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 K This new and completely updated edition 

gives a detailed description of radiative 

transfer processes at a level accessible to 

advanced students. The volume gives the 

reader a basic understanding of global 

warming and enhanced levels of harmful 

ultraviolet radiation caused by ozone 

depletion. It teaches the basic physics 

of absorption, scattering, and emission 

processes in turbid media, such as the 

atmosphere and ocean, using simple  

semi-classical models. The radiative 

transfer equation, including multiple 

scattering, is formulated and solved for 

several prototype problems, using both 

simple approximate and accurate numerical 

methods. In addition, the reader has 

access to a power ful, state-of-the-ar t 

computational code for simulating radiative 

transfer processes in coupled atmosphere-

water systems including snow and ice. This 

computational code can be regarded as 

a power ful educational aid, but also as a 

research tool that can be applied  

to solve a variety of research problems  

in environmental sciences.

From reviews of the f irst edition

‘This book should not be missing on the 

desk of any person seriously interested in 

radiative transfer ... I would certainly use 

this book as a basic text and recommend it 

very highly to my students. I am sure that 

both instructor and student can profit a 

great deal from studying this excellent work.’

Meteorology and Atmospheric Physics

‘ ... should grace the shelves of all libraries 

of institutes concerned with research and 

teaching in atmospheric and oceanic science 

and it is an important part of the radiative 

transfer armoury.’       

International Journal of Climatology

‘The book is easy to read, and there are 

many examples to illustrate the concepts 

discussed...[It] should serve well as an 

introduction to radiative transfer.’

EOS

‘ ... a valuable resource for those interested 

in terrestrial radiative transfer.’

Physics Today

C O V E R  D E S I G N E D  B Y  H A RT  M c L E O D  LT D

stamnes

	Access to computational code for simulating 

radiative transfer processes

	Lecture slides based on the book and a 

solutions manual for instructor use

	PowerPoint and JPEG files of the figures in 

the book for instructor use

Based on Chapter 5 in K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the

Atmosphere and Ocean, Cambridge University Press, 2017.
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Chapter 5 - Principles of Radiative transfer

Thermal Emission from a Surface (1)

• The spectral directional emittance is the ratio of the energy emitted by a surface
of temperature Ts to the energy emitted by a blackbody at the same frequency
and temperature:

ε(ν, Ω̂, Ts) ≡
dω cos θI+

νe(Ω̂)

dω cos θBν(Ts)
≡ I+

νe(Ω̂)

Bν(Ts)

• If ε = 1 for all Ω̂ and ν, the surface is a blackbody.

• If ε = constant < 1 for all Ω̂ and ν, the surface is a gray body.

• Bν(Ts) is the isotropic radiance emitted by a blackbody.
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Thermal Emission from a Surface (2)

The energy emitted by the surface into the whole hemisphere is called:

• the spectral emittance given by:

ε(ν, 2π, Ts) ≡
∫
+ dω cos θI+

νe(Ω̂)∫
+ dω cos θBν(Ts)

=
∫
+ dω cos θBν(Ts)ε(ν, Ω̂, Ts)

πBν(Ts)

=
1

π

∫
+ dω cos θε(ν, Ω̂, Ts). (1)

Hence, the spectral emittance is the energy emitted into a hemisphere relative to
a blackbody at a particular frequency.
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Absorption by a Surface

• The spectral directional absorptance is the ratio of absorbed energy to
incident energy:

α(ν,−Ω̂
′
, Ts) ≡

dω′ cos θ
′
I−νa(Ω̂

′
)

dω′ cos θ′I−ν (Ω̂′)
=
I−νa(Ω̂

′
)

I−ν (Ω̂′)
.

• The energy absorbed when radiation is incident over the whole hemisphere is
called the spectral absorptance:

α(ν,−2π, Ts) ≡
∫
− dω

′
cos θ

′
I−νa(Ω̂

′
)

∫
− dω

′ cos θ′I−ν (Ω̂′)
=

∫
− dω

′
cos θ

′
α(ν,−Ω̂

′
, Ts)I

−
ν (Ω̂

′
)

F−ν
.

• If the incident radiation is blackbody, then I−ν (Ω̂
′
) = Bν(Ts), F

−
ν = πBν(Ts):

α(ν,−2π, Ts) =
1

π

∫
− dω

′
cos θ

′
α(ν,−Ω̂

′
, Ts).
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Kirchoff’s law for Surfaces

Consider an opaque nonblack surface within a hohlraum that is exposed to the
isotropic radiance Iν = Bν(T ). Since the incident radiation is isotropic:

• the upward radiance must be isotropic. Since the surface is opaque:

• the upward radiance consists of an emitted component and a reflected compo-
nent, which must add to yield the incident radiance:
I+
νe(Ω̂) + I+

νr(Ω̂) = Bν(Ts).

• From conservation of energy the sum of the reflected and absorbed energy must
be equal to the incident energy: I−νa(Ω̂) + I+

νr(Ω̂) = Bν(Ts).

• From these two relations and the definitions of the directional emittance and
absorptance, we obtain Kirchoff’s Law for an Opaque Surface:
α(ν,−Ω̂, Ts) = ε(ν, Ω̂, Ts).

• Note that we have assumed an isothermal enclosure in TE.

• Similarly we have in the special case of hemispherically isotropic incidence:
α(ν,−2π, Ts) = ε(ν, 2π, Ts)−→ absorptance = emittance.
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Surface Reflection: The BRDF (1)

Consider a downward beam with radiance Iν(Ω̂
′) within a cone of solid angle dω′

around Ω̂′ that is incident on a flat surface with normal n̂ = ẑ (see Fig. 1).

• Incident energy: dω′ cos θ′Iν(Ω̂
′).

• Reflected radiance within dω around Ω̂: dI+
νr(Ω̂

′).

• The Bidirectional Reflectance Distribution Function (BRDF) is the
ratio of the reflected radiance to the incident energy:

ρ(ν,−Ω̂′, Ω̂) ≡ dI+
νr(Ω̂)

dω′ cos θ′I−ν (Ω̂′)
.

By adding contributions to the reflected radiance in direction Ω̂ from beams incident
on the surface in all downward directions, we obtain:

I+
νr(Ω̂) =

∫
− dI

+
νr(Ω̂) =

∫
− dω

′ cos θ′ρ(ν,−Ω̂′, Ω̂)I−ν (Ω̂′).

which is diffuse light due to integration over the downward hemisphere.
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Figure 1: Geometry and symbols for the definition of the BRDF. The angle α is the backscattering
angle.
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Surface Reflection: The BRDF (2)

Note the differences between a purely diffuse and a purely specular surface.
If the reflected radiance from a diffuse surface is completely uniform:

• it is called a Lambert surface. Examples are ground glass and matte paper.

• The BRDF of a Lambert surface is independent of both direction of incidence
and direction of observation:

ρ(ν,−Ω̂′, Ω̂) = ρL(ν)

where ρL(ν) = Lambert reflectance.

• For a Lambert surface the reflected radiance is:

I+
νr = ρL(ν)

∫
− dω

′ cos θ′I−ν (Ω̂′) = ρL(ν)F−ν .

Thus, for a Lambert surface the reflected radiance is:

• independent of the observation direction and is proportional to the incident
irradiance.
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Surface Reflection: The BRDF (3)

For a collimated incident beam of light:

• the radiance reflected from a Lambert surface is proportional to the cosine
of the angle of incidence (see below);

• the radiance reflected from a specular surface is a δ - function.

In general:

• the BRDF has a diffuse component ρd and a specular component ρs:

ρ(ν,−Ω̂
′
, Ω̂) = ρs(ν,−Ω̂

′
, Ω̂) + ρd(ν,−Ω̂

′
, Ω̂)

and the reflected radiance becomes:

I+
νr(Ω̂) = ρs(ν, θ)I−ν (θ, φ

′
+ π)︸ ︷︷ ︸

specular component

+
∫
− dω

′
cos θ

′
ρd(ν,−Ω̂

′
, Ω̂)I−ν (Ω̂

′
)︸ ︷︷ ︸

diffuse component

.
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Figure 2: The bidirectional reflectance and transmittance at a smooth air-water interface based on
Fresnel’s equations. The two curves show the reflectance and transmittance for the perpendicular
and parallel components.
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Albedo for Collimated Incidence

• Incident radiance: I−ν (Ω̂′) = F s
νδ(cos θ′ − cos θ0)δ(φ′ − φ0).

• Diffusely reflected radiance:∗

I+
νr(Ω̂) =

∫
− dω

′ cos θ′ρd(ν,−Ω̂′, Ω̂)I−ν (Ω̂′) = F s
ν cos θ0ρd(ν,−Ω̂0, Ω̂).

• Diffusely reflected irradiance:

F+
νr =

∫
+ dω cos θI+

νr(Ω̂) = F s
ν cos θ0

∫
+ dω cos θρd(ν,−Ω̂0, Ω̂).

• The reflectance or plane albedo is the ratio of the reflected irradiance to
the incident collimated beam (solar) irradiance:

ρ(ν,−Ω̂0, 2π) ≡ F+
νr

F s
ν cos θ0

=
∫
+ dω cos θρ(ν,−Ω̂0, Ω̂).

• Since ρ(ν,−Ω̂0, Ω̂) is the sum of a specular and a diffuse component:

ρ(ν,−Ω̂0, 2π) = ρs(ν,−Ω̂0, 2π) + ρd(ν,−Ω̂0, 2π)

=
∫
+ dω cos θρs(ν,−Ω̂0, Ω̂) +

∫
+ dω cos θρd(ν,−Ω̂0, Ω̂). (2)
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Diffuse Incidence - Reflectance or Albedo

• If the BRDF is Lambertian, then ρs = 0, ρd(ν,−Ω̂0, 2π) = ρL(ν) and:

ρ(ν,−Ω̂0, 2π) = ρL(ν)
∫ 2π
0 dφ

∫ π/2
0 dθ sin θ cos θ = πρL(ν).

• Consider now the diffuse sky light radiation I−ν (Ω̂′) reaching the Earth. It is
distributed over the entire downward hemisphere, and the reflected irradiance
is:

F+
νr =

∫
+ dω cos θI+

νr(Ω̂) =
∫
+ dω cos θ

∫
− dω

′ cos θ′ρ(ν,−Ω̂′, Ω̂)I−ν (Ω̂′).

=
∫
− dω

′ cos θ′
[ ∫

+ dω cos θρ(ν,−Ω̂′, Ω̂)
]
I−ν (Ω̂′)

=
∫
− dω

′ cos θ′ρ(ν,−Ω̂′, 2π)I−ν (Ω̂′). (3)

• Comparing this result with our previous results for emitted and absorbed irradi-
ances, we see that ρ(ν,−Ω̂, 2π), ε(ν, Ω̂, Ts), and α(ν,−Ω̂, Ts) play similar roles
in transforming radiance distributions into irradiances.

• For an opaque surface:

α(ν,−Ω̂, Ts) = 1− ρ(ν,−Ω̂, 2π)⇐= follows from conservation of energy.
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Analytical Reflectance Expressions

•Minneart formula: ρ(µ0, µ) = ρnµ
k−1
0 µk−1

• k = 1 =⇒ Lambert surface

• k = 0.5 =⇒ “Dark” surface −→ the greater the observation (nadir) angle θ the
brighter the surface −→ in general agreement with experiment.

• As k increases, ρ(µ0, µ) increases −→ Disadvantage: No physical basis!

• Principle of reciprocity: The reflectance is unaffected by an interchange of
the directions of incidence and observation:

ρ(θ
′
, φ

′
; θ, φ) = ρ(θ, φ; θ

′
, φ

′
)

• Lommel-Seeliger formula: ρ(µ0, µ) = 2ρn
µ0+µ:

– ρn ≡ ρ(1, 1) = normal reflectance (in astronomy)

– ρmin occurs at normal viewing (µ = 1)

– ρmax occurs at grazing view angle (µ = 0) : consistent with Minneart formula

• As θ0 increases from 00 to 900, ρ exhibits a larger increase with θ in agreement with experiments.

• Lommel-Seeliger formula applies well to dark surfaces (ρn < 0.3).
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Figure 3: The BRDF for Minneart’s formula versus the off-nadir angle. Each curve corresponds to
a different surface ranging from very dark to very bright.
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Scattering Geometry

Figure 4: Illustration of the geometry involved in the description of the BRDF. The phase angle α is the supple-
mentary angle of the scattering angle Θ, i.e., α = π − Θ. The relative azimuth angle ∆φ = 0◦ corresponds to
the glint (specular) direction, and ∆φ = 180◦ to the backscattering (hot-spot) direction.
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The Opposition Effect

• The phase angle or backscattering angle α is defined as the complement
of the angle between Ω̂

′
(θ′, φ′) and Ω̂(θ, φ):

α = π − arccos(Ω̂
′ · Ω̂) = π − arccos[−µµ′ +

√
(1− µ2)(1− µ′2) cos(φ− φ′)].

Planetary surfaces exhibits the opposition effect (O. E.), Heiligenschein, en-
hanced backscattering or hot spot phenomenon (see Fig. 5):

• an abrupt increase in the reflected light as α → 0. Thus, at lunar opposition
when the sun is behind the observer, the Moon is brighter than at other phases.

• The opposition effect can be accounted for by a multiplicative correction to the
Lommel-Seeliger formula:

ρ(µ0, µ, α) =
A

µ0 + µ

1 + B exp[−1

h
tan(α/2)]

 .
A = normalization constant; B ≥ 0 is the opposition enhancement factor; h
= compaction parameter = measure of angular width of O. E. Correction is
maximum at α = 0 with a width proportional to h.
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Figure 5: Measured BRDFs versus the off-nadir angle for prairie grassland (upper panel) and for
alkali flat (lower panel).
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Reflection from a wind-roughened sea surface (1)

The slope distribution of surface facets of a wind-roughened body of water can
be approximated by a one-dimensional Gaussian distribution derived by Cox and
Munk [1954]:

p(µn) =
1

πσ2
exp

−1− µ2
n

σ2µ2
n

 =
1

πσ2
exp

−tan2 θn
σ2

 (4)

µn = cos θn =
µ + µ′√

2(1− cos Θ)
(5)

σ2 = 0.003 + 0.00512 · U (6)

where U is the wind speed in m/s, and the BRDF can be written as:

ρ(µ, φ;µ′, φ′) =
1

4µ′µ(µn)4
· p(µn) · r(cos Θ,m) · s(µ, µ′, σ). (7)

• r(cos Θ,m) is the Fresnel reflectance,

• s(µ, µ′, σ) is a shadowing term that is important for large angles of incidence
(θi > 75◦) and

•m is the refractive index of water.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Reflection from a wind-roughened sea surface (2)

θn = cos−1 µn = tilt angle (see Fig. 6): angle between surface normal of a scattering
facet for which specular reflection occurs and zenith direction.

 

Incident ray  

Figure 6: Illustration of tilt angle (θn) and relative azimuth angle (φ ≡ ∆φ) in rough surface scattering. Here n̂ is
the normal to the facet, θn is the tilt angle, and φ is the azimuth angle relative to the glint direction (φ = 0).
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Reflection from a wind-roughened sea surface (3)

Figure 7 shows the Cox-Munk BRDF for several values of the relative azimuth
difference, an angle of incidence of µ′ = cos 30◦, a refractive index m = 1.34 and a
wind speed of U = 5 m/s.
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Figure 7: Analytic Cox-Munk 1D Gaussian BRDF for m = 1.34, wind speed U = 5 m/s, and angle of incidence
= 30◦.
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Transmission through a slab medium – (1)

• The transmittance is a measure of how much light reaches the lower surface of
a slab either as a direct attenuated beam or as diffuse (scattered) radiation.

• The spectral bidirectional transmittance or simply transmittance
is defined as the ratio of the transmitted radiance dI−νt(Ω) to the incident energy:

T (ν,−Ω̂′,−Ω̂) ≡ dI−νt(Ω̂)

I−ν (Ω̂′) cos θ′dω′
.

• Adding up contributions from the beams incident in all downward directions
−Ω̂′, we obtain the total transmitted radiance:

I−νt(Ω̂) =
∫
− dI

−
νt(Ω̂) =

∫
dω′ cos θ′T (ν,−Ω̂′,−Ω̂)I−ν (Ω̂′).

• Since the transmitted radiance consists of a direct and a diffuse part, we have:

I−νt(Ω̂) = I−ν (Ω̂)e−τs(ν) +
∫
− dω

′ cos θ′Td(ν,−Ω̂′,−Ω̂)I−ν (Ω̂′)

where Td(ν,−Ω̂′,−Ω̂) = diffuse transmittance.
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Transmission through a slab medium – (2)

For an incident collimated beam,
I−ν (Ω̂) = F s

νδ(Ω̂− Ω̂0) = F s
νδ(cos θ − cos θ0)δ(φ− φ0), we get:

I−νt(Ω̂) = F s
νδ(cos θ − cos θ0)δ(φ− φ0)e−τs(ν) + F s

ν cos θ0Td(ν,−Ω̂0,−Ω̂).

The corresponding irradiance becomes:

F−νt =
∫
− dω cos θI−νt(Ω̂) = F s

ν cos θ0

[
e−τs(ν) +

∫
− dω cos θ Td(ν,−Ω̂0, Ω̂)

]
.

• The transmittance is the ratio of the transmitted irradiance to the collimated
incident irradiance (e−τs(ν) is the beam transmittance Tb(ν)):

T (ν,−Ω̂0,−2π) ≡ F−νt

F s
ν cos θ0

= e−τs(ν) +
∫
− dω cos θ Td(ν,−Ω̂0,−Ω̂).

• For a uniform incident radiation field Iν, the transmittance is:

Ttot(ν) =
∫
2π dω cos θ Iν e−τ(ν)/µ

πIν
= 2

∫ 1
0 dµµ e

−τ(ν)/µ = 2E3(τ (ν)),

where E3(τ (ν)) is the exponential integral of order 3.
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Spherical or Bond Albedo

• For definition of the spherical or bond albedo we refer to Fig. 8:

• Area of annulus presented to the Sun: dA = 2πR ·R sin θ0 · cos θ0dθ0

• Solar energy received by annulus:

dAF s
ν = F s

ν [2πR2 sin θ0 cos θ0dθ0] = 2πR2F s
νµ0dµ0.

• Energy reflected from annulus:

ρ(ν, µ0, 2π)(dAF s
ν) = 2πR2F s

νρ(ν,−µ0, 2π)µ0dµ0.

• Integration over the entire planetary disk gives the total spectral reflected energy.

• Total incoming solar energy: πR2F s
ν .

• The spectral spherical albedo (bond albedo) is the ratio of the disk-integrated
reflected energy to the disk-integrated incoming solar energy:

ρ̄(ν) =
2πR2F s

ν
∫1
0 ρ(ν,−µ0, 2π)µ0dµ0

πR2F s
ν

= 2
∫ 1
0 dµ0µ0ρ(ν,−µ0, 2π).
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θ0

R

R sin θ0

R cos θ0 dθ0

dA = 2πR2 sin θ0 cos θ0 dθ0

dθ0

Figure 8: Geometry for the definition of the spherical albedo.
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Spherical Transmittance and Absorptance

• Spectral spherical transmittance and absorptance are defined analogously:

T̄ (ν) = 2
∫ 1
0 T (ν,−µ0, 2π)µ0dµ0

ᾱ(ν) = 2
∫ 1
0 α(ν,−µ0, 2π)µ0dµ0

• Frequency - integrated quantities:

ρ̄ =
∫ ∞
0 ρ̄(ν)dν

ᾱ =
∫ ∞
0 ᾱ(ν)dν

T̄ =
∫ ∞
0 τ̄ (ν)dν.
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Kirchhoff’s Law: Volume Absorption and Emission (1)

To discuss radiative processes in an extended medium we must define absorption
and emission per unit volume. For a hohlraum filled with matter throughout the
volume, which both scatters and absorbs radiation at frequency ν:

•Kirchhoff’s Law relates the thermal emission coefficient jthν to the
absorption coefficient and the Planck function

Kirchhoff’s Law Applied to Volume Emission

jthν = α(ν)Bν(T ). (8)

• Since Sν ≡ jν/k(ν) (Eq. 2.27), we define the thermal contribution to the source
function by:

Sthν ≡
jth

k(ν)
=
α(ν)

k(ν)
Bν(T ). (9)
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Kirchhoff’s Law: Volume Absorption and Emission (2)

•We define the spectral volume emittance εv(ν, Ω̂, T ), as the ratio of the
thermal emission per unit volume of the matter under consideration to that of a
perfectly “black” material of the same mass and temperature T , SBB

ν ≡ Bν(T ):

εv(ν, Ω̂, T ) =
Sthν (Ω̂, T )

Bν(T )
.

Most atmospheric and oceanic absorbers are isotropic emitters, so that the absorp-
tion coefficient is independent of angle.

• Thus, dropping the angular dependence and using Eq. (9), we find:

εv(ν, T ) =
α(ν, T )

k(ν)
. (10)

• The volume emittance εv is proportional to the absorption coeffi-
cient, α.
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Kirchhoff’s Law: Volume Absorption and Emission (3)

A planetary medium is far from an artificial closed system such as a hohlraum.
It is therefore surprising that within spectral lines in the IR, planetary media radiate
approximately as a blackbody:

• the source function is equal to the Planck function.

This situation prevails when (recall discussion for two-level atom):

• the collisional rates of excitation/de-excitation of the quantum states are much
larger than the corresponding radiative loss rates.

• Then the populations of these states are determined by the local kinetic tem-
perature of the medium, rather than by the radiation field.

• In the troposphere thermal IR radiation is in local thermodynamic equi-
librium (LTE), which implies that Eqs. 8–10 are valid, but the radiance is not
equal to the Planck function, as it would be in TE. (At very low atmospheric
densities LTE will break down even in the IR, and Eqs. 8–10 are no longer valid.)
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Kirchhoff’s Law: Volume Absorption and Emission (4)

• However, LTE does not apply to shortwave radiative processes, because

• the kinetic energy involved in thermal collisions (∼ kBT ) is much less than the
excitation energies associated with visible and UV transitions (Ei).

• Thus, at shortwave energies the collisional quenching rates greatly exceed the
collisional excitation rates.

• Absorption of sunlight, followed by collisional quenching, heats the medium.
The absence of the opposite process (collisional energy converting to radiative
energy) “uncouples” the shortwave radiation from the thermal state of the gas.

• There is little overlap between the radiation spectra of the Sun and the Earth
(Fig. 9): We may treat the two spectra separately.

Due to lack of strong absorption by the major atmospheric gases in the visible
spectrum:

• The major shortwave interaction is in the UV spectrum below 300 nm where
sunlight never reaches the surface.
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Figure 9: Spectral distribution of solar and terrestrial radiation fields. Also shown are the approxi-
mate shapes and positions of the scattering and absorption features of the Earth’s atmosphere.
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Chapter 5 - Principles of Radiative transfer - continued

Differential Equation of Radiative Transfer (1)

• Recall that: the radiative energy that is incident normally on the area dA in the
direction Ω̂′ and within the solid angle dω′ centered around Ω̂′, in time dt and
within frequency interval dν is the fourth-order quantity (see Fig. 10):

d4E ′ = Iν(Ω̂
′) dAdt dνdω′.

• The radiative energy which is scattered in all directions is:

σ ds d4E ′ = σ ds Iν(Ω̂
′) dAdt dνdω′,

where ds is the length of the scattering volume element in the direction normal to
dA, and σ is the scattering coefficient.

•We are interested in that fraction of the scattered energy which is
directed into the solid angle dω centered around the direction Ω̂.

• This fraction is proportional to p(Ω̂′, Ω̂) dω/4π, where p(Ω̂′, Ω̂) is the scattering
phase function (see §3.4).
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Figure 10: The flow of radiative energy carried by a beam in the direction Ω̂ through a transparent
surface element dA. The flow direction Ω̂ is at an angle θ with respect to the surface normal n̂
(cos θ = n̂ · Ω̂).

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

32



Differential Equation of Radiative Transfer (2)

If we multiply the scattered energy by this fraction, i.e. form

σdsd4E ′ p(Ω̂′, Ω̂) dω/4π = σdsIν(Ω̂
′)dAdtdνdω′ p(Ω̂′, Ω̂)dω/4π,

and then integrate over all incoming directions dω′:

• we find that the total scattered energy emerging from the volume element
dV = ds dA in the direction Ω̂ is:

d4E = σ(ν)dV dt dν dω
∫
4π dω

′p(Ω̂′, Ω̂)

4π
Iν(Ω̂

′). (11)

•We define the emission coefficient for scattering as:

jscν ≡
d4E

dV dt dν dω
= σ(ν)

∫
4π

dω′

4π
p(Ω̂′, Ω̂)Iν(Ω̂

′).

• The source function for scattering is thus:

Sscν (Ω̂) =
jscν
k(ν)

=
σ(ν)

k(ν)

∫
4π

dω′

4π
p(Ω̂′, Ω̂)Iν(Ω̂

′). (12)
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Differential Equation of Radiative Transfer (3)

The quantity σ(ν)/k(ν) appearing in Eq. 12 is called the single-scattering
albedo, $(ν). Since k(ν) = σ(ν) + α(ν), it is clear that

$(ν) = σ(ν)/[σ(ν) + α(ν)] ≤ 1.

•We interpret $(ν) as the probability that a photon will be scattered,
given an extinction event.

• Given that an interaction has occurred, the quantity 1−$(ν) is the probability
of absorption per extinction event or the co-albedo.

• For thermal emission, εv = α(ν)/k(ν) = 1−$(ν) is the volume emittance.
Thus, the complete time-independent radiative transfer equation is:

Radiative Transfer Equation including Absorption
Thermal Emission and Multiple Scattering

dIν(Ω̂)

dτs
= −Iν + [1−$(ν)]Bν(T )︸ ︷︷ ︸

thermal emission

+
$(ν)

4π

∫
4π dω

′ p(Ω̂′, Ω̂)Iν(Ω̂
′)︸ ︷︷ ︸

multiple scattering

. (13)
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Solution of the Radiative Transfer equation for zero
scattering (1)

Equation 13 includes both scattering (Eq. 12) and thermal emission (Eq. 9):

• It reveals the major mathematical complexity of radiative transfer theory:
it involves the solution of an integro-differential equation.

• In the limit of no scattering ($(ν) = 0), the radiation is affected only by ab-
sorption and emission processes. Then Eq. 13 simplifies to:

dIν
dτs

= −Iν + Bν(T ) (14)

where the source function Sν = Bν(T ) may be considered to be a known.

• This local problem is much easier to solve than the more general non-local
problem involving multiple scattering.

• Note that the slant optical depth τs is measured along the beam direction, taken
to be a straight line since we are ignoring refraction.
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Solution of the Radiative Transfer equation for zero
scattering (2)

• A solution of Eq. 14, satisfying the appropriate boundary conditions, yields the
radiation field Iν at all positions τs along the beam direction.

• The solution will clearly vary with the frequency ν, the temperature T , and the
optical properties of the medium, embodied in the absorption coefficient α(ν),
which in general may vary from point to point in the medium.

•We consider an inhomogeneous medium in LTE, which at each point radiates
thermal emission according to the Planck function at the local temperature.

• The medium may have arbitrarily shaped boundaries. It is illuminated by a
beam of radiation in the direction Ω̂ at the boundary point P1 (see Fig. 11).

•We want to find the elementary solution for the radiance Iν(P2, Ω̂) which
emerges from the medium at point P2 along the same direction.
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Figure 11: A beam of radiation is incident on an absorbing/emitting region at the boundary point
P1. It is attenuated along the path P1P2, and emerges at the point P2. The propagation direction
of the beam is denoted by Ω̂. In addition, thermal emission adds to the beam at all points within
the medium.
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Solution of the Radiative Transfer equation for zero
scattering (3)

• A completely general distribution of radiance in angle and frequency can be
obtained by repeating the elementary solution Iν(P2, Ω̂) for all incident beams
and for all frequencies.

• The elementary solution will be found to be a sum of two terms:
(a) the incident radiance Iν(P1, Ω̂) attenuated by the intervening optical path
along P1P2, and
(b) the contributions from the internal sources at all points P between P1 to P2

and attenuated by the intervening optical path along PP2.

• Eq. (14) is readily integrated by using an integrating factor, which in this case
is eτs. After multiplying by eτs, Eq. 14 may be written as a perfect differential:

dI

dτs
eτs + Ieτs =

d

dτs
(Ieτs) = Beτs. (15)
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Solution of the Radiative Transfer equation for zero
scattering (4)

Ignoring refraction, we integrate along a straight path from the point P1 to the
point P2, the latter point being at the boundary of the medium (see Fig. 11).

• The optical path from the point P1 to an intermediate point P is given by:

τs(P1, P ) =
∫ P
P1
α ds =

∫ P
0 α ds−

∫ P1
0 α ds ≡ τs(P )− τs(P1).

• The optical path may be measured from an arbitrary reference point P0 outside
the medium, even though τ (P0, P1) = 0. τs increases monotonically with dis-
tance in the medium due to the addition of absorbing matter along the beam.

• Integration of Eq. (15) along the straight line from P1 to P2 yields:

∫ τs(P2)
τs(P1) dτ

′
s

d

dτ ′s

(
Ieτ

′
s
)

= I [τs(P2)]eτs(P2) − I [τs(P1)]eτs(P1) =
∫ τs(P2)
τs(P1) dτ

′
sB(τ ′s)e

τ ′s

where the integration variable τ ′s stands for the slant optical depth.
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Solution of the Radiative Transfer equation for zero
scattering (5)

• Solving for the radiance at the point P2, we find:

I [τs(P2)] = I [τs(P1)]e−τs(P2)+τs(P1) +
∫ τs(P2)
τs(P1) dτ

′
sB(τ ′s)e

τ ′s−τs(P2)

= I [τs(P1)]e−τs(P1,P2) +
∫ τs(P2)
τs(P1) dτ

′
sB(τ ′s)e

−τ ′s(P,P2). (16)

This result has a direct physical interpretation. The radiance at the point P2

emerging from the medium in the beam direction P1P2 consists of two parts:

1. The first term is the contribution from the radiance incident at the boundary
point P1, which has been attenuated by the beam transmittance.

2. The second term is due to thermal emission from the medium which lies along
the beam, weighted by the appropriate transmittance e−τs(P,P2). Note:

• The above solution is valid whether or not the points P1 and P2 lie at the
boundaries of the medium (both P1 and P2 may be interior points).
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Solution with Zero Scattering in Slab Geometry (1)

• The most common geometry in the theory of radiative transfer is that of a
plane-parallel medium, or a slab (see Fig. 12). This geometry is appropriate
because:

• gravity imposes a density stratification, so that the medium properties tend
to vary primarily in the vertical direction. In many cases, we can ignore the
horizontal variation in the medium.

•We will distinguish the vertical optical path τ (which we hereafter call the op-
tical depth) from the slant optical depth τs.

• It is convenient to measure the optical depth along the vertical direction down-
ward from the ‘top’ of the medium.

The relationship between the vertical and the slant optical depths is:

τ (z) ≡
∫ ∞
z dz′ k(z′) = τs| cos θ| = τs|u|

where θ = cos−1 u is the polar angle of the beam direction.
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Solution with Zero Scattering in Slab Geometry (2)

• Since it is used so frequently, we assign a special symbol, u to cos θ, so that
dτs = −k dz/|u| = −k dz/µ, µ = | cos θ| = |u|.
• The extinction optical depth can also be written in terms of the vertical column

number N and the extinction cross section kn (see Eqs. 1.10 and 2.20)

τ (z) = kn
∫ ∞
z dz′ n(z′) ≡ knN (z)

or in terms of the extinction coefficient km (see Eq. 2.19):

•
τ (z) = km

∫ ∞
z dz′ρ(z′) ≡ kmM(z),

where M(z) is the mass of the material in a vertical column of unit cross-
sectional area.

• If R is the radial distance from the center of the planet, and H is the vertical
scale length of the absorber, the slab approximation is valid if H/R� 1, and θ
not too close to 90◦.

• If these conditions are violated, it is necessary to take into account the curvature
of the atmospheric layers.
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Figure 12: Half-range radiances in a slab geometry. The optical depth variable τ is measured down-
ward from the ‘top’ of the medium (τ = 0) to the ‘bottom’ (τ = τ ∗). µ = |u| = | cos θ| is equal to
the absolute value of the cosine of the angle θ, the polar angle of the propagation vector Ω̂.
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Half-range Quantities in a Slab Geometry (1)

• The half-range radiances are defined by (see Fig. 12):

I+
ν (τ, θ, φ) ≡ Iν(τ, θ ≤ π/2, φ)

I−ν (τ, θ, φ) ≡ Iν(τ, θ > π/2, φ). (17)

These definitions may also be expressed in terms of u = cos θ ≥ 0, and u < 0.

• It will become apparent later that the variable µ = |u| makes the notation for
slant optical depth simple and straightforward.

• The irradiance defined in terms of half-range quantities:

F+
ν (τ ) =

∫
+ dω cos θI+

ν (Ω̂) =
∫ 2π
0 dφ

∫ π/2
0 dθ sin θ cos θI+

ν (τ, θ, φ)

=
∫ 2π
0 dφ

∫ 1
0 dµ µI

+
ν (τ, µ, φ) (18)

F−ν (τ ) = −
∫
− dω cos θI−ν (Ω̂) = −

∫ 2π
0 dφ

∫ π
π/2 dθ sin θ cos θI−ν (τ, θ, φ)

=
∫ 2π
0 dφ

∫ 1
0 dµ µI

−
ν (τ, µ, φ). (19)
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Half-range Quantities in a Slab Geometry (2)

• The downward irradiance F− is seen to be a positive quantity. The net irradiance
is:

Fν(τ ) =
∫
4π dω cos θIν(Ω̂) =

∫
+ dω cos θI+

ν (Ω̂) +
∫
− dω cos θI−ν (Ω̂)

= F+
ν (τ )− F−ν (τ ). (20)

• Note: the net irradiance in slab geometry is positive if the net radiative energy
flows in the upward (positive) direction, or toward increasing z and decreasing
τ .

In the limit of no scattering the radiative transfer equations for the half-range
radiances become:

µ
dI+

ν (τ, µ, φ)

dτ
= I+

ν (τ, µ, φ)−Bν(τ ) (21)

−µdI
−
ν (τ, µ, φ)

dτ
= I−ν (τ, µ, φ)−Bν(τ ). (22)

• Note: the independent variable is now the absorption optical depth, measured
downwards from the ‘top’ of the medium, which accounts for the difference in
sign of the LHS of Eqs. 21 and 22.
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Formal Solution in a Slab Geometry (1)

•We first obtain a formal solution of Eq. 22. Choosing the integrating factor to
be eτ/µ, we obtain:

d

dτ

(
I−ν e

τ/µ
)

=

dI
−
ν

dτ
+

1

µ
I−ν

 eτ/µ =
Bν(τ )

µ
eτ/µ. (23)

• The physical picture in Fig. 12 of downgoing beams which start at the “top”
and interact with the medium in the slab on their way downward, suggest that
we integrate Eq. 23 along the vertical from the “top” (τ = 0) to the “bottom”
(τ = τ ∗) of the medium to obtain:

∫ τ∗
0 dτ ′

d

dτ ′

(
I−ν e

τ ′/µ
)

= I−ν (τ ∗, µ, φ)eτ
∗/µ − I−ν (0, µ, φ) =

∫ τ∗
0

dτ ′

µ
eτ
′/µBν(τ

′).

• Solving for I−ν (τ ∗, µ, φ), we find:

I−ν (τ ∗, µ, φ) = I−ν (0, µ, φ)e−τ
∗/µ +

∫ τ∗
0

dτ ′

µ
Bν(τ

′) e−(τ∗−τ ′)/µ (24)

for the radiance emerging from the bottom of the slab.
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Formal Solution in a Slab Geometry (2)

• For an interior point, τ < τ ∗, we integrate from 0 to τ . The solution is easily
found by replacing τ ∗ by τ in Eq. 24, i.e.

I−ν (τ, µ, φ) = I−ν (0, µ, φ)e−τ/µ +
∫ τ
0

dτ ′

µ
Bν(τ

′) e−(τ−τ ′)/µ. (25)

• For the upper-half range radiance the integrating factor for Eq. 21 is e−τ/µ:

d

dτ

(
I+
ν e
−τ/µ

)
=

dI
+
ν

dτ
− 1

µ
I+
ν

 e−τ/µ = −Bν(τ )

µ
e−τ/µ.

• The physical picture (Fig. 12) involves upgoing beams. Therefore, we integrate
from the “bottom” to the “top” of the medium:

∫ 0
τ∗ dτ

′ d

dτ ′

(
I+
ν e
−τ ′/µ

)
= I+

ν (0, µ, φ)− I+
ν (τ ∗, µ, φ)e−τ

∗/µ

= −
∫ 0
τ∗
dτ ′

µ
e−τ

′/µBν(τ
′) =

∫ τ∗
0

dτ ′

µ
e−τ

′/µBν(τ
′).
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Formal Solution in a Slab Geometry (3)

• Solving for I+
ν (0, µ, φ), we find:

I+
ν (0, µ, φ) = I+

ν (τ ∗, µ, φ)e−τ
∗/µ +

∫ τ∗
0

dτ ′

µ
e−τ

′/µBν(τ
′).

• To find the radiance at an interior point τ , we integrate from τ ∗ to τ , to obtain:

I+
ν (τ, µ, φ) = I+

ν (τ ∗, µ, φ)e−(τ∗−τ)/µ +
∫ τ∗
τ

dτ ′

µ
e−(τ ′−τ)/µBν(τ

′). (26)

• Integration along the beam direction promotes a good physical understand-
ing of the radiative transfer process. Mathematically, the integration direction
is irrelevant: either direction gives the same answer.

•What happens when µ→ 0, that is, when the line-of-sight traverses an infinite
distance parallel to the slab? Since Bν(τ ) is constant in Eqs. 25 and 26:

I±ν (τ, µ = 0, φ) = Bν(τ ). (27)

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

48



Formal Solution Including Scattering and Emission (1)

• If we cannot neglect scattering, the source function is written (see Eq. 13):

Source Function due to Thermal Emission
and Multiple Scattering

S(τ, Ω̂) = [1−$(τ )]B(τ ) +
$(τ )

4π

∫
4π dω

′p(τ, Ω̂′, Ω̂)I(τ, Ω̂′). (28)

We note that the independent variable is the:

• extinction optical depth = sum of absorption and scattering optical depths.

• The source function is generally a function of the direction Ω̂ of the “emitted”
beam, and also a function of the local radiance distribution.

The general radiative transfer equation is:

dI(τs, Ω̂)

dτs
= −I(τs, Ω̂) + S(τs, Ω̂). (29)
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Formal Solution Including Scattering and Emission (2)

• Using the method of the integrating factor, we can write the formal solution of
Eq. 29 by replacing B with S in Eq. 16:

Radiance in terms of an Integration over the Source Function

I [τs(P2), Ω̂] = I [τs(P1), Ω̂]e−τs(P1,P2) +
∫ τs(P2)
τs(P1) dτ

′
s S(τ ′s, Ω̂)e−τ

′
s(P,P2). (30)

We stress that:

• This solution is only a formal solution, since (in contrast to Eq. 16) the source
function is unknown: it depends upon the radiation field, as seen in Eq. 28.

• The importance of this ‘solution’ is that it emphasizes that, apart from boundary
terms, a knowledge of the source function, S(τs, Ω̂), is equivalent
to knowledge of the complete solution of the radiative transfer
problem.
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Formal Solution Including Scattering and Emission (3)

• For a slab the solutions to Eqs. 28 and 30 are given by Eqs. 25, 26, and 27:

I−(τ, µ, φ) = I−(0, µ, φ)e−τ/µ +
∫ τ
0

dτ ′

µ
S(τ ′, µ, φ) e−(τ−τ ′)/µ (31)

I+(τ, µ, φ) = I+(τ ∗, µ, φ)e−(τ∗−τ)/µ +
∫ τ∗
τ

dτ ′

µ
S(τ ′, µ, φ) e−(τ ′−τ)/µ (32)

I±(τ, µ = 0, φ) = S(τ, µ = 0, φ). (33)

The source function is easily derived from Eq. 28:

S(τ, µ, φ) = (1−$)B(τ ) +
$

4π

∫ 2π
0 dφ′

∫ 1
0 dµ

′p(µ′, φ′;µ, φ)I+(τ, µ′, φ′)

+
$

4π

∫ 2π
0 dφ′

∫ 1
0 dµ

′p(−µ′, φ′;µ, φ)I−(τ, µ′, φ′). (34)
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Radiative Heating Rate (1)

• The differential change of energy over the distance ds along a beam is:

δ(d4E) = dIν dA dt dν dω.

Dividing this expression by dsdA = dV , and also by dνdt, we obtain:

• The time rate of change in radiative energy per unit volume per unit frequency,
due to the change in radiance for beams within the solid angle dω.

• Since there is (generally) incoming radiation from all directions, the total change
in energy per unit frequency per unit time per unit volume is:

∫
4π dω

dIν
ds

=
∫
4π dω

(
Ω̂ · ∇Iν

)
.

• The spectral radiative heating rate Hν is (minus) the rate of change of
the radiative energy per unit volume:

Hν = −
∫
4π dω

(
Ω̂ · ∇Iν

)
.
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Radiative Heating Rate (2)

The net radiative heating rate, H is

H = −
∫ ∞
0 dν

∫
4π dω

(
Ω̂ · ∇Iν

)
. (35)

• In slab geometry the radiative heating rate is written:

Hν = −
∫ ∞
0 dν

∂Fν
∂z

= −2π
∫ ∞
0 dν

∫ +1
−1 du u

∂Iν
∂z

(36)

where Fν = F+
ν − F−ν is the irradiance in the z direction (Eq. 20).

Now, recall the RTE (Eq. 13):

dIν
dτs

= −Iν + [1−$(ν)]Bν(T )︸ ︷︷ ︸
thermal emission

+
$(ν)

4π

∫
4π dω

′ p(Ω̂′, Ω̂)Iν(Ω̂
′)︸ ︷︷ ︸

multiple scattering

.
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Generalized Gershun’s Law (1)

Substituting dIν/dτs = −udIν/dτ in Eq. 36 from the radiative transfer equation

[Eq. 13: dIν
dτs

= −Iν + [1 − $(ν)]Bν(T ) + $(ν)
4π

∫
4π dω

′ p(Ω̂′, Ω̂)Iν(Ω̂
′)], and using

k(ν) = σ(ν) + α(ν), we obtain:

Hν = 4πα(ν)Īν + 4πσ(ν)Īν − 4πα(ν)Bν(T )−

4πσ(ν)Īν︷ ︸︸ ︷
σ(ν)

∫
4π dω

′∫
4π

dω

4π
p(Ω̂′, Ω̂)︸ ︷︷ ︸
=1

Iν(Ω̂
′)

where Īν is the angular average of the radiance: Īν =
∫
4π dω

′Iν(Ω̂
′)/4π.

• Employing the normalization condition for the phase function, we see that the
two scattering terms cancel. Integration over frequencies therefore yields:

The radiative heating rate is the rate at which radiative energy is
absorbed, less the rate at which it is emitted:

H = −∇ · ~F = 4π
∫ ∞
0 dνα(ν)Īν − 4π

∫ ∞
0 dνα(ν)Bν(T ). (37)

•When internal emission is absent, Eq. 37 is known as Gershun’s Law.
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Generalized Gershun’s Law (2)

•When H = 0, the volume absorption rate exactly balances the volume emission
rate.

• This situation may happen locally at points where the net heating rate happens
to change sign, but if the entire medium experiences this balance, we have the
condition of planetary radiative equilibrium.

• Clearly, if there is no absorption anywhere in the medium, then H = 0 every-
where. In a slab medium, radiative equilibrium implies that ∂F/∂z = 0 and
thus F = constant.
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