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 K This new and completely updated edition 

gives a detailed description of radiative 

transfer processes at a level accessible to 

advanced students. The volume gives the 

reader a basic understanding of global 

warming and enhanced levels of harmful 

ultraviolet radiation caused by ozone 

depletion. It teaches the basic physics 

of absorption, scattering, and emission 

processes in turbid media, such as the 

atmosphere and ocean, using simple  

semi-classical models. The radiative 

transfer equation, including multiple 

scattering, is formulated and solved for 

several prototype problems, using both 

simple approximate and accurate numerical 

methods. In addition, the reader has 

access to a power ful, state-of-the-ar t 

computational code for simulating radiative 

transfer processes in coupled atmosphere-

water systems including snow and ice. This 

computational code can be regarded as 

a power ful educational aid, but also as a 

research tool that can be applied  

to solve a variety of research problems  

in environmental sciences.

From reviews of the f irst edition

‘This book should not be missing on the 

desk of any person seriously interested in 

radiative transfer ... I would certainly use 

this book as a basic text and recommend it 

very highly to my students. I am sure that 

both instructor and student can profit a 

great deal from studying this excellent work.’

Meteorology and Atmospheric Physics

‘ ... should grace the shelves of all libraries 

of institutes concerned with research and 

teaching in atmospheric and oceanic science 

and it is an important part of the radiative 

transfer armoury.’       

International Journal of Climatology

‘The book is easy to read, and there are 

many examples to illustrate the concepts 

discussed...[It] should serve well as an 

introduction to radiative transfer.’

EOS

‘ ... a valuable resource for those interested 

in terrestrial radiative transfer.’

Physics Today

C O V E R  D E S I G N E D  B Y  H A RT  M c L E O D  LT D

stamnes

	Access to computational code for simulating 

radiative transfer processes

	Lecture slides based on the book and a 

solutions manual for instructor use

	PowerPoint and JPEG files of the figures in 

the book for instructor use

Based on Chapter 6 in K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the

Atmosphere and Ocean, Cambridge University Press, 2017.
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Introduction
In the days before Christmas 2014 there 
were several spectacular occurrences of 
so-called ‘mother-of-pearl clouds’ over a 
large area in southeastern Norway, in par-
ticular around Oslo. Newspapers and TV 
media (for example, yr.no, NRK, Aftenposten 
and Romerikes Blad) published numerous 
 pictures of these clouds, submitted by read-
ers. It was also reported (pers. comm.) that 
the traffic on highways around Oslo slowed 
down and almost stopped because drivers 
were amazed by the sight of these clouds.

The typical ‘mother-of-pearl’ pattern was 
clearly visible on 22 December 2014, at 
1449  UTC, as shown in Figure 1. After 8min, 
the whole sky in the south-southwest – 
west-northwest sector almost ‘exploded’ 
into very strong and intense bands of 
colours, in red, yellow, blue and green, as 
shown in Figure  2. Their appearance over 
Oslo was so stunning and impressive that 
the photographer immediately associated 
them with the sky as painted by Edvard 
Munch in his iconic work The Scream, and he 
made the collage shown in Figure 3. It was 
then that the idea of this article was born.

If we take Edvard Munch’s words literally 
and compare them with the sharp colours 
and distinct and undulating shape of the 
sky in The Scream, it is our opinion that they 
fit well with the appearance of mother-of-
pearl clouds as shown in Figures 2 and 3.

Such clouds appear in the stratosphere 
only at high latitudes and have been known 
in the Nordic countries since the second half 
of the nineteenth century. However, they 
very rarely appear with the brilliance seen 
on 22 December 2014. The clouds may, 

Figure 1. Mother-of-pearl clouds seen from Lørenskog, east of Oslo, on 22 December 2014 at 
1449  UTC, towards west-southwest. Sunset on this day was at 1415  UTC. (Source: Svein M. Fikke.)

Figure 2. Same direction as Figure 1, taken at 1457  UTC. (Source: Svein M. Fikke.)

Figure 3. Collage showing details of mother-of-pearl clouds together with The Scream (1910 version).

“ ..Suddenly the sky became red as blood..”
Edvard Munch

Photo: Svein M. Fikke
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with a totally different phenomenon than the 
common iridescence of lower clouds.

The logbooks of the Christiania 
Observatory also show iridescent clouds in 
February 1891 and January 1892. After this, 
they seem not to have been reported dur-
ing the period 1892–1925 (Dieterichs, 1950).

Between 1926 and 1934, Störmer made 
1122 height measurements of 7 different 
events. Their heights ranged between 23 
and 29km, more than twice that of the high-
est cirrus clouds. This range of heights was 
later supported by Dieterichs (1950) and 
others.

In May 1947, Störmer was invited to 
London by the Royal Meteorological 
Society to give a lecture on his studies of 
mother-of-pearl clouds. As a result of this, 
he published a paper in Weather in which 
he included some colour pictures of two 
events and wrote: colour pictures of mother-
of-pearl clouds were printed for the first time 
(Störmer, 1948). These pictures are repro-
duced in Figure 6.

Following that review, and also with 
the pictures presented in this paper, it 
is reasonable to conclude that iridescent 
mother-of-pearl clouds cannot in any way 
be placed in the same category as regular 
tropospheric clouds, or in conjunction with 
spectacular sunrises or sunsets. Rather, these 
clouds comprise a separate category of 
clouds which, by their own characteristics 
and physical properties, can form patterns 
and set colour palettes of very unusual 
appearance, and only in those parts of the 
world where the necessary atmospheric 
conditions can prevail 20–30km above the 
surface of the Earth.

The red sky in Edvard Munch’s 
The Scream

Notes related to The Scream
The background for Munch’s unusually 
intense and colourful sky is found in his 
own diary notes from the period 1890–1892, 

where he wrote this poem (not dated; Tøjner 
and Gundersen, 2013):

I went along the road with two friends – 
the sun set

I felt like a breath of sadness –

- The sky suddenly became bloodish red

I stopped, leant against the fence, tired to 
death – watched over the

flaming clouds as blood and sword

the city – the blue-black fjord and the city

- My friends went away – I stood there 
 shivering from dread – and

I felt this big, infinite scream through nature

During the winter 1892 Munch was stay-
ing with his painter colleague Christian 
Skredsvig in France. In his book Days and 
Nights Among Artists (Skredsvig, 1943) 
Skredsvig wrote probably the most aston-
ishing clue concerning Munch’s vision and 
background for The Scream: (also quoted in 
Olson et al., 2004):

Figure 6. Pictures of mot her-of-pearl clouds presented in Carl Störmer (1948): ‘Mother-of-pearl clouds’. (a) 16 February 1946 (Source: Ellen Störmer). 
(b) 30 January 1944 (Source: Anders Nygaard). (c) 30 January 1944 (Source: Carl Störmer). (d) Same cloud as the one above (i.e. (b)) (Source: Carl 
Störmer). Störmer wrote: […] photographs in natural colours are given for the first time […]

(a) (b)

(c) (d)
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internal and psychological, yet Munch’s writ-
ten accounts say that a blood-red sky preceded 
his melancholy and triggered the Scream. 
Moreover, Munch attached great importance 
to this unusually spectacular twilight, but sun-
sets as described by Heller would occur fairly 
often, perhaps every autumn.

Though we agree with Olson et  al. that 
Munch’s diary notes and experience require 
a natural explanation, we would like to take 
their last point one step further (sunsets as 
described by Heller would occur fairly often, 
perhaps every autumn). Having lived in Oslo 
most of our lives, we have seen numerous 
colourful sunsets, not only in the autumn 
but equally so in the winter and early spring. 
Likewise, the red sunrises and sunsets fol-
lowing the Krakatoa eruption in August 
1883 would surely occur more or less every 
day when relatively clear skies prevailed, 
as long as the volcanic dust remained in 
the atmosphere. That would be consistent 
with observations of red sunsets after other 
major eruptions such as El Chichón in 1983 
(Robock, 2000) or Pinatubo in 1991. So why 
was Munch so shaken by his observation of 
‘flaming clouds’, if this was a phenomenon 
which must have taken place relatively fre-
quently at this time?

Olson et  al. searched the astronomical 
and meteorological records for the period 
just prior to 22 January 1892 (the presumed 
date for Munch’s prose accounts) looking 
(without success) for the impressive event that 
could have so dramatically affected Munch. 
Apparently, they did not study the protocols 
of the Christiania Observatory thoroughly 
enough to find the abundant notes 
mentioned above on ‘iridescent clouds’.

Another argument against the Krakatoa 
hypothesis is the characteristic undulating 
shape of the sky in The Scream. Krakatoa, 
at 6°S, is located close enough to the 
equator that the sulphuric gases from 
the explosive eruption, after reaching the 
stratosphere, would be spread all over the 
globe through the Brewer–Dobson circula-
tion. On timescales of weeks (Robock, 2000), 
the gases would be converted into submi-
crometer sized sulphate aerosols, forming 
a global haze layer with an optical depth 
of 0.55 (Rampino et  al., 1988). This means 
that seen from Oslo, at 60°N, the strato-
spheric haze layer may have been rather 
diffuse, unlike the distinct wavy pattern 
seen in Munch΄s The Scream. Descriptions 
from Europe and North America of brilliant 
sunsets in 1883/1884 compiled by Symons 
(1888) describe spectacular colours, but 
not wave-like features. The same appears 
to have been the case after the 1991 Mt. 
Pinatubo eruption (e.g. di Cicco, 1991).

Discussion
The text by Skredsvig (1943) strongly sug-
gests that Munch’s vision was indeed a 
remembrance of an event which was very 

that  persisted for the next couple of years, 
indeed creating favourable conditions for 
spectacular sunrises and sunsets over most 
of the planet. According to Olson (2014), the 
Royal Society of London reported observa-
tions of spectacular red sunsets in Norway 
during the winter 1883/1884.

Olson et al. (2004) start by reviewing some 
earlier discussions on the background for 
the skies in The Scream. First, they refer to 
Heller (1973) who wrote in general terms 
that unusually colourful sunsets are visible in 
Oslo […] in the late months of autumn […] As 
the sun then sets, it shines into the clouds […] 
and transforms them into stripes and tongues 
of intense red and yellow in the blue sky. The 
phenomenon is an extremely impressive one, 
as unforgettable as it is indescribable.

They also refer to a BBC documentary 
which adopted the same explanation. A 
companion book to the BBC programme, 
The Private Life of a Masterpiece, by Monica 
Bohm-Duchen (2001), noted that red and 
yellow wave-like clouds are a climatic pecu-
liarity of northern Europe, frequently painted 
by artists from the north.

At the other extreme, Olson et  al. con-
tinue, Thomas M. Messer argues in his 1973 
study (Messer, 1986) that ‘nothing external 
gives a clue to the horror that impels the out-
cry’ and observes that the ‘band-like arrange-
ments that lend intensity and swirling motion 
to the composition as a whole have often been 
identified as visualisation of sound waves’ but 
alternately could be ‘externalisation of force 
and energy’.

They then conclude: These explanations 
didn’t seem adequate to us. Messer seems to 
imply that Munch’s experience was entirely 

Figure 7. (a) Edvard Munch ‘Sick mood by sunset. Despair’, 1892. (b) ‘The Scream’, 1893. 
Blaafarveverket (2013).

(a) (b)

For some time he had wanted to paint the 
memory of a sunset. Red as blood. No, it 
actually was coagulated blood. But no 
one would feel it the same way as he had. 
Everybody would think of clouds. He talked 
himself into sadness about this which 
had grabbed him with anxiety. Sadness, 
because the miserable means of painting 
never went far enough. ‘He yearns for the 
impossible, and has despair as his religion,’ I 
thought to myself, but advised him to paint 
it – And he painted his peculiar Scream.

This was the painting now called Despair 
(1892), which is recognised as the ‘first 
Scream’ (L. Jacobsen, pers. comm.). It is 
shown in Figure 7, together with the 1893 
version of The Scream.

Skredsvig’s note clearly leaves the strong 
impression that Munch’s ‘sadness and 
despair’ were related to a real vision of the 
atmosphere, which motivates the search for 
a rational explanation from nature.

The Krakatoa hypothesis
In 2004, three American astronomers pub-
lished an article (Olson et al., 2004) arguing 
that Munch’s clouds were inspired by the 
frequent red sunrises and sunsets which 
occurred over large parts of the Earth fol-
lowing the great eruption of the Krakatoa 
volcano in Indonesia in 1883. This eruption, 
which is estimated to have been the sec-
ond strongest eruption on Earth in historic 
times since 1500, after Mt Tambora in 1815. 
(USGS, 1997), blasted enormous amounts 
of sulphuric gases into the atmosphere, 
which formed a stratospheric haze layer 
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Theory of Vector (Polarized) Radiative Transfer (1)

Basic Equations and Definitions
van de Hulst (1957): Let us consider a beam of light with a certain frequency

and traveling in one direction. We choose a plane of reference through the direction
of propagation. By r we shall denote the unit vector along the normal of this
plane (sense arbitrary) and by l the unit vector in this plane and perpendicular
to the direction of propagation. The sense is such that r × l is in the direction of
propagation. The two letters stand for the last letters of the words perpendicular and parallel.

We may use the Stokes vector representation (superscript T denotes transpose):

I = [I`, Ir, U, V ]T = [I‖, I⊥, U, V ]T

In terms of the complex transverse electric field components of the radiation field
E` = |E`|e−iε1 andEr = |Er|e−iε2, these Stokes vector components are (δ = ε1−ε2):

I` = E`E
∗
`

Ir = ErE
∗
r

U = 2|E`||Er| cos δ

V = 2|E`||Er| sin δ. (1)

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Theory of Vector (Polarized) Radiative Transfer (2)

Figure 1: Illustration of the two transverse components of Rayleigh-scattered light. Ω̂′ and Ω̂ are
the incident and scattered propagation vectors, respectively. Π′⊥ and Π′‖ are the induced dipole
moments for incident electric fields that are linearly polarized in the directions perpendicular to,
and parallel with, the scattering plane (shown as the white rectangle), respectively. I⊥ and I‖ are

the corresponding scattered radiances in direction Ω̂ associated with the induced dipoles. The
plane defined by Π′⊥ and Π′‖ as well as by I⊥ and I‖ (both shown as shaded) are normal to the
scattering plane.
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Theory of Vector (Polarized) Radiative Transfer (3)

The connection between this Stokes vector representation,
I = [I`, Ir, U, V ]T , and the more commonly used representation
IS = [I,Q, U, V ]T is simply given by:

IS = DI (2)

D ≡


1 1 0 0
1 −1 0 0
0 0 1 0
0 0 0 1

 . (3)

The scattered transverse electric field [E`, Er]
T can be obtained in terms of the

incident field [E`0, Er0]T by a linear transformation:(
E`

Er

)
= A ·

(
E`0

Er0

)
where A is a 2× 2 matrix −→ the amplitude scattering matrix.
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Theory of Vector (Polarized) Radiative Transfer (4)

The corresponding linear transformation connecting:

• the incident and scattered Stokes vectors in the scattering plane is called the
Mueller matrix (for a single scattering event).

For scattering by a small volume containing an ensemble of particles:

• the ensemble-averaged Mueller matrix is referred to as the Stokes scattering
matrix FS(Θ). Here Θ is the scattering angle given by (u = cos θ):

cos Θ = cos θ cos θ′ + sin θ sin θ′ cos(φ′− φ) = uu′ +
√

1− u2
√

1− u′2 cos(φ′− φ)

where (θ′, φ′) are the polar and azimuthal angles prior to scattering, and (θ, φ)
those after scattering. Finally, when transforming from the scattering plane to
local meridian planes of reference:

• the corresponding matrix is referred to as the scattering phase matrix
MS(u′, φ′, u, φ), related to FS(Θ) through:

MS(u′, φ′, u, φ) = L(π − i2)FS(Θ)L(−i1) (4)

where L is a rotation matrix used to rotate the reference planes.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Theory of Vector (Polarized) Radiative Transfer (5)

Ω̂

θ

θ′

φ

z

y

A

C

φ′

B Θ

x

Ω̂′

O

Coordinate system for scattering by a volume element at O. The points C, A,
and B are located on the unit sphere. The incident light beam with Stokes vector
Iinc

S is in direction AO(θ′, φ′) with unit vector Ω̂′, and the scattered Stokes vector

Isca
S is in direction OB(θ, φ) with unit vector Ω̂.
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Theory of Vector (Polarized) Radiative Transfer (6)

Stokes scattering matrix – spherical particles

For homogeneous spherical particles the amplitude scattering matrix A is diag-
onal, and the Stokes scattering matrix in the Stokes vector representation (Eq. 2)
is of the following form:

FS(Θ) =


a1 b1 0 0
b1 a1 0 0
0 0 a3 b2

0 0 −b2 a3

 (5)

where each of the four independent components a1(Θ), a3(Θ), b1(Θ), b2(Θ) is a
function of the scattering angle Θ, given by:

cos Θ = cos θ cos θ′ + sin θ sin θ′ cos ∆φ. (6)

∆φ = φ−φ′ is the difference in azimuth between the direction of incidence (θ′, φ′)
and scattering (θ, φ).

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Theory of Vector (Polarized) Radiative Transfer (7)

Generalization to nonspherical particles

To include scattering by nonspherical particles, we may adopt a Stokes scattering
matrix of the form:

FS(Θ) =


a1 b1 0 0
b1 a2 0 0
0 0 a3 b2

0 0 −b2 a4

 . (7)

This scattering matrix with six independent elements is valid if any of the fol-
lowing assumptions is satisfied:

1. each particle in the ensemble has a plane of symmetry (e.g. homogeneous spheroids, which include homo-

geneous spheres), and the particles are randomly oriented; or

2. the ensemble contains particles and their mirror particles in equal number and in random orientation; or

3. the particles are much smaller than the wavelength of light (Rayleigh limit).
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Theory of Vector (Polarized) Radiative Transfer (8)

The a1 ≡ a1(Θ) component of the Stokes scattering matrix satisfies:

1

2

∫ 1

−1

a1(Θ)d(cos Θ) = 1 ← normalization. (8)

In the scalar case this component is called:

• the scattering phase function:

p(Θ) = p(cos Θ) ≡ a1(Θ)

and it is the only one that matters if polarization effects are ignored.

The scattering phase matrix MS(Θ) derived from FS(Θ) pertains to the Stokes
vector representation IS = [I,Q, U, V ]T , which is related to I = [I`, Ir, U, V ]T

through IS = DI, where D is given by Eq. (3). The corresponding scattering phase
matrix is related to MS by:

M = D−1MSD

as explained in some detail below.
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Expansion in Generalized Spherical Functions (1)

The elements of FS(Θ) in Eq. 7 can be expanded in generalized spherical functions
(GSFs). To obtain the Fourier components of the scattering phase matrix from
the expansion coefficients of the Stokes scattering matrix, we may use an efficient
method developed by Siewert (1981, 1982), in which

• the expansion coefficients of the Stokes scattering matrix in the basis of GSFs
are directly transformed into the Fourier components of the scattering phase
matrix.

An advantage of this method is that

• the expressions for the Fourier components in terms of the GSFs are purely
analytical.

We start by expanding the scattering phase matrix in a Fourier series as follows:

M(τ, u′, φ′;u, φ) =

2M−1∑
m=0

{
Mcm(τ, u′, u) cosm(φ′ − φ)

+ Msm(τ, u′, u) sinm(φ′ − φ)

}
. (9)
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Expansion in Generalized Spherical Functions (2)

Now use addition theorem for GSFs to express the Fourier expansion coefficients
directly in terms of the expansion coefficients of the Stokes scattering matrix:

Mcm(τ, u′, u) = Am(τ, u′, u) + D̃Am(τ, u′, u)D̃ (10)

Msm(τ, u′, u) = Am(τ, u′, u)D̃− D̃Am(τ, u′, u) (11)

where D̃ = diag{1, 1,−1,−1}. The matrix Am(τ, u′, u) is given by:

Am(τ, u′, u) =

2N−1∑
`=m

P`
m(u)Λ`(τ )P`

m(u′). (12)

The elements of Λ`(τ ) can be expressed in terms of so-called “Greek” constants:

Λ`(τ ) =


α`1 β`1 0 0
β`1 α`2 0 0
0 0 α`3 β`2
0 0 −β`2 α`4

 . (13)
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Expansion in Generalized Spherical Functions (3)

The elements of Λ`(τ ) are the expansion coefficients of the elements of the Stokes
scattering matrix in generalized functions. Thus (supressing the τ -dependence):

a1(Θ) =
2N−1∑
`=0

α`
1P

`
0,0(cos Θ) (14)

a2(Θ) + a3(Θ) =
2N−1∑
`=2

(α`
2 + α`

3)P
`
2,2(cos Θ) (15)

a2(Θ)− a3(Θ) =
2N−1∑
`=2

(α`
2 − α`

3)P
`
2,−2(cos Θ) (16)

a4(Θ) =
2N−1∑
`=0

α`
4P

`
0,0(cos Θ) (17)

b1(Θ) =
2N−1∑
`=2

β`
1P

`
0,2(cos Θ) (18)

b2(Θ) =
2N−1∑
`=2

β`
2P

`
0,2(cos Θ). (19)

The matrix P`
m(u) in Eq. (12): Am(τ, u′, u) =

∑2N−1
`=m P`

m(u)Λl(τ)P`
m(u′) is defined as:
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Expansion in Generalized Spherical Functions (4)

P`
m(u) =


P `
m,0(u) 0 0 0

0 P `
m,+(u) P `

m,−(u) 0
0 P `

m,−(u) P `
m,+(u) 0

0 0 0 P `
m,0(u)

 (20)

where

P `
m,±(u) =

1

2
[P `
m,−2(u)± P `

m,2(u)]. (21)

The functions P `
m,0(u) and P `

m,±2(u) are the generalized spherical functions.
Again, in the scalar case we need only the a1(Θ) component of the Stokes scattering
matrix FS(Θ), and in accordance with Eq. 8, we have:

a1(Θ) =

2N−1∑
`=0

α`1(τ )P `
0,0(cos Θ) ≡ p(τ, cos Θ) =

M−1∑
`=0

(2` + 1)g`(τ )P`(cos Θ). (22)

Thus, we have P `
0,0(cos Θ) ≡ P`(cos Θ), where P`(cos Θ) is the Legendre polynomial

of degree `, and α`1(τ ) ≡ (2` + 1)g`(τ ).

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

16



Expansion in Generalized Spherical Functions (5)

For completeness we should note that:

• the expansion coefficients given above are for the scattering phase matrix MS

that relates the incident and scattered Stokes vectors in the representation IS =
[I,Q, U, V ]T , while it is sometimes convenient

• to use the representation I = [I`, Ir, U, V ]T .

The connection between these two representations is simply

IS = DI

where D is given by Eq. (3), which implies that:

• the matrix M in the Stokes vector representation I = [I`, Ir, U, V ]T is related to
the matrix MS in the Stokes vector representation IS = [I,Q, U, V ]T as follows:

M = D−1MSD.

Note that the rotations of the reference plane (see Eq. 4) are implicitly accounted
for in the expansion method.
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Examples of Scattering Phase Functions

The action of scattering particles (including molecules) on the radiance and the
state of polarization of an incident radiation field can be represented as a linear
operator, called

• The scattering phase matrix.

• The scattering phase matrix is a 4 × 4 matrix that connects the Stokes vector
of the incident radiation to the scattered radiation.

• The elements of the scattering phase matrix depend upon the optical properties
of the particles.

• The radiance of light, i.e. the first component I of the Stokes vector IS =
[I,Q, U, V ]T , conveys information about the energy carried by the light field.

• For this purpose we need only the a1 element of the Stokes scattering matrix,
which is usually referred to as the scattering phase function.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Examples of Scattering Phase Functions

In many applications like:

• Heating/cooling of the medium, photodissociation of molecules, and biological
dose rates

it is often permissible to ignore polarization effects. The reason is that:

• The error incurred by doing so is very small compared to errors caused by
uncertainties in the input parameters to the computation, which determine the
inherent optical properties of the medium.

We may therefore limit our attention to the scattering phase function if our
interest lies primarily in energy transfer, although:

• In certain remote sensing applications, the state of polarization
carries additional information that may be absolutely necessary.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Rayleigh Scattering Phase Function (1)

The elastic scattering of light by small particles or molecules, called Rayleigh
scattering, closely follows that of an induced dipolar oscillator:

• The incident wave induces a motion of the bound electrons, which is in phase
with the wave.

• The much more massive positively charged nucleus provides a ‘restoring force’
for the electronic motion.

• For a particle or molecule much smaller than the wavelength of light, all parts
of the particle are subjected to the same value of the electric field.

• The oscillating charge radiates secondary waves. Thus: the particle extracts
energy from the wave and re-radiates it in all directions.

If we assume that the incident radiation is unpolarized, then the normalized scat-
tering phase function is given by (see §3.4.1)

pRay(cos Θ) =
3

3 + f
(1 + f cos2 Θ), (23)

where the parameter f = 1−ρ
1+ρ, and ρ is the depolarization factor attributed to the

anisotropy of the scatterer.
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Rayleigh Scattering Phase Function (2)

• Expanding pRay(cos Θ) in terms of the incident and scattered polar and az-
imuthal angles, we find [cos Θ = cos θ︸︷︷︸

u

cos θ′︸ ︷︷ ︸
u′

+ sin θ︸︷︷︸
(1−u2)1/2

sin θ′︸︷︷︸
(1−u′2)1/2

cos(φ′ − φ)]:

pRay(u′, φ′;u, φ) =
3

3 + f

[
1 + fu′2u2 + f (1− u′2)(1− u2) cos2(φ′ − φ)

+2fu′u(1− u′2)1/2(1− u2)1/2 cos(φ′ − φ)
]
. (24)

• The azimuthally averaged scattering phase function is found to be:

pRay(u′, u) =
1

2π

∫ 2π

0

dφ′pRay(u′, φ′;u, φ)

=
3

3 + f

[
1 + fu′2u2 +

f

2
(1− u′2)(1− u2)

]
(25)

where we have used:
∫ 2π

0 dx cos2 x = 1/2;
∫ 2π

0 dx cosx = 0.
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Moments of Phase Functions (1)

•We have (see Eq. 6.21):

p(τ, cos Θ) ≈
2N−1∑
`=0

(2` + 1)χ`(τ )P`(cos Θ) (26)

where P` is the `th Legendre polynomial, and χ`(τ ) is given by:

χ`(τ ) =
1

2

∫ 1

−1

d(cos Θ)P`(cos Θ)p(τ, cos Θ). (27)

• Further, we have (see Eq. 6.24):

1

2

∫ 1

−1

duP`(u)Pk(u) =
1

2` + 1
δ`k ← orthogonality (28)

P`(cos Θ) = P`(u
′)P`(u) + 2

∑̀
m=1

Λm
` (u′)Λm

` (u) cosm(φ′ − φ) (29)

Λm
` (u) =

√
(`−m)!

(` + m)!
Pm
` (u)

where Eq. 29 = Addition theorem, and Pm
` (u) = associated Legendre polynomial.
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Moments of Phase Functions (2)

Application of azimuthal averaging, i.e. 1
2π

∫ 2π

0 dφ · · · , to both sides of (26) gives

p(τ, u′, u) =
1

2π

∫ 2π

0

dφ p(τ, cos Θ) ≈
2N−1∑
l=0

(2` + 1)χ`(τ )P`(u)P`(u
′) (30)

where we have made use of Eq. 29.

• From Eq. 30 it follows that:

1

2

∫ 1

−1

p(τ, u′, u)Pk(u
′)du′ ≈

2N−1∑
`=0

(2` + 1)χ`(τ )P`(u)
1

2

∫ 1

−1

P`(u
′)Pk(u

′)du′ (31)

which by the use of Eq. 28 leads to

χ`(τ ) =
1

P`(u)

1

2

∫ 1

−1

p(τ, u′, u)P`(u
′)du′. (32)

Thus:

• To calculate the moments we can use the azimuthally-averaged
phase function.
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Moments of Rayleigh Phase Function

• Expressing Eq. 25 in terms of Legendre polynomials, one may show that:

pRay(u′, u) = 1 +
2f

3 + f
P2(u)P2(u′) = P0(u)P0(u′) +

2f

3 + f
P2(u)P2(u′). (33)

• Using Eqs. 32 and 33, we obtain:

χ` =
P0(u)

P`(u)
δ0` +

1

5

2f

3 + f

P2(u)

P`(u)
δ2`.

Thus, we get:
χ0 = 1; χ1 = 0,

and

χ2 =
1

5
× 2f

3 + f
=

2f

5(3 + f )
→ 1

10
= 0.1 if f = 1,

and
χ` = 0 for ` > 2.

We note that the asymmetry factor for the Rayleigh scattering phase function is
g = χ1 = 0 because of the orthogonality of the Legendre polynomials.∗
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The Mie-Debye Scattering Phase Function (1)

Scattering in planetary media is caused by molecules and particulate matter:

• If the size of the scatterer is small compared to the wavelength as is the case for
scattering of solar radiation by molecules, then the scattering phase function is
only mildly anisotropic.

• Such a scattering phase function poses no special problem when solving the
radiative transfer equation.

• On the other hand, scattering of solar radiation by larger particles is character-
ized by strong forward scattering with a so-called diffraction peak in the forward
direction.

To understand why these larger dielectric particles have a preference for scattering
in the forward direction, we may:

• consider a simplified model of a scattering particle which is not small compared
with the wavelength.
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The Mie-Debye Scattering Phase Function (2)

• Recall first that: a Rayleigh scatterer can be understood in terms of
the emission induced from a single excited dipole.

• Even a very small particle might still be composed of many thousands of ele-
mentary dipoles, BUT:

– the emission from this array of dipoles all add together coherently if the
wavelength of the incoming radiation is large compared to the size of the
particle.

•WHY? Because all the oscillators are in phase, since they are subjected to es-
sentially the same electric field. Thus: the radiated pattern is exactly
the same as that of a single dipole.

• If the particle size is comparable to, or larger than, the wavelength, all parts of
the dipole are no longer in phase.
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The Mie-Debye Scattering Phase Function (3)

In this case one finds that:

• The scattered wavelets in the forward direction are always in
phase;

• those emitted in the backward direction usually suffer some mutual cancellation.
Wavelets emitted in other directions will also be partially interferring.

• This very simplified picture explains the predominance of the forward “diffrac-
tion” peak in large-particle scattering.

• The Mie-Debye theory has been refined and developed by hundreds of investi-
gators. Although the mathematical foundation is complete, its numerical imple-
mentation has proven to be very challenging.

• Progress in developing fast and accurate computer algorithms continues to the
present day.
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Figure 2: Illustration of phase functions occurring in planetary media. Shown are phase functions
for: molecular (Rayleigh) scattering, and aerosol particles (upper left); hydrosols (upper right);
cloud droplets (lower left); and ice crystals (lower right).
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The Henyey-Greenstein Scattering Phase Function (1)

A one-parameter phase function first proposed by the astronomers Henyey and
Greenstein in 1941 is

pHG(cos Θ) =
1− g2

(1 + g2 − 2g cos Θ)3/2
. (34)

• This function has no physical basis, and should be considered as a one-parameter
analytic fit to an actual phase function.

• It should not be used except when the fit is reasonably good. However:

• as far as the radiative transfer is concerned, the requirement of ‘reasonableness’
is not very strict, because the multiple scattering process tends to smooth out
irregularities present in the more accurate function.

• A remarkable feature of the HG function is the fact that the Legendre-
polynomial coefficients are simply:

χl = (g)`.
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The Henyey-Greenstein Scattering Phase Function (2)

This feature explains its popularity: only the first moment of the phase function,
i.e., the asymmetry factor g must be specified. Thus, the Legendre polynomial
expansion of the H-G phase function is given simply by:

pHG(cos Θ) = 1 + 3g cos Θ + 5g2P2(cos Θ) + · · · =
∞∑
`=0

(2` + 1)g`P`(cos Θ).

Also, the Henyey-Greenstein phase function yields:
complete forward scattering for g = 1,
isotropic scattering for g = 0, and
complete backward scattering for g = −1.
The linear combination:

p(cos Θ) = bpHG(g, cos Θ) + (1− b)pHG(g′, cos Θ)

can be used to simulate a phase function with both a forward and a backward
scattering component (g > 0 and g′ < 0). Here, 0 < b < 1 and g and g′ are
usually different.
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The Fournier–Forand Scattering Phase Function (1)

Measurements have shown that the particle size distribution (PSD) in oceanic
water can be accurately described by a power law (Junge distribution)

n(r) = C(ξ, r1, r2)/rξ where

• n(r) is the number of particles per unit volume per unit bin width,

• r [µm] is the radius of the assumed spherical particles, and r1 and r2 denote the
smallest and largest particle size, respectively.

• The normalization constant C(ξ, r1, r2) [cm−3 · µmξ−1] is called the Junge co-
efficient, and the PSD slope ξ typically varies between 3.0 and 5.0.

Fournier and Forand derived an analytic expression for the scattering phase function
of oceanic water (the FF scattering phase function) given by

pFF(Θ) =
1

4π(1− δ)2δν

{
ν(1− δ)− (1− δν) +

4

ũ2
[δ(1− δν)− ν(1− δ)]

}
+

1− δν180

16π(δ180 − 1)δν180

[3 cos2 Θ− 1], (35)

where ν = 0.5(3− ξ) and δ180 = δ(Θ = 180◦) = 4
3(mr−1)2 .
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The Fournier–Forand Scattering Phase Function (2)

The parameter

δ ≡ δ(Θ) =
ũ2(Θ)

3(mr − 1)2
, ũ(Θ) = 2 sin(Θ/2).

• Note that in addition to the scattering angle, Θ, the FF scattering phase func-
tion depends also on the real part of the refractive index of the particle relative
to water, mr, and the slope parameter, ξ, characterizing the PSD.

Setting x = − cos Θ, and integrating the FF scattering phase function over the
backward hemisphere, one obtains the backscattering ratio (Eq. 6.23)

bFF =
1

2

∫ π

π/2

pFF(cos Θ) sin ΘdΘ =
1

2

∫ 1

0

pFF(−x) dx

= 1− 1− δν+1
90 − 0.5(1− δν90)

(1− δ90)δν90

, (36)

where δ90 = δ(Θ = 90◦) = 4
3(mr−1)2 sin2(45◦) = 2

3(mr−1)2 . Equation 36 can be solved

for ν in terms of bFF and δ90, implying that ν and thus ξ can be determined if mr

and bFF are specified. Hence, pFF(Θ) can be evaluated from a measured value of
bFF if mr is known.
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Figure 3: The Rayleigh (Eq. 23), the FF (Eq. 35), and the Petzold scattering phase
functions.
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The Petzold Scattering Phase Function

Scattering phase functions measured by Petzold (1972) have been widely used by
ocean optics researchers. They are discussed by Mobley (1994), who tabulated
scattering phase functions for clear ocean, coastal ocean, and turbid harbor waters.

• An “average” Petzold scattering phase function, which has an asymmetry
factor g = 0.9223 and a backscattering ratio bFF = 0.019, is shown in Fig. 3
together with the Rayleigh scattering phase function and the FF scattering
phase function.

• For the FF scattering phase function, the power law slope was set to ξ = 3.38,
but results for two different values of the real part of the refractive index
are shown: mr = 1.06 and mr = 1.18. These values yield an asymmetry
factor g = 0.9693 and a backscattering ratio bFF = 0.0067 for mr = 1.06 and
g = 0.9160 and bFF = 0.022 for mr = 1.18.

• Noting the similarity between the FF scattering phase function for mr = 1.18
and the average Petzold scattering phase function, we conclude that

• the average Petzold scattering phase function is more suitable for
mineral-dominated waters than for pigment-dominated waters.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

34



Scaling Transformations Useful for Anisotropic
Scattering (1)

The solution of the radiative transfer equation for strongly forward-peaked scat-
tering is notoriously difficult:

• An accurate expansion of the scattering phase function may require several hun-
dred terms for a typical cloud or hydrosol scattering phase function.

As we shall see, most methods of solving the RTE start by approximating the
integral term by a finite sum:

• The number of terms in this sum is usually of the same order (2N) as the
number of terms necessary to get a good Legendre polynomial representation
of the scattering phase function.

• This approach may lead to such a large system of equations that the solution
becomes impractical even on modern computers.
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Scaling Transformations Useful for Anisotropic
Scattering (2)

To circumvent this difficulty with strongly forward-peaked scattering:

• So-called scaling transformations have been invented.

• The motivation is to transform a radiative transfer equation with a strongly
forward-peaked scattering phase function into a more tractable problem with a
scattering phase function that is much less anisotropic.

The pronounced forward scattering by cloud droplets becomes even more extreme
if we plot the scattering phase function as a function of the cosine of the scattering
angle (instead of the scattering angle):

• The forward scattering peak takes on the resemblance of a Dirac δ-function when
plotted versus cosine of the scattering angle.

• This behavior suggests that it would be useful to treat photons scattered within
the sharp forward peak as unscattered, and truncate this peak from the scatter-
ing phase function.
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Scaling Transformations Useful for Anisotropic
Scattering (3)

•We start by assuming that the forward scattering peak can be represented by
a Dirac δ-function, while the remainder of the scattering phase function is ex-
panded in Legendre polynomials as usual. Thus, we set:

p̂δ−M(cos Θ) ≡ 2fδ(1− cos Θ) + (1− f )

M−1∑
`=0

(2` + 1)χ̂`P`(cos Θ)

= p̂δ−M(u′, φ′;u, φ) = 4πfδ(u′ − u)δ(φ′ − φ)

+ (1− f )

2M−1∑
`=0

(2` + 1)χ̂`

{∑̀
m=0

Λm
` (u′)Λm

` (u) cosm(φ′ − φ)

}
(37)

• δ(1− cos Θ) = 2πδ(u′ − u)δ(φ′ − φ), and

• f (0 ≤ f ≤ 1) is a dimensionless parameter to be determined by a fit to an
actual scattering phase function.
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Scaling Transformations Useful for Anisotropic
Scattering (4)

We shall refer to this transformation as the δ−M method.

Note that:

• If f = 0 we retain the usual Legendre polynomial expansion and χ̂` ≡ χ`.

For simplicity we consider the azimuthally-averaged radiative transfer equation
below.

•We first find a general expression for the azimuthally-averaged scaled scattering
phase function [2δ(1− cos Θ) = 4πδ(u′ − u)δ(φ′ − φ)]:

p̂δ−M(u′, u) =
1

2π

∫ 2π

0

dφ p̂(cos Θ)

= 2fδ(u′ − u) + (1− f )

M−1∑
`=0

(2` + 1)χ̂`P`(u
′)P`(u). (38)
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The δ-isotropic approximation (1)

Remove forward-scattering peak, and approximate remainder of the scattering
phase function (PF) by a constant, keeping only the ` = 0 term in Eq. 38 (isotropic
scattering). Then, the φ-averaged PF becomes:

p̂δ−iso(u′, u) ≡ 1

2π

∫ 2π

0

dφp̂(cos Θ) = 2fδ(u′ − u) + (1− f ). (39)

Use of this scattering phase function in the φ-averaged RTE (Eq. 6.33) yields:

u
dI(τ, u)

dτ
= I(τ, u)− $

2

∫ 1

−1

du′p(u′, u)I(τ, u′)

= I(τ, u)−$fI(τ, u)− $(1− f )

2

∫ 1

−1

du′I(τ, u′) (40)

u
dI(τ̂ , u)

dτ̂
= I(τ̂ , u)− $̂

2

∫ 1

−1

du′I(τ̂ , u′) (41)

dτ̂ ≡ (1−$f )dτ ; $̂ ≡ (1− f )$

1−$f . (42)
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The δ-isotropic approximation (2)

For simplicity we have ignored the source term Q(τ, u) ≡ S∗(τ, u)+(1−$)B(τ ).
Because we have divided by 1−$f this term simply becomes:

Q̂(τ̂ , u) = Q(τ, u)/(1−$f ).

Finally, to complete the scaling, we ask:

• How do we specify f , the strength of the forward scattering peak?

• There is no unique choice, but it should depend in some simple way on the
asymmetry factor, g.

Since χ1 = g is the first-moment of the unscaled scattering phase function: equate
the first moment of pacc (the accurate scattering phase function) to the first moment
of the scaled scattering phase function p̂:

χ̂1 =
1

P1(u)

1

2

∫ 1

−1

du′u′p̂δ−iso(u′, u) = f. (43)

This result follows from substitution of Eq. 39 in Eq. 43 and carrying out the
integration. Our matching requirement then yields: f = χ1 = g.
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The δ-isotropic approximation (3)

Note that:

• The δ-isotropic approximation is sometimes referred to as the transport ap-
proximation.

• Use of it in the RTE leads to a RTE with isotropic scattering, but with a scaled
optical depth

dτ̂ = (1−$g)dτ

and a scaled single-scattering albedo

$̂ = (1− g)$/(1−$g).

• Thus, the RTE with strongly anisotropic scattering is reduced to
a RTE with isotropic scattering which is much easier to handle
numerically.

• These particular scaling transformations of the optical depth and the single-
scattering albedo are sometimes referred to as similarity relations.
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The δ-TTA approximation

A better approximation results from representing the remainder of the PF by two
terms as follows (setting M = 1 in Eq. 38):

p̂δ−TTA(u′, u) = 2fδ(u′ − u) + (1− f )

1∑
`=0

(2` + 1)χ̂`P`(u
′)P`(u). (44)

Substitution of this PF into the azimuthally-averaged RTE yields:

u
dI(τ̂ , u)

dτ̂
= I(τ̂ , u)− $̂

2

1∑
`=0

(2` + 1)χ̂`P`(u)

∫ 1

−1

du′P`(u
′)I(τ̂ , u′) (45)

where dτ̂ and $̂ are defined in Eq. 42.
Again, by matching moments of the approximate and accurate scattering phase
functions we find:

χ̂1 ≡ ĝ =
χ1 − f
1− f =

g − f
1− f ; f = χ2.
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Remarks on low-order scaling approximations (1)

We may now ask:

•What (if anything) has been gained by the scaling?

• First, we note that the TTA makes the replacement χ` = 0 for ` ≥ 2. Thus,
all the higher order moments, which may contribute substantially to the
phase function if it is strongly anisotropic, have been set to zero.

•When we discuss the general case (arbitrary M) below, we will find that the
δ−TTA approximation is equivalent to setting χ` = χ2 for ` ≥ 2.

• Thus, for strongly anisotropic phase functions, χ3 = χ2, which demonstrates the
advantage of the TTA scaling transformation, i.e.,

=⇒ the third moment and higher moments are set equal to the
second moment, which is generally expected to be better than
setting them to zero.
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Figure 4: Illustration of actual and δ−M scaled scattering phase functions of aerosol particles, cloud
droplets, ice crystals, and hydrosols.
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Remarks on low-order scaling approximations (2)

The two-term approximation is commonly used in connection with the so-called
two-stream and Eddington approximations to be discussed in Chapter 7:

• In these approximations the RTE is replaced by two coupled, first order differ-
ential equations which are easily solved analytically.

• In the two-stream case, the two coupled equations are obtained by replacing the
integral (multiple-scattering term) by just two (quadrature) terms or “streams,”

i.e., we set
∫ 1

−1 du I(τ, u) ≈ I+(τ ) + I−(τ ).

• In the Eddington case, we expand the radiance in Legendre polynomials
keeping only the first two terms, i.e., we set I(τ, u) = I0(τ ) + uI1(τ ). Insertion
into the RTE and use of the first two moments lead to two coupled equations.

• Note that, as a rule of thumb, it is customary to keep the number
of terms in the expansion of the scattering phase function equal
to the number of quadrature terms (or expansion terms for the
radiance).
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Remarks on low-order scaling approximations (3)

• Hence, a two-term expansion of the scattering phase function leads naturally to
the two-stream (or Eddington) approximation.

• However, it is possible to use the “exact” phase function even in the two-stream
approximation. The “rule of thumb” merely implies that there may not
be much to gain from using a very accurate representation of the scattering
phase function if the approximation for solving the RTE is much cruder.

• Finally, if we use the HG scattering phase function with the δ-TTA, then f = g2,
and therefore ĝ = g/(1 + g): =⇒ 0 ≤ ĝ ≤ 0.5 when 0 ≤ g ≤ 1.

• Thus, the δ−TTA applies to a range of ĝ (ĝ < 0.5) for which the TTA has been
shown to be reasonably accurate.

• However, we must require ĝ ≡ χ̂1 < 1/3 to guarantee that the scaled PF [i.e.
p̂δ−TTA(cos Θ) = (1− f )(1 + 3ĝ cos Θ)] is positive for all scattering angles:

•we may obtain unphysical results (e.g. negative reflectance) un-
less ĝ < 1/3 or g < 1/2.
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The δ−M approximation: Arbitrary M (1)

We generalize the method to include an arbitrary number of terms for the re-
mainder of the PF in Eq. 37. Substituting Eq. 38 into Eq. 40, we find

u
dI(τ̂ , u)

dτ̂
= I(τ̂ , u)− $̂

2

M−1∑
l=0

(2l + 1)χ̂lPl(u)

∫ 1

−1

du′Pl(u
′)I(τ̂ , u′) (46)

where dτ̂ and $̂ are defined in Eq. 42. As before:

•We set the expansion coefficients χ̂` equal to the moments, χ`, of the accurate
(unscaled) scattering phase function by equating moments:

χ` =
1

2

∫ 1

−1

d(cos Θ)pacc(cos Θ)P`(cos Θ)

χ̂` =
1

2

∫ 1

−1

d(cos Θ)p̂δ−M(cos Θ)P`(cos Θ)

where pacc denotes the accurate value for p. This procedure leads to:

χ` = f + (1− f )χ̂` or χ̂` =
χ` − f
1− f .
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The δ−M approximation: Arbitrary M (2)

Note that:

• If we set f = 0, then dτ̂ = dτ , $̂ = $, and χ̂` = χ`: the scaled equation
reduces to the unscaled one as it should.

•We determine f by setting f = χM (truncation), which is clearly a generalization
of the procedure used for M = 1.

• Setting χ̂` = 0 for ` ≥ M is equivalent to replacing χ` with χM for ` ≥ M :
While the ordinary Legendre polynomial expansion of order M
sets χ` = 0 for ` ≥ M , the δ−M method makes the replacement
χ` = χM for ` ≥M .

• Finally we note that the error in the scattering phase function representation
incurred by using the δ−M method is:

pacc(cos Θ)− p̂δ−M(cos Θ) =

∞∑
`=M+1

(2` + 1)(χ` − χM)P`(cos Θ).
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Example: The δ-Henyey-Greenstein approximation
(δ−HG)

• In this case we have p̂(cos Θ) = 2fδ(1 − cos Θ) + (1 − f )pHG(cos Θ) where
pHG(cos Θ) =

∑∞
`=0(2` + 1)g`P`(cos Θ).

• By matching the first two moments of this scattering phase function (χ̂1 and
χ̂2) to the actual scattering phase function, we find:

χ̂1 = f + (1− f )g = χ1

χ̂2 = f + (1− f )g2 = χ2.

Solving for g and f we find:

g =
χ1 − χ2

1− χ1
; f =

χ2 − χ1
2

1− 2χ1 + χ2
.
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Mathematical and Physical Meaning of the Scaling (1)

An essential feature of the scaling is:

• To turn the unscaled problem into one in which the optical depth is reduced
(dτ̂ < dτ ), while the absorption is artificially increased ($̂ < $).†

• In addition, the scattering phase function appears considerably less anisotropic.

• BUT the new (scaled) RTE is of identical mathematical form to the old one:
whatever “tools” are available for solving the unscaled equation can be applied
to the scaled equation.

• The scaling simply makes the problem more tractable numerically because the
scattering phase function of the new RTE is much less anisotropic due to the
truncation of the forward scattering peak.

• Hence, we expect that many fewer terms are needed to obtain an adequate
Legendre polynomial expansion of the scattering phase function: the scaled
equation is easier to solve by numerical means.
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†It should be noted that this decrease in the single-scattering albedo is due to a decrease in the scatter-
ing coefficient, which leads to an apparent increase in absorption, although the absorption coefficient is left
unchanged.
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Mathematical and Physical Meaning of the Scaling (2)

Thus:

• The δ−M method is not a method of solution, but it makes the RTE easier to
solve by available analytical and/or numerical techniques.

From the physical point of view δ−M relies on the following premise:

• Those beams that are scattered through the small angles con-
tained within the forward peak are not scattered at all. These
beams are in fact “added back” to the original radiation field, which explains
why the scaled optical depth τ̂ is smaller than the original τ .

• The effective asymmetry factor is also less than the original (unscaled) value,
since the angular distribution of those beams scattered outside the forward peak
is (by definition) less extreme.
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What about Energy Conservation?

Consider the transmitted irradiance in the scaled problem:

F (τ̂ ∗) = Fd(τ̂ ∗) + µ0F
se−τ̂

∗/µ0

where the ‘d’ subscript denotes the diffuse irradiance.

• Since τ̂ ∗ < τ ∗, this means that the scaled directly-transmitted solar irradiance
is greater than it is in the unscaled problem.

Because of the truncation of the scattering phase function:

• The “direct” irradiance actually contains some scattered beams of radiation
travelling in very nearly the same direction as the incident beam. For example:

• the Sun’s rays shining through a hazy or dusty atmosphere are spread out into
a very bright blurry disk, somewhat greater than the Sun’s disk itself.

• This bright blurry disk is called the Sun’s aureole, and in fact has been used
as a means of inferring the mean particle size in tropospheric haze.
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What about Energy Conservation?

• A substantial fraction of the solar aureole would be included in the δ−M direct
irradiance.

• The scattered irradiance in this approximation would apply to those beams
scattered largely outside the aureole.

Finally, we note that since the total downward irradiance must be the same
whether we use scaling or not, i.e., F−tot(τ̂ ) = F−tot(τ ), or

•
F−d (τ̂ ) + µ0F

se−τ̂ /µ0 = F−d (τ ) + µ0F
se−τ/µ0

we can always “recover” the unscaled downward diffuse irradiance by solving for
F−d (τ ):

F−d (τ ) = F−d (τ̂ )− µ0F
s(e−τ/µ0 − e−τ̂ /µ0) (47)

where all the quantities on the right are known.

• No such “correction” for the upward irradiance is necessary.
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The δ-fit Method: Weighted SVD LS fitting (1)

The ordinary Legendre polynomial expansion of the scattering phase function is:

p(cos Θ) ≈
M−1∑
`=0

(2` + 1)χ`P`(cos Θ) ≡
M−1∑
`=0

ξ`P`(cos Θ) ξ` = (2` + 1)χ`

ξ` =
2

2` + 1

∫ 1

−1

P`(cos Θ)pacc(cos Θ)d(cos Θ)

and pacc(cos Θ) is the actual scattering phase function. To remove the forward peak
δ−M replaces ξ` by (ξ` − f )/(1− f ):

pδ−M(cos Θ) =

M−1∑
`=0

(ξ` − f )

(1− f )
P`(cos Θ), f = χM .

The purpose of the δ−fit Method is to compute new expansion coefficients c` which
replace the ξ`, and which are constructed to minimize the error:

ε =
∑
i

wi

( p′(cos Θi)

pac(cos Θi)
− 1
)2

p′(cos Θi) =

Ñ∑
`=0

c`P`(cos Θi)

where Ñ is the number of terms required to achieve a desired accuracy.
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The δ-fit Method: Weighted SVD LS fitting (2)

Here Θi is the scattering angle, wi is the weight associated with angle Θi, and
P`(cos Θi) the corresponding Legendre polynomial. The expansion coefficients c`
are determined by solving the least-squares fitting problem
∂ε/∂ck = 0, (k = 0, . . . , Ñ ):∑

i

Pk(cos Θi)

pacc(cos Θi)
wi

(
Ñ∑
`=0

c`P`(cos Θi)

pacc(cos Θi)
− 1

)
= 0.

Truncate the PF by setting the weights for the forward-scattering angles (e.g.,
Θ < 3◦) to zero, set truncation factor to f = 1 − c0, and compute normalized
scattering phase function:

pδ−fit(cos Θi) =
1

1− f p
′(cos Θi).

Advantages of δ−fit method:

• better estimation of PF at large scattering angles (where PF is small)

• forward-peak removed by setting wi ≈ 0 at small angles Θi.
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The δ-fit Method: Weighted SVD LS fitting (3)

Implementation

1. evaluate pacc(cos Θ) at 361 scattering angles Θi (each half degree; use interpola-
tion as need be);

2. select forward peak removal angle Θc and set wi = 0 for Θi < Θc;

3. select an initial number of terms Ñ , and compute all required Legendre polyno-
mials P`(cos Θ) for ` ≤ Ñ ;

4. derive coefficients c` by solving set of linear equations ∂ε/∂c` = 0 (using SVD);

5. if ε larger than desired, increase Ñ and repeat previous step until ε is sufficiently
small;

6. determine scaling factor f = 1− c0 and renormalize PF (divide all c` by c0);

7. remove forward peak of PF by adjusting optical depth:

d̂τ = (1−$f )dτ

and single-scattering albedo:

$̂ = (1− f )$/(1−$f ).
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