisions:

• inelastic collisions maintain the Boltzmann distribution of excited states.

Since inelastic collisions occur much less frequently than elastic collisions
(which maintain the Maxwell-Boltzmann distribution of velocities), we expect that:

• for low gas density, the Boltzmann distribution will become invalid.

The third distribution of interest is the Planck distribution of photon energies:

Bν(T ) =
2hν3

c2

1

ehν/kBT − 1
. (19)
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Maintenance of Thermal Equilibrium Distributions (2)

The Planck distribution is maintained by emission and absorption of photons:

• processes determined by the populations of the various excited states in the
medium, and thus: also maintained by inelastic collision processes.

In strict thermodynamic equilibrium (TE):

• Bν(T ) not only describes the blackbody radiation field: IBB
ν = Bν(T ), but also

describes the source function: Sν = Bν(T ).

From Kirchhoff’s law the emission coefficient (rate of thermal emission per unit
volume) is given by:

jν = α(ν)Bν(T ).

Here α(ν) is the absorption coefficient. (We ignore scattering here.) Since:

Sν ≡ jν/α(ν)

in TE, Sν = Bν(T ).
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Maintenance of Thermal Equilibrium Distributions (3)

This result also follows from the radiative transfer equation:

dIν/dτν = −Iν + Bν.

In TE the radiance is uniform and isotropic, and dIν/dτν = 0. Thus:

Sν = IBB
ν = Bν,

which applies to a closed system in equilibrium.

What about an “open system”, such as an atmosphere or ocean, that receives
energy from the Sun and radiates energy to space?

• Under rather general conditions, such systems also share certain properties of a
system in TE.

• As will be shown in greater detail for a two-level atom, the source function is
Planckian, Sν = Bν(T ), (but Iν 6= Bν) in local thermodynamic equilib-
rium, or LTE.
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Maintenance of Thermal Equilibrium Distributions (4)

• LTE applies if the photon energy is sufficiently low (hν < kBT ) and the molec-
ular density is sufficiently high for the rate of collisional excitation/de-excitation
processes to greatly exceed the corresponding radiative processes.

• This condition for is the same as the one for which the Boltzmann distribution
of excited states (Eq. 18) is valid. In fact, Eq. 18 being valid is a necessary and
sufficient condition for LTE.

Thus, LTE applies if the gas density is sufficiently high to ensure that:

• the collisional lifetime of an excited state tcoll is much smaller than the radiative
lifetime trad. This condition is fulfilled in the thermal IR (λ > 3 µm).

For vibrational states, trad is typically 0.1-1 s. For the 15-µm band of the CO2

under STP conditions, tcoll ∼ [AB]∗/d[AB∗]/dt = 1/k′in[M ] ∼ 10−5 s. Therefore:

• LTE would exist in this band down to pressures of 0.001-0.1 mb, which occurs
near 75 km: the level of vibrational relaxation. Above this height:

• the upper state “relaxes” to a population different from that given by the Boltz-
mann distribution of excited states (Eq. 18): nonlocal thermodynamic
equilibrium (NLTE).
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (1)

Assume now that all the radiative and collisional processes act together, and that
the values of the rate processes are given. Our goal is to derive:

• equations describing the transfer of radiation through the system.

Many of the properties of a complex system are embodied in the two-level atom
concept:

• we must consider five separate processes (see Fig. 10) connecting the two
energy levels of the atom.

We begin by considering the radiative processes:

• The radiation field is assumed to be a result of transitions from the single excited
level (state 2) to the ground level (state 1) of a radiatively-active species.

• The gas will be a two-component mixture consisting of the radiatively-active
species, and a radiatively inert ‘buffer’ gas.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

58



M

C12n1 C21n2

M

Collisional
Excitation Quenching

Stimulated Emission

n1

B21n2(ν)J

n2(ν)

n1

Radiative Absorption Spontaneous Emission

B12n2J A21n2(ν)

Eν = hΦ(ν)

n2(ν)

hν

hν

Figure 10: Illustration of the five radiative and collisional processes involved in the rate of population
of energy levels in a two-level atom.
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (2)

The buffer gas plays the role of:

• collisionally transforming the excited level to the ground state and vice versa.

• The populations in the two levels are denoted n1 and n2. The sum n = n1+n2 =
constant, n = density of the radiatively-active species.

The average energy difference between the states is E21 = E2 − E1 = hν0, but:

• there is a small spread in frequencies, due to spectral broadening.

The radiative processes (see Fig. 10) are:

• (1) Absorption: hν + n1 → n2

• (2) Spontaneous emission: n2 → n1 + hν

• (3) Stimulated emission: n2 + hν → n1 + hν + hν.

In Process (3) the emitted radiation is exactly coherent with the inci-
dent radiation, both direction and phase. (1) and (3) may be understood from
classical physics, but (2) requires quantum theory for a fundamental description.
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (3)

In the semi-classical theory, we assign a rate to:

• the stimulated emission which is independent of the surroundings of the atom.

The rates at which the three radiative processes occur are described by:

• the Einstein coefficients B12 ( absorption), A21 (spontaneous emission), and
B21 (stimulated emission).

We now consider the rate equations for each individual process:

• Process (1) describes the rate at which absorption depletes the lower state, and
is proportional to:

• (i) the number of atoms in the ground state n1, (ii) the absorption cross section
αn(ν), and (iii) the number of photons in solid angle dω, (Iν/hν)dω. Integrating
over all frequencies and photon directions, we find:†

(dn2/dt)abs = n1

∫ ∞
0 dν

∫

4π dωαn(ν)(Iν/hν) = 4πn1

∫ ∞
0 dναn(ν)(Īν/hν). (20)
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†Recall: Ī ≡ 1
4π

∫
4π dωI(ω)
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (4)

• Process (2) is the rate at which photons depopulate the upper state. According
to Einstein:

(dn2/dt)spon = −A21n2. (21)

The above equation shows that the:

• excited states decay via this process independently of its surroundings.

• Process (3) is given by an expression similar to Eq. 20, since its rate is also
proportional to the number of photons available:

(dn2/dt)stim = −n2

∫ ∞
0 dν

∫

4π dωαn(stim; ν)(Iν/hν)

= −4πn2

∫ ∞
0 dναn(stim; ν)(Īν/hν) (22)

where αn(stim; ν) is the absorption cross section for stimulated emis-
sion.
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (5)

We now write the absorption cross sections in terms of the Einstein coefficients:

• αn(ν) ≡ hνB12Φ(ν)/4π, and

• αn(stim; ν) ≡ hνB21Φ(ν)/4π.

Φ(ν) is the normalized line-profile function:

∫ ∞
0 dνΦ(ν) = 1. (23)

We made two assumptions:

• The line profiles for stimulated emission and absorption are the same.

• The line shape, Φ(ν), determined by the properties of the atom (molecule)
and its surroundings, is known.
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (6)

The rates of the above three processes are related. We will show that it is:

• sufficient to know the value of one Einstein coefficient to determine the other
two.

For this purpose we assume a special case of thermodynamic equilibrium (TE), and
then argue that the result so obtained has more general validity. In TE:

• Iν = Bν, and the populations n1 and n2 are related through the Boltzmann
distribution of excited states, Eq. 18:

nj
ni

=
gj
gi
e−(Ej−Ei)/kBT .

•We denote the ratio of the two populations in TE as n∗2/n
∗
1 to distinguish it from

the more general ratio n2/n1.

From Eq. 18, we have:

n∗2/n
∗
1 = (g2/g1) exp(−hν0/kBT ) (24)

where the gi are the statistical weights. (Note that we have used the average energy
difference between the two states E21 = E2 − E1 = hν0.)
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (7)

Assuming steady-state: dn∗1/dt = −dn∗2/dt = 0 we have:

dn∗1/dt = 0 = n∗2A21 + n∗2B21

∫ ∞
0 dνBνΦ(ν)− n∗1B12

∫ ∞
0 dνBνΦ(ν). (25)

•We may simplify this expression because the Planck functionBν is slowly-varying
over the line profile, and can be set to Bν = Bν0 = constant.

Then, using the normalization property of Φ(ν), Eq. (23):
∫∞
0 dνΦ(ν) = 1, we

find:

n∗2A21 + n∗2B21Bν0 = n∗1B12Bν0.

Solving for Bν0, we find:

Bν0 =
(A21/B21)

(g1B12/g2B21) ehν0/kBT − 1
.
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (8)

But we already know the functional form of the Planck function:

Bν0 =
2hν3

0/c
2

ehν0/kBT − 1
. (26)

Making the correspondence of the above two equations, we obtain:

The Einstein Relations

A21 = (2hν3
0/c

2)B21 (a); g1B12 = g2B21 (b). (27)

These relationships are independent of the state of the gas (temperature or density).

They depend only on the basic properties of the atom itself:

• the Einstein relations are quite general, independent of the situation as-
sumed in their derivation, and should apply to the more general NLTE situation.
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (9)

We now use the above relationships to write down the continuity equation for
photons, which is just the radiative transfer equation. We first note that:

• dIν/ds is the rate at which radiative energy is lost, or gained, along a beam.

Then we can write this quantity as being equal to the gains less the losses due to
the three radiative processes. The result is:

The Microscopic Radiative Transfer Equation

dIν
ds

= −hν0

4π
n1B12IνΦ(ν) +

hν0

4π
n2B21IνΦ(ν) +

hν0

4π
n2A21Φ(ν). (28)

Note: we have introduced the additional assumption that the line profile for

spontaneous emission is also given by Φ(ν).
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (10)

Equation 28 may now be related to our conventional radiative transfer equation
(Eq. 2.28), which we can now call the macroscopic radiative transfer equation:

dIν
ds

= −k(ν) (Iν − Sν) . (29)

Equating the factors multiplying Iν in Eqs. 28 and 29, we find:

k(ν) =
hν0

4π
Φ(ν) (n1B12 − n2B21) =

hν0

4π
Φ(ν)n1B12


1− n2B21

n1B12


 (30)

which allows us to relate microscopic quantities to macroscopic quantities.

In the case of LTE, we replace the quantities n1 and n2 by n∗1 and n∗2:

k∗(ν) =
hν0

4π
Φ(ν)n∗1B12


1− n∗2B21

n∗1B12


 (31)

where k∗(ν) denotes the LTE value of the effective extinction coefficient.
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (11)

From the Boltzmann relation for the ratio n∗2/n
∗
1 [Eq. (24): n∗2/n

∗
1 =

(g2/g1) exp(−hν0/kBT )], and the Einstein relation g2B21 = g1B12, we find:

k∗(ν) =
hν0

4π
Φ(ν)n∗1B12

(

1− e−hν0/kBT
)

. (32)

Here k∗(ν) is the extinction coefficient in LTE, corrected for stimulated
emission:

• stimulated emission is simply negative absorption, since the emitted photon
is coherent with, and in the same direction as the incident photon.

Thus, our macroscopic equation needs a slight adjustment for the LTE situation:

dIν
ds

= −k∗(ν) (Iν − Sν) (33)

where k∗(ν) is given by Eq. 32.
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The Two-Level Atom:
Microscopic Radiative Transfer Equation (12)

Note that in many atmospheric problems:

• the factor e−hν0/kBT << 1 and the effect of stimulated emission is negligible.

In the more general NLTE situation, we should equate the source terms in
Eqs. 28 [hν0

4π n2A21Φ(ν)] and (29) [k(ν)Sν], and use Eq. 30 for k(ν) [k(ν) =
hν0
4π Φ(ν) (n1B12 − n2B21)]. Using the Einstein relationships, Eq. 27a,b, we get:

Sν = Sν0 =
n2A21

n1B12 − n2B21
=

2hν3
0/c

2

(n1g2/n2g1)− 1
. (34)

Note 1: this NLTE source function contains no frequency-dependence, because
we assumed that the line profiles for stimulated emission, spontaneous emission,
and absorption are identical (complete frequency redistribution).
Note 2: if we assume LTE, n2/n1 = n∗2/n

∗
1, then this NLTE source function

becomes the Planck function Eq. 26, as can be seen from Eq. 24: n∗2/n
∗
1 =

(g2/g1) exp(−hν0/kBT ).
Note 3: Eq. 34 contains another unknown, the ratio of the two populations,
which must be determined by considering inelastic collisions.
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The Two-Level Atom:
Effects of Collisions on State Populations (1)

In addition to the effects of radiation on the excited states, we must consider:

• the effects of collisional excitation and quenching.

To simplify the notation, we define (see Eqs. 12 and 14):

• the collisional excitation rate per atom as‡ kin[M ] ≡ C12, and
the collisional quenching rate per atom as§ k′in[M ] ≡ C21.

In a steady state we set to zero:

• the rate at which both collisions and radiation populate the excited state:

dn1

dt
= −n1C12 − n1B12

∫ ∞
0 dνΦ(ν)Īν

+ n2C21 + n2B21

∫ ∞
0 dνΦ(ν)Īν + n2A21 = 0. (35)

• This equation is called the statistical equilibrium equation.
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‡Recall d[AB]∗

dt = kin[AB][M ], where kin is the collisional excitation coefficient.
§Recall: d[AB]∗

dt = −k′in[AB∗][M ], where k′in is the quenching coefficient.
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The Two-Level Atom:
Effects of Collisions on State Populations (2)

Equation 35 provides an equation in addition to Eq. 34, which

• allows us to solve for both unknowns, n2/n1, and the source function, Sν.

Recall: We derived the Einstein relationships by assuming TE, ignoring collisions
and balancing the radiative processes. We now use the same idea with collisions:
assume TE, ignore radiative processes, and set the two rates equal:

n∗2C21 = n∗1C12. (36)

Using the definitions of the coefficients, and invoking the Boltzmann distribution
of excited states, Eq. 18:

nj
ni

=
gj
gi
e−(Ej−Ei)/kBT , we find:

C21 = C12
g1

g2
ehν0/kBT . (37)

As in the case of the Einstein relationships: the above relationship is more
general than the assumption used in deriving it.
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The Two-Level Atom:
Effects of Collisions on State Populations (3)

We cannot argue that Eq. 37 describes an inherent atomic property, because of
its dependence on the temperature. However, we observe that:

• the collisional excitation rate Eq. 10: d[AB]∗
dt = kin[AB][M ], where kin =

∫
d3 vrel fAB(~vAB)fM(~vM)dσin

dω is determined by integrating the product of the
Maxwell-Boltzmann (MB) velocity distributions of the reactants.

Recall: the MB velocity distributions are maintained by elastic collisions, which
are millions of times more efficient than inelastic collisions. Thus, we expect
that:

• Equation 37 would be valid in non-equilibrium situations, as long as the
velocity distribution is Maxwellian.

To emphasize that there may be several different temperatures in a NLTE situation,
the quantity entering the (MB) velocity distribution is often referred to as:

• the kinetic or translational temperature.
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The Two-Level Atom:
Effects of Collisions on State Populations (4)

Solving the statistical equilibrium equation (Eq. 35) for n1/n2, we obtain:

n1

n2
=
C21 + B21J + A21

C12 + B12J
where J ≡

∫ ∞
0 dνΦ(ν)Īν (38)

the ratio of the net excitation rate to the net quenching rate, or the
‘source’ divided by the “sink” of excited states.

Eqs. 34 and 38 are two equations in the two unknowns, Sν and n1/n2.

Using Eq. 37: C21 = C12
g1
g2
ehν0/kBT to eliminate C12 and Eq. 27b: g1B12 = g2B21,

to eliminate the Einstein coefficient B12 in Eq. 38, we find:

n1

n2
=

A21 + B21J + C21

(g2/g1)C21e−hν0/kBT + (g2/g1)B21J
(39)

where T is the kinetic temperature of the gas.
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The Two-Level Atom:
Effects of Collisions on State Populations (5)

Thus:

• the velocity distribution of the atoms in the gas is in LTE, while the pop-
ulations of the energy states may be far from an LTE distribution.

We rewrite the above equation as:

n1g2

n2g1
=

A21 + B21J + C21

B21J + C21e−hν0/kBT
(40)

which is the combination that appears in the denominator of Eq. 34:

Sν = Sν0 = n2A21
n1B12−n2B21

= 2hν3
0/c

2

(n1g2/n2g1)−1.

Substitution of Eq. 40 into 34 yields:

Sν0 =
2hν3

0

c2



A21 + B21J + C21

B21J + C21e−hν0/kBT
− 1




−1

.
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The Two-Level Atom:
Effects of Collisions on State Populations (6)

The equation above may be rewritten as:

Sν0 =
(2hν3

0/c
2)(B21J + C21e

−hν0/kBT )

A21 + C21 − C21e−hν0/kBT

and using the first of the Einstein relations, Eq. 27a: A21 = (2hν3
0/c

2)B21, we
obtain:

Sν0 =
J + (2hν3

0/c
2)(C21/A21)e−hν0/kBT

1 + (C21/A21)(1− e−hν0/kBT )
.

To simplify the above expression for Sν, we define a new parameter, εv:

εv ≡
C21

C21 + A21(1− e−hν0/kBT )−1
. (41)
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The Two-Level Atom:
Effects of Collisions on State Populations (7)

With some additional manipulation using εv and Eq. 26, Bν0 = 2hν3
0/c

2

ehν0/kBT−1
, we find:

The NLTE source function

Sν0 = εvBν0 + (1− εv)J where J ≡
∫ ∞
0 dνΦ(ν)Īν. (42)

We have shown that the NLTE source function is the sum of two terms:

• a thermal emission term, plus

• a term which represents the scattering contribution to the source function.

• εvBν0 is interpreted as the emittance per unit volume: its efficiency as a black-
body emitter as a function of frequency within the spectral line.

In terms of the macroscopic absorption [α(ν)] and extinction [k(ν)] coefficients:

• εv = α(ν)/k(ν) (note that the frequency dependence cancels in the ratio).
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The Two-Level Atom:
Effects of Collisions on State Populations (8)

The emission coefficient is obtained from its definition [jν = Sνk(ν)], yielding:

jν = α(ν)Bν(T ) + σ(ν)
∫ ∞
0 dνΦ(ν)Īν (43)

where we used the relationship σ(ν) = k(ν)− α(ν). The first term in Eq. 43 is:

•Kirchhoff’s Law for a volume element, which states that the thermal emission
is the product of the absorption coefficient and the Planck function.

• The second term is the contribution to the volume emission from scattering
within the volume (see §5.3.2).

εv is a measure of the coupling between the gas and the radiation field:

•When εv → 1, the coupling is strong, and there is a rapid exchange between
kinetic and internal energy: Sν0 → Bν0, which is just the LTE limit.
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The Two-Level Atom:
Effects of Collisions on State Populations (9)

In the opposite case of weak coupling: (εv → 0), the source function approaches
the pure-scattering limit:

Sν0 → J =
∫ ∞
0 dνΦ(ν)Īν (44)

which might be called:

• an extreme condition of NLTE, in which the excited states are populated
exclusively by radiation and collisions no longer play a role.

Moving up into lower densities and pressures in a planetary/stellar atmosphere:

• there will be a transition from LTE to NLTE as the coupling between the gas
and the radiation field disappears.
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Absorption in Molecular Lines and Bands (1)

The infrared (IR) spectral range consists of the:
Solar near-infrared (NIR): 1–3 µm
Thermal infrared radiation (IR): 3–100 µm.

The molecular excited states of interest are those of:¶

Vibration: 500− 10, 000 cm−1, and Rotation: 1− 500 cm−1.
Note: the higher-lying electronic states: 10, 000− 100, 000 cm−1

interact primarily with visible and ultraviolet radiation.

The internal excitation energy is the sum of these three types of energy: elec-
tronic (Ee), vibrational (Ev), and rotational (Er).

(Note: the kinetic energy of the molecules plays an important indirect role in
determining the populations of the various absorbing states.)

Mastery of IR spectroscopy requires a thorough familiarity with quantum me-
chanics, which is beyond the scope of this course. Our approach is to:

• consider only a few of the simpler ideas underlying the physics of vibrational
and rotational spectra.
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¶Conversion: 1 µm = 10,000 cm−1. Hence: 500 cm−1 corresponds to (10, 000/500) µm
cm−1 cm−1 = 20 µm.
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Absorption in Molecular Lines and Bands (2)

Fortunately, an understanding of the radiative transfer process itself does not
require detailed spectroscopic knowledge due to:

• the availability of accurate compilations of line strengths and frequencies for all
the major terrestrial molecular species. We will follow this empirical approach.

First, note that the major molecular species of the Earth’s atmosphere:

• O2 and N2 have essentially no impact on IR absorption due to:

• the symmetrical structure of homonuclear, diatomic molecules.

Four of the most important IR-absorbing molecular species are the minor con-
stituent polyatomic molecules:

• water vapor (H2O), carbon dioxide (CO2), ozone (O3) and methane (CH4).

Dozens of other minor species have a small effect on the heat budget, when
considered together, and are important in remote sensing.

• The absorption of light gives rise to excited states, which may be a combination
of electronic, vibrational and rotational motion.
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Absorption in Molecular Lines and Bands (3)

Let’s first consider molecular vibration (ignoring electronic or rotational en-
ergy). To help visualize the physics of the absorption process, we assume that:

• the constituent atoms are held together in a semi-rigid structure by attractive
forces provided by the electron ‘cloud’ shared by all the atoms, and

• the bonding forces can be either electrostatic (ionic bonding) or quantum-
mechanical (exchange or covalent bonding).

• The nature of these forces does not concern us here. We need only consider their
behaviour as ‘springs’ binding the various positively-charged nuclei together.

The simplest example is a diatomic molecule acting like a classical oscillator:

•When it collides with another molecule or absorbs a photon of the proper fre-
quency:

• the constituent atoms are set into internal motion, alternately stretching and
compressing the molecule. In addition:

• the bonds may ‘bend’ so that the angles between the various axes may also
oscillate.
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Absorption in Molecular Lines and Bands (4)

Classically, the energy of oscillation of a molecule can vary continuously, but due
to the quantum nature of energy states, the number of such states is a discrete set.
According to classical mechanics:

• the internal motion of a semi-rigid system, no matter how complicated, can be
decomposed into a sum of elementary motions, the so-called normal modes.

A diatomic molecule, modelled as a simple harmonic oscillator, has only one
normal mode of oscillation, along the internuclear axis. However:

• with increasing complexity of the molecule, more normal modes are possible.

The general rule is that if a molecule has N atoms:

• the number of independent modes (or degrees of freedom) is 3N − 6 for a
non-linear molecule (N > 2), and 3N − 5 for a linear molecule.

• Figure 11 illustrates some of the normal modes of N2, O2, CO2, and H2O.
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4.5 Absorption in Molecular Lines and Bands 121
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Figure 4.8 Normal modes of vibration of N2, O2, CO2, and H2O. (a) N2 and
O2 are diatomic, homonuclear molecules with only one mode of vibration.
(b) CO2 is a linear, triatomic molecule. Its ⌫1 stretching mode is symmetric
and therefore optically inactive. ⌫2a and ⌫2b are two separate modes but
with the same energy, and are said to be degenerate. The two modes di↵er
only by a 90� rotation about the internuclear axis. ⌫3 is the asymmetrical
bending mode. (c) Both H2O and O3 (not shown) have three normal modes,
all of which are optically significant.

energy state, and is usually in the range 300–3,000 cm�1, corresponding to

values of h⌫k in the range 0.037–0.37 eV. The lowest vibrational energy levels

are somewhat higher than the thermal energy kBT , which for a temperature

of T = 300 K corresponds to a frequency of about 210 cm�1. For a clas-

sical harmonic oscillator, h⌫k depends upon the square root of the “spring

constant” ke divided by the reduced mass, usually expressed in terms of a

vibrational constant (!e in cm�1) as h⌫k = hc!e. The intermolecular force

for a diatomic molecule is given by the spatial derivative of the potential

energy V (r), which for small-amplitude oscillations, is given by �ke(r� re).

Here re is the equilibrium nuclear separation. Figure S.2 shows the potential

energy V (r) for the H2 molecule, along with the array of vibrational energy

states (Herzberg, 1950). Departures from strictly harmonic oscillations are

described by higher-order terms.

Molecular vibrational states may be excited by collisions between molecules

but also by absorption of radiation, provided the radiative energy is in reso-

nance with a normal mode. Classically one may think of such an interaction

as the temporary creation of an induced electric dipole moment by the in-

cident electric field. Radiative transitions between such excited states and

Figure 11: Normal modes of vibration of N2, O2, CO2, and H2O. (a) N2 and O2 are diatomic, homonu-
clear molecules with only one mode of vibration. (b) CO2 is a linear, triatomic molecule. (c)
Both H2O and O3 (not shown) have three normal modes.
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Absorption in Molecular Lines and Bands (5)

If the motions are small-amplitude, the quantum mechanical result for the total
vibrational energy is (the subscript v stands for vibration):

Ev =
∑

k
hνk(vk + 1/2) (vk = 0, 1, 2 · · ·) (45)

where the sum is over all modes denoted by the index k, and

• hνk is the vibrational constant for that mode, νk is the mode frequency and
vk is an integer, the vibrational quantum number.

• The value of hνk will depend upon the molecule, and the particular electronic
energy state. It is usually in the range 300− 3000 cm−1 (0.37− 3.7 eV).

• The constant 1/2 is a quantum-mechanical feature associated with the “zero-
point energy.” The lowest vibrational energy levels are somewhat higher than
thermal energy‖ ∼ kBT ∼ 210 cm−1 for T = 300 K.

• For a classical simple harmonic oscillator, hνk depends upon the square-root of
the “spring constant” ke divided by the reduced mass. It is usually written in
terms of a vibrational constant (ωe in cm−1) as hνk = hcωe.
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0.0259 eV = 8067× 0.0259 cm−1 = 209 cm−1.
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Absorption in Molecular Lines and Bands (6)

The intermolecular force for a diatomic molecule is given by the spatial derivative
of the potential energy function V (r): −ke(r−re) (re = equil. nuclear separation).
Figure 12 shows V (r) for the H2 molecule, and its vibrational energy states.

In addition to being excited by molecular collisions:

• molecular vibrations may also be induced by absorption of radiation provided
the radiative energy is in resonance with a normal mode.

Classically we can think of this interaction as the temporary creation of an in-
duced electric dipole moment by the incident electromagnetic field, occurring
if:

• the new configuration results in an electron distribution whose first moment
(“center of gravity”) is displaced from its original position.

In their ground, or lowest energy states, the dipole moment of symmetrical
molecules, such as N2, O2, CO2, and CH4 is zero. However:

• there are asymmetrical stretching or bending modes of vibration (for example
the ν2 state of CO2) which result in an electric dipole.
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Figure 12: Potential curve for H2 ground state with vibrational levels and continuous term spectrum.
The continuous term spectrum, above v = 14, is indicated by hatching (since 1 eV = 8067 cm−1,
10,000 cm−1 = 1.24 eV).
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Absorption in Molecular Lines and Bands (7)

• Radiative transitions between these states and the ground state are allowed if
there is a change in the dipole moment. Note that the homonuclear molecules:

• N2 and O2 are symmetrical in both their ground and (single) excited state, and
therefore have no vibrational spectra: they are radiatively inactive.

In quantum theory, absorption takes place provided there is:

• a finite dipole matrix element between the initial and excited states.

• Sometimes this matrix element is zero, and the transition is forbidden, at least
for dipole transitions. Higher-order moments, such as:

• electric quadrupole and magnetic dipole moments may exist, but their
associated absorptions are much weaker than electric dipole transitions.

Selection rules state if a transition is “dipole-allowed” or “dipole-forbidden”:

• The wavenumber of a vibrational transition is given by hcν̃ = Ev(v
′)− Ev(v

′′)
with the selection rule ∆v = v′ − v′′ = ±1, the so-called fundamental.
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Molecular Rotation: the Rigid Rotator (1)

Molecular rotation is easy to understand in principle. For simplicity:

• we assume that the molecule is a rigid rotator: the internuclear separation is
fixed, regardless of the rotation.

A diatomic molecule will be characterized classically by its moment of inertia:

• I = M1r
2
1 + M2r

2
2, where M1,M2 are the nuclear masses, and r1, r2 the radial

distances along the principal axis from the center of gravity of the nuclei:

r1 =
M2

M1 + M2
r and r2 =

M1

M1 + M2
r.

Thus, r = r1 + r2 is the internuclear separation.

The classical expression for the energy of rotation is:

• Er = Iω2/2 = L2/2I , where ω is the angular velocity of rotation about the
principal axis, I is the corresponding moment of inertia (I = M1r

2
1 + M2r

2
2),

and L is the angular momentum.
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Molecular Rotation: the Rigid Rotator (2)

The usual QM ‘prescription’ is to replace the classical angular momentum with
(h/2π) times an integer (h is Planck’s constant). Since we are dealing with the
square of the angular momentum:

• the QM equivalent is L2 → (h/2π)2J(J + 1) where J is a positive integer, the
rotational quantum number.

Thus, the rotational energy of a rigid-rotator is given by:

Er(J) =
1

2I
(
h

2π
)2J(J + 1) = hcBvJ(J + 1) (J = 0, 1, · · ·) (46)

where Bv ≡ h/(8π2cI) is the rotational constant corresponding to a particular
electronic and vibrational state (subscript v on Bv).

Since Bv is inversely proportional to the moment of inertia (I = M1r
2
1 + M2r

2
2),

and therefore to the molecular mass, it follows that:

• light molecules, such as H2, will have more widely separated rotational energy
levels than heavier molecules, implying that there are relatively few rotational
states populated by collisions (see Fig. 15).
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Molecular Rotation: the Rigid Rotator (3)

How does rotation affect absorption and emission? Again, a changing electric
dipole must be involved. In this case for radiative interaction:

• it is necessary to have a permanent electric dipole moment.

Since the dipole moment is a vector quantity, a change of the direction of this
dipole moment would constitute a change in the dipole moment, leading to:

• pure rotational transitions, whose energies occur in the far-infrared and mi-
crowave portion of the spectrum.

The wavenumber of the emitted or absorbed photon is ∆Er/hc, so that Eq. 46
gives:

ν̃ = BvJ
′(J ′ + 1)−BvJ

′′(J ′′ + 1), (47)

where the selection rule is ∆J = ±1, that is, J may change or “jump” by only
one unit:

• The pure rotational spectrum of a rigid rotator consists of a se-
quence of equidistant lines.
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Molecular Rotation: the Rigid Rotator (4)

• Linear molecules (N2, O2, or CO2), are symmetrical in their ground states:

• They have no permanent dipole moment and thus no pure rotational
spectrum.

Finally, it should also be mentioned that:

• pure rotational transitions prevail in the microwave spectrum.

For example (1 GigaHertz = 1× 109 Hz):

• H2O exhibits intense microwave absorption at 22 and 183 GHz.

The ground state of O2 possesses no electric dipole moment, BUT:

• it does have an unusually large magnetic dipole. Thus:

• weak (“forbidden”) magnetic dipole transitions occur in the microwave range,
important for atmospheric absorption because of the very high abundance of O2.
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Molecular Vibration and Rotation: the Vibrating Rotator (1)

Since vibration and rotation can occur simultaneously, we consider the vibrating
rotator. If there were no interaction between rotation and vibration:

• the energy levels can be written as so-called term values:

E(v, J)

hc
= ωe(v + 1/2)− ωexe(v + 1/2)2 + BvJ(J + 1)−DvJ

2(J + 1)2, (48)

where ωe and ωexe are vibrational constants, expressed in wavenumber units.

• The quadratic terms are the “interaction” terms for an anharmonic oscilla-
tor.

• Note the presence of two rotational constants, Bv and Dv, whose subscripts v
indicate dependence on the vibrational mode.

• The term involving ωexe is an anharmonic correction, accounting for de-
partures from simple harmonic oscillator motion.
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Molecular Vibration and Rotation: the Vibrating Rotator (2)

The total molecular energy includes the electronic energy Ee. Thus, the:

• rotational constants may also depend upon the electronic energy state.

The wavenumber of a spectral line in a vibration-rotation band within a given
electronic state is given by the difference:

• of the term values of the two states defined by (v′, J ′) and (v′′, J ′′)

ν̃ = ν̃k + Bv′J
′(J ′ + 1)−Bv′′J

′′(J ′′ + 1) [cm−1] (49)

where ν̃k is the basic wavenumber of the pure vibrational transition without taking
into account any rotation (that is when J ′ and J ′′ are set equal to zero).

With ∆J = J ′−J ′′ = +1 and ∆J = J ′−J ′′ = −1, we obtain the wavenumbers
of the R-branch and P-branch, respectively:

ν̃R = ν̃k + 2Bv′ + (3Bv′ −Bv′′)J
′′ + (Bv′ −Bv′′)J

′′2 (J ′′ = 0, 1, · · ·) (50)

ν̃P = ν̃k − (Bv′ + Bv′′)J
′′ + (Bv′ −Bv′′)J

′′2 (J ′′ = 1, 2, · · ·). (51)
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Molecular Vibration and Rotation: the Vibrating Rotator (3)

Figure 13 shows the various transitions in a vibration-rotation band, illustrating
the separation into two branches. The above description of a diatomic molecule is
still approximate:

• The electrons (having small masses compared to the nuclei) have a small
moment of inertia about the internuclear axis. Nevertheless:

• their total angular momentum ~Λ is comparable to the nuclear value (which we

now denote by ~N), because they move much faster in their orbits.

• Only the component of this angular momentum along the axis, is non-zero
(the others average to zero) with associated quantum number Λ > 0, because

• the electric field points along the axis of symmetry.

The total angular momentum ~J of the molecule is thus the vector sum of:

• the nuclear angular momentum ~N (pointing ⊥ to the axis) and the electronic

angular momentum ~Λ (pointing ‖ the axis).
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S.1 Chapter 4 - Details and Derivations 603

!	
!!	

Figure S.3 Energy levels of the vibrating rotator [adapted from Fig. 11.5 of
Rybicki and Lightman (1979)]. v00 and J 00 are the vibrational and rotational
quantum numbers of the lower state. v0 and J 0 refer to the upper (excited)
state. The vertical lines indicate allowed transitions (�J = ±1). R(j) (j =
1, 2, 3, 4) denotes the R-branch (�J = +1) ending in the J 0 = j state.
In the lower part of the diagram, idealized absorption is shown versus
wavenumber. P (j) (j = 0, 1, 2, 3) denotes the P -branch (�J = �1) ending
in the J 00 = j state. The vertical dashed line indicates the band head at
⌫̃ = ⌫̃0, which is missing in homonuclear diatomic molecules, because the
transition from v0 = 0 to v00 = 0 is forbidden.

of the total angular momentum J is constant, and quantized according to

|J| =
p

J(J + 1)h/2⇡ where h is Planck’s constant. The quantum number

J (� ⇤) is given by J = ⇤,⇤ + 1, · · · . For ⇤ 6= 0, there is a precession of N

and ⇤ about the (constant) vector J. Thus a more accurate picture of the

diatomic molecule is a symmetric top nutating about the direction of the

total angular momentum. The energy levels that result are thus the sum of

Figure 13: Energy levels of the vibrating rotator. v′′ and J ′′ are the vibrational and rotational quantum
numbers of the lower state. v′ and J ′ refer to the upper (excited) state. The vertical lines indicate
allowed transitions (∆J = ±1). R(j) (j = 1, 2, 3, 4) denotes the R-branch (∆J = +1) ending in the
J ′ = j state. In the lower part of the diagram, idealized absorption is shown versus wavenumber.
P (j) (j = 0, 1, 2, 3) denotes the P -branch (∆J = −1) ending in the J ′′ = j state. The vertical dashed
line indicates the band head at ν̃ = ν̃0, which is missing in homonuclear diatomic molecules,
because the transition from v′ = 0 to v′′ = 0 is forbidden.
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Molecular Vibration and Rotation: the Vibrating Rotator (4)

The magnitude of ~J is constant and quantized according to:

• | ~J | =
√
J(J + 1)h/2π where h is Planck’s constant. The quantum number J

(≥ Λ) is given by J = Λ,Λ + 1, · · ·.
• For Λ 6= 0, there is a precession of ~N and ~Λ about the (constant) vector ~J .

Thus, a more accurate picture of the diatomic molecule is a:

• symmetric top nutating about the direction of the tot. ang. momentum.

The energy levels that result are thus the sum of the nuclear rotational energy and
the nutational energy:

Er/hc = BvJ(J + 1) + (Av −Bv)Λ
2 where Bv =

h

8π2cIB
and Av =

h

8π2cIA
.

IB = primary moment of inertia, and
IA = much smaller moment about the internuclear axis: ⇒ Av >> Bv.
Λ is usually a small (integral) value.
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Molecular Vibration and Rotation: the Vibrating Rotator (5)

Thus for a given electronic state, the levels of the symmetric top are the same as
the simple rotator, except that there is:

• a shift of magnitude (Av −Bv)Λ
2, and levels with J < Λ are absent.

Ignoring electronic transitions, the selection rules are rather simple, since Λ does
not change during the transition. Then for:

• Λ = 0, ∆J = ±1, and for Λ 6= 0, ∆J = 0,±1.

•When Λ = 0, (A − B)Λ2 = 0, and we obtain exactly the same branches as
discussed for the simple rotator.

•When Λ 6= 0, there is a constant shift, but otherwise the term values are the
same. However, more importantly, a new branch arises, the so-called:

• Q-branch with ∆J = 0. The wave numbers of the lines in this branch are:

ν̃Q = ν̃k + (Bv′′ −B′v)Λ2 + (Bv′ −Bv′′)J + (Bv′ −Bv′′)J
2. (52)
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Molecular Vibration and Rotation: the Vibrating Rotator (6)

The only diatomic molecule with a Q-branch of atmospheric interest is nitric
oxide (NO), because Λ 6= 0 in its ground state. Its:

• IR band at 5.3 µm contributes to the energy of Earth’s lower thermosphere.

Q-branches are more common in polyatomic molecular spectra. For example in:

• the pure bending mode of the ν2 mode of CO2, where the ∆v = 1 transitions
“pile up” at very nearly the same frequency, accounting for the very strong
Q-branch in the 15 µm band (667− 668 cm−1, see Fig. 14).

More complex molecules are categorized in terms of the relationships of the various
moments of inertias.

• If all three moments of inertia are different and also unequal to zero:
the configuration is called an asymmetric top, represented by the important
molecules, H2O and O3.

• If all three moments are equal: the configuration is called a spherical
top, represented by CH4.
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Figure 14: High-resolution (0.01 cm−1) transmittance spectrum of Earth’s stratosphere and meso-
sphere measured by the ATMOS Michelson interferometer experiment from the NASA Space
Shuttle. Note that 666 cm−1 corresponds to 10,000/666 = 15 µm.
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Molecular Vibration and Rotation: the Vibrating Rotator (7)

• If two of the three moments are equal, we have a symmetric top
(mentioned in the case of a diatomic molecule), represented by CFCl3.

Finally, if one of the moments of inertia is effectively zero, we have a linear
molecule, examples of which are:

• CO2, N2O, CO and NO. Eqn. 46 [Er(J)/hc = BvJ(J + 1), J = 0, 1, · · ·]
applies to the rotational energy for both the spherical top (Av = Bv) and the
linear molecule (Λ = 0). However:

• linear molecules and spherical tops do not have the same rotational structure;
levels of equal J will “split” in different ways due to all the various couplings
between electronic, vibrational and rotational energies.

• Electron and nuclear spin leads to additional selection rules, and changes single
energy levels into multiple levels.

• Fine structure results from interaction of the magnetic dipole of the spin-
ning electron with the electric field of the other electrons.

•Hyperfine structure results from a similar interaction of the nuclear spin.
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Line Strengths (1)

The task of spectroscopy is to:

• analyze the line frequencies of an absorption or emission spectrum in terms of
the various quantum numbers, rotational and vibrational constants, etc.

We will use a much simpler empirical approach and assume that we are given:

• the spectroscopic constants (ωe, ωexe, B, D, etc.) necessary to determine
the frequency of all transitions within a specified frequency range.

In addition to the spectroscopic constants, modern compilations of the absorption
line strengths are also readily available. The line strengths are needed for:

• determining the opacity of the atmosphere as a function of frequency.

The strengths depend not only upon the nature of the individual transition:

• but also upon the equilibrium number of ground-state molecules. Thus:

• we need the Boltzmann distribution of energy states, Eq. 18:
nj
ni

=
gj
gi
e−(Ej−Ei)/kBT .
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Line Strengths (2)

Consider a vibration-rotation band produced by a simple harmonic-oscillator
rigid-rotator, and assume LTE conditions so that:

• the distribution of excited states is given by Boltzmann’s formula (Eq. 18).

First, consider molecular rotation only: the energy levels are denoted by the quan-
tum number J and the statistical weight by gJ = 2J + 1. Then:

n(J)

n(J ′)
=

2J + 1

2J ′ + 1
exp



−
hcBv

kBT
[J(J + 1)− J ′(J ′ + 1)]



. (53)

A more convenient ratio is that of an excited state population to the total number
of states n = ∑

J ′ n(J ′) within a given electronic and vibrational state:

n(J)

n
=

(2J + 1)

Qr
exp


−hcBv

kBT
J(J + 1)


 (54)

where Qr is the rotational partition function:

Qr =
∑

J ′
(2J ′ + 1) exp


−hcBvJ

′(J ′ + 1)

kBT


. (55)
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Line Strengths (3)

For sufficiently large T or small Bv, the spacing is very small compared with the
total rotational energy. Thus, we may replace the sum with an integral:

Qr ≈
∫ ∞
0 dJ(2J + 1) exp [−hcBvJ(J + 1)/kBT ] =

kBT

hcBv
.

The distribution of rotational energies with rotational quantum number J (see
Fig. 15) is very important for the absorption coefficient, because:

• the number of molecules in the ground (vibrational and electronic) state deter-
mines the rate of excitation. Note that (Fig. 15):

• when the average separation between states is relatively high, as in H2, there are
relatively few rotational states populated by collisions.

The LTE absorption cross section α∗in(ν) for an individual vibration-rotation line
(denoted by i) can be written as:

α∗in(ν) = SiΦi(ν) (56)

where Φi(ν) is a frequency-dependent line profile.
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Figure 15: Distribution of rotational energy with rotational quantum number J for the molecules O2,
H2, N2, and NO, assuming T = 250 K.
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Line Strengths (4)

Si is the line strength of the ith line (v′′, J ′′)→ (v′, J ′) given by (double primes
′′ denote the lower state, and single primes ′ denote the excited state):

Si =
∫
dνα∗in(ν) [m2 · s−1] (57)

where the frequency integration is over the width of a single line.
In tropospheric radiation problems, it is permissible to assume LTE, so that Eq. 32

applies: k∗(ν) = hν0
4π Φ(ν)n∗1B12

(
1− e−hν0/kBT

)
. In this equation:

• the initial (absorbing) state in the generalization to a multi-level molecule is
n∗1 → n(v′′, J ′′). Also, we let B12 → Bi, and ν0 → νi.

Thus, equating Eqs. 32 and 56, we find the following expression for the LTE ab-
sorption coefficient [k∗(ν) = α∗(ν) in this context, and α∗i (ν) = α∗in(ν)n]:

k∗(ν)→ α∗(ν) =
hνi
4π

Φi(ν)n(v′′, J ′′)Bi(1− e−hνi/kBT ) ≡ SinΦi(ν). (58)

νi denotes the central frequency of the line hνi = E(v′, J ′) − E(v′′, J ′′), the
difference in energies of the two states connecting the transition i.
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Line Strengths (5)

The notation Φi(ν) reminds us that the line profile may depend upon the particular
transition, i, and differ from line to line, and band to band, BUT:

• This variation is usually small and slowly-varying with frequency over lines
within the same band.

Solving for the line strength, we find:

Si =
hνi
4π
Bi
n(v′′, J ′′)

n
(1− e−hνi/kBT ). (59)

Substitution from Eq. 54:

n(J)

n
=

(2J + 1)

Qr
exp


−hcBv

kBT
J(J + 1)




for the population ratio of a rotational state yields:

Si =
hνi(2J

′′ + 1)

4πQi
Bi exp

[
− hcBvJ

′′(J ′′ + 1)/kBT ](1− e−hνi/kBT
)
. (60)

In Eq. 60 we see the explicit dependence of the line strength on temperature
through the Boltzmann distribution of initial-state populations.
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Line Strengths (6)

So far we have assumed that transitions connect only a ground state with an
excited state. BUT:

• absorption can originate from a higher vibrational state, which occurs for the
so-called hot-bands.

Including the possibility of initial vibrational excitation, we have:

Si = Sio
Qv(To)Qr(To)

Qv(T )Qr(T )

e−E
′′
i /kBT

e−E
′′
i /kBTo

(1− e−Ei/kBT )

(1− e−Ei/kBTo)
. (61)

The vibrational partition function, Qv, is defined analogously to Qr. E
′′
i denotes

the initial state energy, and:

• Soi is simply the line strength obtained from Eq. 60 evaluated at the reference
temperature To.

The result in Eq. 61 may be applied to any polyatomic molecule for which we know
the various partition functions, line strengths and central line frequencies.
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Line Strengths (7)

For standard tabulations, the temperature dependence of all the various terms
are combined into the following semi-empirical expression:

Si = Sio


To
T




m

exp


−E

′′
i

kB
(

1

T
− 1

To
)


. (62)

Here m is a dimensionless quantity of order unity which serves as a fitting param-
eter. The strength of a line can be determined in two basic ways:

• (1) from quantum theoretical calculations, and

• (2) from laboratory measurements.

The first method requires rather accurate knowledge of the wave functions:

• a very difficult problem for polyatomic molecules.

The second method relies on use of the Extinction Law.
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Line Strengths (8)

In practise, laboratory results which rely upon the Extinction Law are used:

• The Air Force Geophysics Laboratory provides an up-to-date listing of these
parameters for atmospheric molecules, including spectroscopic data for seven
major atmospheric absorbers: O2, H2O, CO2, O3, N2O, CO, and CH4.

The HITRAN spectroscopic database contains information of several hundred
thousand lines. Included in the listing for each line are:

• νi, Sio, width of the line at standard sea-level pressure and reference temperature,
and energy E ′′i of the lower state, etc.

A database such as HITRAN is extremely useful to atmospheric radiative transfer
practitioners, because:

• it provides a well-accepted standard against which theory can be compared with
data and with other theories.
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Absorption Processes in the UV/Visible (1)

As we proceed upwards on the energy ladder from the infrared into the visible
and UV:

• the spectroscopy becomes still more complex than previously discussed.

At these higher energies, electronic excited states become accessible. Absorption of
a photon causes:

• an electron in an outer shell of the atom or molecule to be transferred to a higher
electronic energy state.

• As in vibrational and rotational transitions, the transfer is accompanied
by a change in the electric dipole moment of the atom or molecule.

In the simple Bohr atom picture of an atom as a miniature solar system:

• the electron “jumps” from its initial orbit (around the massive nucleus) to one
of larger radius. Thus:

• a third type of energy must be added to the vibrational and rotational types
previously considered.
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Absorption Processes in the UV/Visible (2)

Electronic excited states are short-lived in comparison to vibrational or rotational
states. If the transition is electric-dipole forbidden:

• the excited state lifetimes are much longer than electric dipole states, and are
quenched by collisions well above the Earth’s surface.

For example:

• the O2(0, 1) A–band (b−X) with band origin at 12, 969 cm−1 (seen as the
absorption feature at 761 nm in Fig. 16) is quenched at about 40 km altitude.

Above this height:

• more of the absorbed radiative energy is promptly emitted as airglow emission,
rather than ending up as thermal energy.

• High-spectral resolution measurements from space provide a sensitive probe of
the temperature, density and wind fields in the mesosphere and lower thermo-
sphere.
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Figure 16: Spectral distribution of solar and terrestrial radiation fields. Also shown are the approxi-
mate shapes and positions of the scattering and absorption features of the Earth’s atmosphere.
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Absorption Processes in the UV/Visible (3)

Note that in the visible:

• Neither O2 nor N2 absorb appreciably because of the absence of accessible elec-
tronic states with energies down to middle-UV wavelengths.

In the UV:

• the Herzberg continuum, Schumann-Runge bands and Schumann-
Runge continuum (see Fig. 17) all result in a breakup of the oxygen molecule
into free oxygen atoms (O2 → O + O).

Absorption in:

• the Herzberg continuum is a bound-free process which yields two ground-
state oxygen atoms.

The Schumann-Runge bands are due to a bound-bound transition to discrete
upper levels:

• Electrons in this excited state are subject to a “level-crossing” to a repulsive
(unstable) electronic state. Thus:
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130 Absorption by Solid, Aqueous, and Gaseous Media
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Figure 4.10 Top panel: O2 absorption cross section illustrating the var-
ious bands and continua (see text). The deep absorption line at 121.6
nm corresponds almost exactly with the strong solar hydrogen Lyman-↵
line (adapted from Brasseur and Solomon (2006) with permission). Bottom
panel: O3 absorption cross section at 261 K (Voigt et al., 2001). The strong
UV feature is called the Hartley bands. The weaker visible quasi-continuum
is the Chappuis bands (B. Hamre, private communication, 2016).

(v0, 0), (v0, 1), etc., for a fixed v0 are called v0-progressions. The bands de-

noted by (0, v00), (1, v00), etc., are called v00-progressions. Another grouping

of bands in which �v = v0 � v00 is a constant is called a sequence. Since !e

and !exe are not very di↵erent between states, sequences are often grouped

closely together in a spectrum.

At typical atmospheric temperatures, nearly all molecules will be in their

ground (v00 = 0) vibrational state. Thus absorption bands will exist normally

Figure 17: Top panel: O2 absorption cross section illustrating the various bands and continua. The
deep absorption line at 121.6 nm corresponds almost exactly with the strong solar hydrogen
Lyman-α line. Bottom panel: Absorption cross section for O3. The strong UV feature is called
the Hartley bands. The weaker visible quasi-continuum is the Chappuis bands.
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Absorption Processes in the UV/Visible (4)

• the upper state is very short-lived, and because of the uncertainty principle, the
absorption lines are broadened beyond ordinary pressure broadening.

• The unstable O2 state almost instantaneously converts into two ground state
oxygen atoms, a process known as pre-dissociation.

• The Schumann-Runge continuum is a bound-free process resulting in dis-
sociation of O2 into two O-atoms: one in the ground-state O(3P) and the other
in an electronically-excited state O(1D).

Another important example of a bound-free process is:

• the middle-UV Hartley-band absorption (see Fig. 17) of O3 in which the
molecule is fragmented into O(3P) and O(1D) products.

In contrast to these bound-free continuum processes:

• more structured spectra result from transitions between two discrete electronic
levels (bound-bound processes). Because molecules also have vibrational and
rotational energy, the result will be a band system.
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Absorption Processes in the UV/Visible (5)

The total term value is approximately the sum of the electronic term value, Te,
the vibrational term value, G, and the rotational term value, F . Thus, the
wavenumber of a transition is written as the difference of two term values∗∗:

ν̃ = T ′ − T ′′ = (T ′e − T ′′e ) + (G′ −G′′) + (F ′ − F ′′). (63)

For a given electronic transition, ν̃e ≡ T ′e− T ′′e is a constant. The remaining parts
of Eq. 63 have forms similar to that for the vibration-rotation spectrum.

The essential difference is that:

• G′ and G′′ now belong to different vibrational term series with different values
of ωe and ωexe (see Eq. 48):
E(v,J)
hc = ωe(v + 1/2)− ωexe(v + 1/2)2 + BvJ(J + 1)−DvJ

2(J + 1)2].

Similarly:

• F ′ and F ′′ belong to different rotational term series with different values of Bv

and Dv (see Eq. 48).
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letters.
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Absorption Processes in the UV/Visible (6)

Ignoring rotational “fine structure,” we can obtain a formula for the vibrational
structure of an electronic band. Ignoring terms in T higher than v2, we obtain:

ν̃ = ν̃e + ω′e(v
′ + 1/2)− ω′ex′e(v′ + 1/2)2− ω′′e (v′′ + 1/2)− ω′′ex′′e(v′′ + 1/2)2. (64)

For electronic transitions there is no selection rule for the vibrational quantum
number v. In principle, each upper vibrational state:

• can be combined with each lower vibrational state.

Thus:

• a host of vibrational bands (v′, v′′) will exist within the entire electronic band
system.

The bands denoted by:

• (v′, 0), (v′, 1), etc. for a fixed v′ are called v′-progressions.

The bands denoted by:

• (0, v′′), (1, v′′), etc. for a fixed v′′ are called v′′-progressions.
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Absorption Processes in the UV/Visible (7)

Another grouping of bands in which ∆v = v′ − v′′ is a constant is called a
sequence. Since ωe and ωexe are not very different between states:

• sequences are often grouped closely together in a spectrum.

At typical atmospheric temperatures, nearly all molecules will be in their
ground (v′′ = 0) vibrational state. Thus:

• absorption bands will exist normally only in a single v′-progression, with v′′ = 0.

The formula for the wave number of the absorption line progressions is:

ν̃ = ν̃00 + ωov
′ − ω′ox′ov′2 + · · · (65)

where ν̃00 is the term level of the (0,0) band. With increasing v′, the separations
between successive vibrational levels approach the value zero, and then:

• a continuous term spectrum joins onto the series of discrete vibrational levels.

• This transition occurs at the wavelength corresponding to the dissociation energy
of the molecule.
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Absorption Processes in the UV/Visible (8)

An example of this transition point is at 175 nm where the structured
Schumann-Runge band system converts to the smoothly varying Schumann-
Runge continuum (see Fig. 17):

• This wavelength (175 nm) corresponds to the energy of dissocation plus the
energy of the excited O(1D) oxygen atom.

Most molecules of interest to us (CO2, H2O, O3 and CH4) are polyatomic molecules.
A discussion of their electronic spectra is beyond our scope. BUT:

• many of the concepts discussed above for the diatomic molecule may be carried
over directly, and as noted previously:

• electronic transitions involving these molecules (CO2, H2O, O3 and CH4)
are NOT important for the energy balance of the lower atmosphere.

• However, they play critical roles in airglow, heating and ionization processes in
the upper atmosphere.
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Absorption Processes in the UV/Visible (9)

The electronic absorption bands (the Chappuis and Hartley bands) of O3

are semi–continuous over reasonably large frequency intervals and thus:

• absorption obeys the Extinction Law.

For example:

• calculating the irradiance-weighted cross sections over 10 nm bins may yield
errors in the ozone photodissociation rate profile of only a few %.

Fortunately, unless one is interested in airglow spectra:

• it is generally not required to master the spectroscopy of polyatomic electronic
band spectra.

If necessary:

• one can resort to the empirical method if all the band positions and strengths
are available from compilations, such as the HITRAN database.
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Transmission in Spectrally-Complex Media (1)

We will now discuss more practical aspects of determining the transmission and
radiative transfer within spectrally complex media.

•We first consider how radiation is transmitted through a medium character-
ized by absorption within a single, spectrally isolated line, and introduce the
historically important quantity, the equivalent width.

• A generalization of this notion to include progressively more realistic absorption
properties brings us to the various parameterizations of complex transmission
processes, known as molecular band models.

• A large number of such models have been introduced over the years, all
attempting to replace a very messy transmission problem with one or
more analytic functions having a minimum number of parameters.

• These band parameters are derived from either comparisons with laboratory
data or, since the advent of fast computers, with accurate line-by-line (LBL)
computations.
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Transmission in Spectrally-Complex Media (2)

Since these classical methods are limited in accuracy, and cannot generally
accommodate the simultaneous effects of scattering and absorption:

• we focus on more modern methods, with emphasis on performing cal-
culations for realistic inhomogeneous gaseous media.

There are two basic reasons why the absorption properties of a molecular gas
depend very strongly upon wavenumber:

• The line strengths can vary drastically over a given band, and

• within a given line, the absorption coefficient changes many orders of
magnitude over small wavenumber intervals.

Also, the radiation field itself will generally have strong spectral variations.

• At low spectral resolution the solar radiation field approximates a contin-
uous spectrum. However:

• at higher resolution, it reveals a rich structure indicative of the physical
conditions in the solar atmosphere.
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Transmission in Spectrally-Complex Media (3)

The terrestrial IR radiation field has these same general characteristics consisting
of:

• (1) a near-blackbody component emitted by the surface or the ocean; and

• (2) a more complicated component arising from the atmospheric emission due
to the complex absorption properties of the medium through Kirchoff’s Law.

Thermal emission is comparatively high at the centers of strong absorption lines,
and low in the transparent spectral windows.

• Even though photons are emitted most copiously at line center, their mean free
path can be very short. On the other hand:

• very few photons are emitted within the spectral window regions, yet they can
be transmitted a long distance in the medium. Consequently:

• it is not obvious which frequencies contribute to a given quantity:

• if we truncate a spectral line wing too close to line center, an important part of
the energy in the wings could be missed.
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Transmission in Spectrally-Complex Media:
Transmission in an Isolated Line (1)

We define the spectral beam transmittance Tb(ν̃) and beam absorptance
αb(ν̃) as as the ratio of the transmitted radiance IT(τ (ν̃)) or absorbed radiance
IA(τ (ν̃)) to the incident radiance I0:

Tb(ν̃) =
IT[τ (ν̃)]

I0
= exp [−τ (ν̃)]; αb(ν̃) =

IA[τ (ν̃)]

I0
= 1− Tb(ν̃). (66)

For a single line, the optical depth at wavenumber ν̃ along the path 0 → s is:

τ (ν̃, s) =
∫ s
0 ds

′Sn(s′)Φ(ν̃) (67)

where S is the (frequency-integrated) line strength in units of [m2· s−1]. Assuming
a homogeneous optical path (e.g. a horizontal path), we have:

τ (ν̃, s) = SNΦ(ν̃) (68)

whereN =
∫s
0 ds

′n(s′) is the column number [m−2] of absorbing molecules, assumed
to be a single absorbing species. If we describe the path in terms of the column
mass, u, the line strength is defined per unit mass, and:

τ (ν̃) = SuΦ(ν̃) ≡ k(ν̃)u, k(ν̃) = SΦ(ν̃).
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134 Absorption by Solid, Aqueous, and Gaseous Media

Relative distance from center wavenumber, ⌫̃0

Figure 4.11 Beam transmittance Tb(⌫̃) of a homogeneous medium
having a Lorentz profile, of varying line-center optical depths, ⌧/⇡
(0.01, 0.1, 1.0, 10.0, and 100.0). The transmittance is almost unity for
⌧/⇡ = 0.01 and deceases rapidly with increasing ⌧ so that the line center is
opaque for ⌧/⇡ > 10. When multiplied by the line half-width ↵L, the area
between each curve and the horizontal line of unit transmittance is called
the equivalent width.

larger values of u, the exponential in Eq. 4.63 will begin to be important,

and the absorption will no longer be proportional to the optical depth.

Suppose instead we are interested in the mean absorption over the entire

line. We choose an averaging wavenumber interval �⌫̃ to encompass the

line center, ⌫̃0, and to be large compared to the line width. The mean beam

absorptance and mean beam transmittance for the spectral line are defined

as

h↵bi ⌘ 1� hTbi ⌘
1

�⌫̃

Z

�⌫̃
d⌫̃↵b(⌫̃) =

1

�⌫̃

Z

�⌫̃
d⌫̃[1� e�⌧(⌫̃)] ⌘ W

�⌫̃
. (4.66)

The product W = h↵bi�⌫̃ (defined here in units of wavenumber) is called

the equivalent width. This quantity is the area between the horizontal line

and the lower curves in Fig. 4.11. Suppose we were to replace this area with

a rectangle having the same area with complete absorption inside, and zero

absorption outside. The width of this equivalent rectangle is just h↵bi�⌫̃,
giving rise to the term “equivalent width.” An important consideration for

Figure 18: Transmittance of a homogeneous medium having a Lorentz profile, of varying line-center
optical depths, τ/π (0.01, 0.1, 1.0, 10.0, and 100.0). The transmittance is almost unity for τ/π = 0.01
and deceases rapidly with increasing τ so that the line center is opaque for τ/π > 10. When
multiplied by the line half-width αL, the area under the curve is called the equivalent width.
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Transmission in Spectrally-Complex Media:
Transmission in an Isolated Line (2)

Figure 18 illustrates what happens when a medium having a Lorentz profile is
illuminated by a collimated beam, which has a flat, or ‘white’ spectrum:

• For small optical depths (τ (ν̃) = SuΦ(ν̃) = k(ν̃)u << 1 for all ν̃) the radiation
at each wavenumber will be attenuated: shape of the absorption line ∝ Φ(ν̃)u.

• For larger u, the exponential in Eq. 66 will begin to be important, and the
absorption will no longer be proportional to the optical depth.

The mean beam absorptance and mean beam transmittance for the
spectral line are defined as:

〈αb〉 ≡ 1− 〈Tb〉 ≡
1

∆ν̃

∫

∆ν̃ dν̃αb(ν̃) =
1

∆ν̃

∫

∆ν̃ dν̃[1− e−τ(ν̃)] ≡ W

∆ν̃
. (69)

The product W = 〈αb〉∆ν̃ =
∫
∆ν̃ dν̃[1− e−τ(ν̃)] (defined here in units of wavenum-

ber) is called the equivalent width: the area between the horizontal line and
the curve in Fig. 19, which is equal to the area of a rectangle with com-
plete absorption inside, and zero absorption outside.
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Transmission in Spectrally-Complex Media:
Transmission in an Isolated Line (3)

Equivalent Width

W = �⌫A�⌫ =
Z

�⌫
(1� e�k⌫u)d⌫

has units of spectral interval (cm�1),
is the equivalent width of a fully absorbing (A = 1) rectangular line.

Schematic diagram illustrating the equivalent width. The dotted rectangular area is equal to the
hatched area and represents the total energy absorbed in the line. [Lenoble, Fig. 8.2]

Equivalent Width of Lorentz Line

W =
Z 2
41� exp

0
@ �Su↵/⇡

(⌫ � ⌫0)2 + ↵2

1
A
3
5 d⌫ = 2⇡↵L(x) x =

Su

2⇡↵

L(x) = xe�x[I0(x) + I1(x)] is the Ladenburg and Reiche function.
(I0 and I1 are modified Bessel functions.)

A useful approximation is L(x) ⇡ x[1 + (⇡x/2)5/4]�2/5.

Weak line limit: k⌫u⌧ 1 W ⇡ R
k⌫ud⌫ = Su

Linear in absorber amount and line strength.
Strong line limit: k⌫u� 1 W = 2

p
Su↵

Line center saturates, absorption increases from expanding width.

2

Figure 19: Schematic diagram illustrating the equivalent width. The dotted rectangular area is equal
to the hatched area and represents the total energy absorbed in the line.
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Transmission in Spectrally-Complex Media:
Isolated Lorentz line (1)

Suppose the spectral profile is given by the Lorentz profile:

ΦL(ν̃) =
αL

π[(ν̃ − ν̃0)2 + α2
L]

(70)

where αL is the Lorentz half-width [cm−1]. Setting x ≡ (ν̃− ν̃0)/∆ν̃, y ≡ αL/∆ν̃,
and introducing the dimensionless mass path ũ ≡ Su/2παL, we find that Eq. 69
[τ (ν̃) = SuΦ(ν̃) = ku, where k = SΦ(ν̃)]:

〈αb〉 ≡ 1− 〈Tb〉 ≡
1

∆ν̃

∫

∆ν̃ dν̃αb(ν̃) =
1

∆ν̃

∫

∆ν̃ dν̃[1− e−SuΦ(ν̃)]

for the mean beam absorptance becomes:

〈αb(u)〉 =
∫ +∞
−∞ dx


1− exp


− 2ũy2

x2 + y2





 . (71)

This integral can be evaluated in closed form:

〈αb(u)〉 = 2πyũe−ũ [I0(ũ) + I1(ũ)] ≡ 2πyL(ũ). (72)

L(ũ) = ũe−ũ [I0(ũ) + I1(ũ)], called the Ladenburg-Reiche function, is ex-
pressed in terms of Bessel functions, In (n = 0, 1).
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Transmission in Spectrally-Complex Media:
Isolated Lorentz line (2)

First, let ũ << 1, the weak-line limit. Then L(ũ) ≈ ũ and:

〈αb(u)〉 ≈ 2πyũ =
Su
∆ν̃
∝ u (ũ << 1). (73)

Equation 73 tells us that in this optically thin limit, the linear regime, the
mean beam absorptance is directly proportional to the column mass of absorbing
molecules†† – independent of the line broadening mechanism.

In the strong-line limit ũ >> 1, we can ignore the y2 term in the denominator
of Eq. 71 in comparison to x2:

〈αb(u)〉 ≈
∫ +∞
−∞ dx

[
1− exp (−2ũy2/x2)

]
= 2y
√

2πũ =
2

∆ν̃

√
SαLu ∝

√
u. (74)

This square-root or saturated regime, verified by numerous spectroscopic ex-
periments, should be contrasted with the exponential Extinction Law, 1−〈αb〉 =
exp (−ku), where k = SΦ(ν̃) is a constant: The departure of absorption
from an exponential behavior is the most important mathematical
complication of non-grayness.
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Transmission in Spectrally-Complex Media:
The Elsasser Band Model (1)

Consider a band with equally spaced lines. Imagine that the mass path is large
enough to be in the square-root regime, but the widths of the absorption lines
are small compared to the line separation:

• As the mass path increases, the effect of line overlap becomes substantial because
of absorption in the far wings. Then the mean absorptance cannot continue to
grow like

√
u:

• A further increase in u can produce only a small increase in mean absorptance,
and eventually it comes to a halt as the entire band becomes “blacked-out.”

• These effects are described in the highly idealized Elsasser band model,
which approximates a band with a periodic pattern of lines of equal strength
and of equal width.

• At a given wavenumber ν̃, it is necessary to consider that all lines in the band
contribute to the absorption at that wavenumber.
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Transmission in Spectrally-Complex Media:
The Elsasser Band Model (2)

The Elsasser band assumes an infinite number of lines, all separated by the line
spacing δ. For Lorentzian lines the mass absorption coefficient is written as:

αm(ν̃) =
n=+∞∑

n=−∞
S
π

αL

[(ν̃ − nδ)2 + α2
L]
. (75)

Elsasser showed that this function is mathematically identical to the following
periodic function of wavenumber:

αm(ν̃) =
S
δ

sinh(2πy)

cosh(2πy)− cos 2πx
(76)

where x ≡ ν̃/δ and y ≡ αL/δ. We may then evaluate the expression for the
mean transmittance by averaging with respect to x = ν̃/δ from x = −1/2 to
x = +1/2 (2πx ∈ [−π, π]), that is, from the wavenumber of minimum absorption
to maximum absorption, and back again. The beam transmittance is [Eq. 69:
〈Tb〉 = 1

∆ν̃
∫
∆ν̃ dν̃ e

−τ(ν̃), τ (ν̃) = SuΦ(ν̃) = 2παLũΦ(ν̃)]

〈Tb(y, u)〉 =
∫ +1/2
−1/2 dx exp


− 2πũy sinh(2πy)

cosh(2πy)− cos 2πx


. (77)
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4.7 Transmission in Spectrally Complex Media 137

1.0

0.8

0.6

0.4

0.2

0.0
10001001010.10.010.001

y = 0.1

y = 1

y = 10

y = 0.01

y = 0.001

B
ea

m
 A

bs
or

pt
an

ce

Su/2πα1

Band Models
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Figure 4.12 Mean beam absorptance, h↵b(y, u)i, versus absorber amounts
ũ for the Lorentz-Elsasser model (Eq. 4.75, solid lines) and the random-
Lorentz-Malkmus model (shown only for y = 0.1, Eq. 4.87, dashed line).
Each curve applies to a particular value of y = ↵L/�⌫̃, the grayness pa-
rameter. For y >> 1, the absorptance obeys the Extinction Law for a
gray-absorbing medium.

Elsasser showed that this function is mathematically identical to the follow-

ing periodic function of wavenumber (see Exercise 4.6)

↵m(⌫̃) =
S
�

sinh(2⇡y)

cosh(2⇡y)� cos 2⇡x
, (4.74)

where x ⌘ ⌫̃/� and y ⌘ ↵L/�. We may then evaluate the expression for the

mean transmittance by averaging with respect to x = ⌫̃/� from x = �1/2 to

x = +1/2, that is, from the wavenumber of minimum absorption to maxi-

mum absorption, and back again. The expression for the beam transmittance

is from Eq. 4.66:

hTb(y, u)i =

Z +1/2

�1/2
dx exp


� 2⇡ũy sinh(2⇡y)

cosh(2⇡y)� cos 2⇡x

�
. (4.75)

The beam absorptance for the Elsasser model, h↵b(y, u)i = 1�hTb(y, u)i,
is plotted in Fig. 4.12 versus the dimensionless mass path ũ ⌘ Su/2⇡↵L for

a variety of y-values. (Since we have selected the averaging interval �⌫̃ to

be the mean line spacing �, then y = ↵L/�.) Here y can be thought of as

Figure 20: Mean beam absorptance, 〈αb(y, u)〉, versus absorber amounts ũ for the Lorentz-Elsasser
model Eq. 77, solid lines) and the random-Lorentz-Malkmus model (shown only for y = 0.1, Eq. 89,
dashed line). Each curve applies to a particular value of y = αL/∆ν̃, the grayness parameter. For
y >> 1, the absorptance obeys the Extinction Law for a gray-absorbing medium.
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Transmission in Spectrally-Complex Media:
The Elsasser Band Model (3)

The beam absorptance for the Elsasser model, 〈αb(y, u)〉 = 1−〈Tb(y, u)〉, is plotted
in Fig. 20 versus the dimensionless mass path ũ ≡ Su/2παL for a variety of y-
values; y = αL/∆ν̃ = αL/δ can be thought of as a grayness parameter:

• For small y, the behavior of the mean absorption departs radically from
monochromatic absorption – at small ũ, only the line-centers absorb, and most
radiation passes through the medium between the lines.

• For larger y, the regions between the lines begin to absorb strongly as the lines
become saturated, thus accounting for the more pronounced dependence on ũ.

• For large y (y ≥ 10), the lines completely overlap and the beam transmittance
may be shown to be given by exp(−2πyũ) = exp(−Su/αL), the gray limit.

• Another asymptotic region is the strong-line limit (ũ >> 1) for which it may
be shown that 〈αb〉 ≈ erf[πy

√
2ũ], where erf denotes the error function.

Few bands in nature resemble the regular array visualized by Elsasser. However,
this model has played an important role in the historical development of the subject.
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Transmission in Spectrally-Complex Media:
Distributed Line Radiances (1)

Real absorption spectra reveal that:

• line strengths are distributed over a wide range of values; and
line separations are also far from a constant, as assumed in the Elsasser model.

We first consider the situation of an array of non-overlapping lines. If we
use an averaging interval which contains a large number of lines of varying strength:

• it is possible to define a continuous distribution function of line strengths, p(S),
such that the number of lines with strengths between S and S + dS is p(S)dS .

For a single line:

〈αb(u)〉 =
1

∆ν̃

∫

∆ν̃ dν̃[1− e−SuΦ(ν̃)].

Hence, in the limit of an infinite number of lines, the mean beam absorptance
becomes:

〈αb(u)〉 =
∫ ∞
0 dSp(S)

∫

∆ν̃

dν̃

∆ν̃
{1− exp[−SuΦ(ν̃)]}. (78)
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Transmission in Spectrally-Complex Media:
Distributed Line Radiances (2)

Several analytic line-strength distributions are in use. Three of the most common
are:

Exponential Distribution: p(S) = (1/S̄) exp(−S/S̄) (79)

Godson Distribution: p(S) = S̄/(SmaxS) (S < Smax)
p(S) = 0 (S > Smax) (80)

Malkmus Distribution: p(S) = (1/S) exp(−S/S̄), (81)

where the average line strength is defined as:

S̄ =
∫ ∞
0 dSSp(S). (82)

These distributions are normalized so that
∫∞
0 dSp(S) = 1. An additional distri-

bution is the trivial one in which all values of S collapse to a single value:

• the δ-function distribution, p(S) = δ(S − S̄),

an example of which is the Elsasser band model.
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Transmission in Spectrally-Complex Media:
Distributed Line Radiances (3)

Example 1: Absorptance in a Lorentz-Exponential Model

To illustrate the usefulness of the analytic S-distributions, we derive an ana-
lytic expression for the beam absorptance. Assuming the exponential distribution
(Eq. 79), and interchanging orders of integration in Eq. 78, we can carry out the
inner integration analytically

〈αb(u)〉 =
1

∆ν̃

∫

∆ν̃ dν̃
∫ ∞
0

dS
S̄ e

−S/S̄ [1− e−SuΦ(ν̃)] =
1

∆ν̃

∫

∆ν̃ dν̃
S̄uΦ(ν̃)

1 + S̄uΦ(ν̃)
. (83)

Adopting a Lorentz profile for Φ(ν̃), Eq. 70: ΦL(ν̃) = αL
π[(ν̃−ν̃o)2+α2

L]
, we may integrate

analytically to obtain (ũ = S̄u/2παL and y = αL/∆ν̃)

〈αb(u)〉 =
S̄u/∆ν̃

√
1 + S̄u/παL

=
2πyũ

√
1 + ũ/2

. (84)

To proceed further, we need to determine the numerical values for the parameters
S̄ and S̄/αL. Both can be determined by requiring that the results match the
accurate asymptotic expressions in the strong- and weak-line limits.
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Transmission in Spectrally-Complex Media:
Distributed Line Radiances (4)

Example 2: Absorptance in a Lorentz-Malkmus Model

Using the Malkmus distribution, Eq. 81:

p(S) = (1/S) exp(−S/S̄)

we proceed as in Example 1, by interchanging orders of integration. The result for
the beam absorptance is

〈αb(u)〉 =
1

∆ν̃

∫

∆ν̃ dν̃ ln[1 + S̄Φ(ν̃)u]. (85)

Assuming a Lorentz profile: Φ(ν̃) = ΦL(ν̃) = αL
π[(ν̃−ν̃0)2+α2

L]
, we integrate analytically

to obtain (ũ ≡ Su/2παL):

〈αb(u)〉 =
παL

2∆ν̃



√

1 + 4S̄u/παL − 1

 = (πy/2)[

√
1 + 8ũ− 1]. (86)

Note that Eqs. 84 and 86 are not valid when lines overlap.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

139



Transmission in Spectrally-Complex Media:
Random Band Model (1)

In some irregular spectral bands (e.g. water vapor), the line positions appear to
vary randomly over the spectrum: the statistical, random, or Goody-Meyer
band model becomes useful.

Let the band interval of width ∆ν̃ consist of n lines of average separation δ, so
that ∆ν̃ = nδ, and assume that the line positions are uncorrelated. Then:

• the transmission of the band can be written in terms of the products of the
individual line transmittances, 〈Ti〉 and absorptances 〈αi〉:

〈Tb〉 = 〈T1〉〈T2〉 · · · 〈Tn〉 =



1

∆ν̃

∫

∆ν̃ dν̃
∫ ∞
0 dSp(S)e−SuΦ(ν̃)




n

=


1− 〈αb〉

n




n

. (87)

Taking the limit n→∞, and noting that (1− x/n)n → e−x, we find:

〈Tb(u)〉 = e−〈αb(u)〉. (88)

This result says that the beam transmittance of randomly-placed over-
lapping lines is equal to the exponential of (minus) the non-
overlapped single-line beam absorptance.
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Transmission in Spectrally-Complex Media:
Random Band Model (2)

Applying this result to the Lorentz-Malkmus band model (Eq. 86):

〈αb(u)〉 = παL
2∆ν̃

[√
1 + 4S̄u/παL − 1

]

= (πy/2)[
√

1 + 8ũ− 1]], we find:

〈Tb(u)〉 = exp
[
− παL

2∆ν̃

{
√√√√√√√1 +

4Su
παL
− 1

}]
= e−(πy/2)(

√
1+8ũ−1) (89)

where y ≡ αL/δ and ũ ≡ Su/2παL.

• Eq. 89 fits laboratory data and transmission “data” calculated from LBL calcu-
lations with very good accuracy. In particular: it better accounts for the weak
lines (f. ex. in the H2O 6.3 µm band) than does the random-exponential model.

• The curve of growth for this model is shown in Fig. 20 for y = 0.1 (dashed line)
in order to compare with the Elsasser model. Note that for this value of y, the
random model yields more transmission (less absorption) for all optical depths.

• The enhanced transmission is due to the occasional wide gap occurring in the
random model that is not present in regular-array models. The random-
Malkmus model (Eq. 89) is one of the best all-round analytic band models.
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MODTRAN: A moderate resolution band model (1)

This computer code was devised to:

• be efficient, user-friendly, upgradeable, well maintained, and readily available to
the community;

• provide the user with the means to quickly evaluate atmospheric transmittance
for a large variety of user-specified atmospheric conditions.

The curve of growth‡‡ is modeled by MODTRAN as arising from

• ns identical strong lines of strength Ss, and

• nw identical weak lines of strength Sw ≤ Ss.

Moment equations of the true and pseudo distributions are matched to determine
the temperature-dependent line strengths and their number:
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‡‡The increase in spectral bin integrated absorptivity (one minus transmittance) as
a function of molecular column amount, see Fig. 20.
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MODTRAN: A moderate resolution band model (2)

nsS
1/3
s + nwS

1/3
w =

N∑

J=1
S iJ(T )1/3 nsS

2/3
s + nwS

2/3
w =

N∑

J=1
S iJ(T )2/3 (90)

nsSs + nwSw =
N∑

J=1
S iJ(T ) nsS

4/3
s + nwS

4/3
w =

N∑

J=1
S iJ(T )4/3. (91)

Traditional absorption coefficient 〈Sd〉 and line spacing 〈1d〉 band model parameters
are stored on a grid of temperatures:

〈S
d
〉s =

nsSs
∆ν̃

; 〈1
d
〉s =

ns
∆ν̃

; 〈S
d
〉w =

nwSw
∆ν̃

; 〈1
d
〉w =

nw
∆ν̃

.

S iJ is the line strength of the J th line of a specific molecule in wavenumber bin i at
temperature T :

• The line strengths S iJ are scaled from the HITRAN database using

Si = Sio
(
To
T

)m
exp


−E′′i

kB
( 1
T − 1

To
)

 with a reference temperature of 296 K.

• In versions of MODTRAN prior to MODTRAN5, ∆ν̃ was 1.0 cm−1. In MOD-
TRAN5 and MODTRAN6, the band model parameters were reformulated to
increase the resolution to 0.1 cm−1, and user-specified bandwidth options of 0.1,
1.0, 5.0, or 15.0 cm−1 are available.
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MODTRAN: A moderate resolution band model (3)

Computation of the transmittance across a bin involves four steps:

1. The Voigt line shape of an “average” line is integrated over the ∆ν̃ [cm−1]
bandwidth (bin) interval.

2. If a bin contains more than one line of a given species, the lines are assumed
to be randomly distributed with statistical overlap.

3. The contribution from lines with centers in nearby bins is calculated as a molec-
ular “continuum” component.

4. The H-C-G approximation (see Appendix I, §I.1) is used to replace an inho-
mogeneous path with a homogeneous one by using average values for the band
model parameters.

For a finite number of lines within a spectral interval ∆ν̃, the transmittance is:

〈Tb〉 = 〈T (Ssu, αL, αD)〉ns〈T (Swu, αL, αD)〉nw, (92)

where 〈T (Su, αL, αD)〉 is the mixed Lorentz–Doppler single-line transmittance,
computed with Doppler and line-strength weighted Lorentz spectral bin half-widths,
αD and αL, respectively.
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MODTRAN: A moderate resolution band model (4)

The single-line transmittances are computed from

〈T (Su, αL, αD)〉 =
∫

∆ν̃ dν̃ exp [−SuΦV (ν̃)] , (93)

where the Voigt profile ΦV (ν̃) (see §3.3.3) is centered within the spectral bin.
Equation 92 works well with the narrow (0.1, 1.0, 5.0, or 15.0 cm−1) MODTRAN

spectral bins for the following reasons:

1. In much of the visible through IR spectral region, a single molecular species
is the dominant absorption source.

2. Where overlap between strong molecular bands of two species does occur, H2O
is generally one of the species.

3. The H2O transition frequency and line-strength distributions appear quite ran-
domly within narrow spectral bins.

Therefore, the correlation of H2O absorption with the absorption from
overlapping molecular species is well represented as random. Further-
more, when moderate spectral resolution results are sought, spectral averaging
of the relatively fine resolution MODTRAN values tends to stochastically
cancel statistical variations.
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MODTRAN: A moderate resolution band model (5)

For mixed Lorentz-Doppler absorption, the single-line equivalent width 〈αb〉∆ν̃ is
computed from:

〈αb〉∆ν̃ = ∆ν̃[1− 〈Tb〉] =
∫

∆ν̃ dν̃
[

1− e−SuΦV (ν̃)
]

(94)

where ΦV (ν̃) is the Voigt profile.

• The contributions from lines located in the wing interval outside of a given bin
but within ± 25 cm−1 are computed separately.

• The MODTRAN6 code has been restructured towards a modular, object-
oriented architecture to simplify upgrades.

• It includes a line-by-line algorithm for high-resolution RT calcu-
lations as well as algorithms to take into account the effects of aerosols and
clouds.
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MODTRAN: A moderate resolution band model (6)

Unfortunately, most band models are incompatible with the requirements for
“quasi-monochromatic” treatment of multiple scattering. Thus:

• inclusion of multiple scattering requires the use of methods like the k-distribution
approach (to be discussed next).

• The MODTRAN code, which has a “fixed-wavenumber” sampling, is assumed to
be “quasi-monochromatic” and therefore automatically compatible with multiple
scattering treatments.

• The original two-stream algorithm for multiple scattering in MODTRAN has
been replaced by the more accurate DISORT algorithm (Chapter 9).

• This “quasi-monochromatic” treatment of multiple scattering in MODTRAN
seems to work well.

• The MODTRAN code is far too “expensive” to use in global climate models,
and is most suitable for one-dimensional models.

• However, it is a most valuable tool for testing of simpler, inexpensive radiative
transfer codes developed for use in global climate models.
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Spectral Mapping Transformations for Homogeneous
Media: the k-distribution Method (1)

Despite a great deal of effort and mathematical ingenuity expended on band models
over the past sixty years or so:

• they still have definite limitations, given the necessity in modern climate models
to obtain irradiances and heating rates to 1% accuracy. BUT

• Fortunately, it is now possible to calculate these quantities by “brute-force”
line-by-line (LBL) methods to 0.1% accuracy (assuming perfect spectroscopic
parameters).

• Since the heating rates must be computed at nearly every grid point of a General
Circulation Model (GCM), LBL calculations represent significant computational
demands even on modern supercomputers. Thus:

• LBL results are most useful as a standard of comparison for less accurate, but
much more efficient algorithms.

• An approach that has received much attention is the k-distribution and its
associated correlated k-distribution method.
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Spectral Mapping Transformations for Homogeneous
Media: the k-distribution Method (2)

These methods:

• provides much better accuracy than the conventional band models, and yet
require two to three orders of magnitude less computer time than LBL methods;

• can accommodate multiple scattering in a straightforward manner. An LBL
calculation is needed to derive the parameters. BUT:

• since the simplified calculations are then repeated many times over, the cost-
savings can be substantial.

Consider a spectral interval ∆ν̃ = ν̃1 − ν̃2: large enough to contain a significant
number (say > 20) of spectral lines, but small enough that the Planck function is
essentially constant over ∆ν̃. The beam transmittance over a homogeneous mass
path u is:

〈Tb(u)〉 =
1

∆ν̃

∫ ν̃2
ν̃1
dν̃ e−k(ν̃)u (95)

where k(ν̃) = SΦ(ν̃) denotes the mass extinction coefficient, which is equal to the
mass absorption coefficient for a purely-absorbing medium.
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Spectral Mapping Transformations for Homogeneous
Media: the k-distribution Method (3)

To compute 〈Tb(u)〉 accurately using the above form would require:

• division of the spectral interval ∆ν̃ into sub-intervals δν̃ small enough so that
k(ν̃) is essentially constant.

• Such a fine division would require δν̃ to be ≈ 10−3− 10−5 cm−1, which requires
a total of ∆ν̃/δν̃ ≈ 104 − 106 spectral points for a small part (say 10 cm−1) of
the spectrum, which:

• must be repeated over the entire band, for all absorption bands and over the full
range of mass path u. Also:

• it must be repeated for the range of pressures and temperatures encountered in
the atmosphere.

• Clearly, this kind of “frontal attack” is computationally prohibitive.

A more efficient approach involves a transformation of Eq. 95 based on the recog-
nition that the same value of k(ν̃) is encountered many times over in
the spectral interval ∆ν̃.
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Spectral Mapping Transformations for Homogeneous
Media: the k-distribution Method (4)

If we were to combine, or bin, all the values of k(ν̃) into groups, and perform the
transmittance calculation only once for a given value of k, then

• we could eliminate all the redundancy of Eq. 95: 〈Tb(u)〉 = 1
∆ν̃

∫ ν̃2
ν̃1
dν̃ e−k(ν̃)u.

• Furthermore: if we order the groups into monotonically increasing values of k,
we will obtain a much-more “orderly” function f (k) which has more desirable
characteristics than the wildly varying k(ν̃).

Choosing an interval ∆k, which is suitably small, the k-distribution can be
formally defined by the following grouping algorithm:

f (k) ≡ 1

∆ν̃

M∑

`=1
|dν̃
dk
|W`(k). (96)

• Here W`(k) is the “window” function, equal to unity when k`min ≤ k ≤ k`max,
and zero otherwise.

•M is the number of monotonically varying wavenumber sub-intervals in which
the absorption coefficient switches from increasing to decreasing values.
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Spectral Mapping Transformations for Homogeneous
Media: the k-distribution Method (5)

• In the `th sub-interval, the absorption coefficient varies from k`min to k`max. The
absolute value of the derivative is taken, because we want to count the value
whether or not k is increasing or decreasing with wavenumber.

Note that k is considered to be a continuous variable.
Eq. 95: 〈Tb(u)〉 = 1

∆ν̃
∫ ν̃2
ν̃1
dν̃ e−k(ν̃)u can then be rewritten as a finite sum:

〈Tb(u)〉 ≈ N∑

j=1
∆kjf (kj)e

−kju (97)

where N is the total number of monotonic sub-intervals over the entire range of
k-values. In the limit of ∆k → 0 (assuming that the number of lines is always large
within ∆k), the above sum becomes an integral:

〈Tb(u)〉 =
∫ kmax
kmin

dkf (k)e−ku (98)

where kmin and kmax are the minimum and maximum values of k over the entire
spectral interval, ∆ν̃.
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Spectral Mapping Transformations for Homogeneous
Media: the k-distribution Method (6)

It is clear that if we sum f (k) over all binned values of k, we should get unity, that
is:

N∑

j=1
f (kj)∆kj = 1, or for ∆kj → 0,

∫ kmax
kmin

dkf (k) = 1. (99)

If we sum the distribution up to some value of kn < kmax, we may define the
cumulative k-distribution as:

g(kn) ≡ n∑

j=1
f (kj)∆kj, or for ∆kj → 0, g(k) =

∫ k
0 dk

′f (k′). (100)

We can now write Eqs. 97 and 98 as:

〈Tb(u)〉 ≈ N∑

j=1
e−kju∆gj, or for ∆kj → 0, 〈Tb(u)〉 =

∫ 1
0 dge

−k(g)u. (101)

Note that the upper limit of unity is consistent with g being a cumulative k-
distribution, that is, the total number of k-values smaller than k.
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Spectral Mapping Transformations for Homogeneous
Media: the k-distribution Method (7)

Writing out Eq. 101 as:

〈Tb(u)〉 ≈ ∆g1e
−k1u + ∆g2e

−k2u + · · · + ∆gNe
−kNu (102)

we see that we have an approximation to the transmittance as a weighted sum
of monochromatic transmittances.

• This approximation is known as the exponential-sum fit transmittance
or ESFT approximation. Clearly:

• the EFST approximation reduces the non-gray problem to a finite number of
gray problems for which we have many computational tools.

• If we knew the transmittance measured in the laboratory under low-spectral
resolution, or had access to LBL calculations of 〈Tb(u)〉, we could in principle
perform a non-linear least-squares fit of Eq. 102 to the “data” to yield the
“coefficients” of the fit (∆g1,∆g2, · · · ; k1, k2, · · ·) at any desired accuracy.

Unfortunately, this problem is mathematically ill-posed, and special analysis tech-
niques must be applied for this method to be practical.
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Spectral Mapping Transformations for Homogeneous
Media: the k-distribution Method (7)

• Fortunately, the current availability of accurate synthetic absorption spectra (see
Fig. 21) means that we can compute the k-distribution directly, and:

• the coefficients of the EFST approximation may be determined without least-
squares fitting, simply by numerical integration.

• It is a straightforward, but time-consuming, task for the computer to construct
sorted tables of absorption coefficients to derive f (k) and g(k) from say, a spec-
troscopic database (such as HITRAN).

• The inverse k-distribution k(g) is also needed in order to perform spectral
mapping.

• An “inverse table” of k versus g is easily constructed by computer methods.

• Examples of numerical determinations of f (k), g(k) and k(g) are shown in
Fig. 21.
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4.7 Transmission in Spectrally Complex Media 147

Figure 4.13 Absorption coe�cient spectrum for the 1510–1520 cm�1 por-
tion of the 6.3 µm water vapor band. (a) Line-by-line absorption coe�cients
for a pressure of 10 mbar and temperature 240 K and (b) for a pressure of
1 bar and temperature 296 K. The spectra utilize the HITRAN 1982 atmo-
spheric line compilation and include 141 lines with absorption contributions
from outside of the interval within a 5 cm�1 Lorentz wing cuto↵ limit. (c)
Cumulative frequency distributions of the absorption coe�cient spectra
(a) and (b). (d) and (e) Absorption coe�cient frequency distributions cor-
responding to absorption spectra in (a) and (b). (f) The k-distributions
for the absorption coe�cient spectra in (a) and (b). Malkmus band model
equivalents, obtained to provide the best fit to line-by-line transmission,
are shown by dashed lines (adapted from Lacis and Oinas (1991)).

Note that the range of ⌫̃ is �⌫̃(kmin) < ⌫̃ < +⌫̃(kmin). Solving for ⌫̃, we find

⌫̃L(k) = ±
q

(S↵L/⇡k) � ↵2
L. (4.103)

Figure 21: Absorption coefficient spectrum for the 1510–1520 cm−1 portion of the 6.3 µm water vapor band. (a) Line-
by-line absorption coefficients for a pressure of 10 mbar and temperature 240 K and (b) for a pressure of 1 bar and
temperature 296 K. The spectra utilize the HITRAN 1982 atmospheric line compilation and include 141 lines with
absorption contributions from outside of the interval within a 5 cm−1 Lorentz wing cutoff limit. (c) Cumulative
frequency distributions of the absorption coefficient spectra (a) and (b). (d) and (e) Absorption coefficient frequency
distributions corresponding to absorption spectra in (a) and (b). (f) The k-distributions for the absorption coefficient
spectra in (a) and (b). Malkmus band model equivalents, obtained to provide the best fit to line-by-line transmission,
are shown by dashed lines.
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Spectral Mapping Transformations for Homogeneous
Media: k-distribution for the Malkmus band model

Can we derive analytic expressions for f (k), given analytic band-model rep-
resentations of 〈Tb(u)〉? To this end we examine a limiting form of Eq. 98:
〈Tb(u)〉 =

∫kmax
kmin

dkf (k)e−ku where we set the limits of integration on k equal to
(0,∞):

〈Tb(u)〉 =
∫ ∞
0 dkf (k)e−ku = Lf (k) (103)

where L denotes the Laplace transform. We may find f (k) provided the inverse
Laplace transform of 〈Tb(u)〉 exist:

f (k) = L−1〈Tb(u)〉. (104)

The inverse transform exists in analytic form for the statistical-Malkmus model:

f (k) = (1/2)k−3/2
√
Sy/2π exp


(y/8)(2− S

k
− k

S )

 . (105)

If y = 2αL/∆ν̃ is large, we have broad, overlapping lines: the distribution becomes
gray (k = constant). If y is small, the line overlap is less: smaller k-values will
appear in the absorption minimum (the spectral ‘window’) between adjacent lines.
The cumulative distribution can also be determined in closed form (see Fig. 21).
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