
Lecture Notes:
Accurate Solutions of Radiative Transfer Problems

RADIATIVE  
TRANSFER in the 

ATMOSPHERE 
AND OCEAN

R
A

D
IA

T
IV

E T
R

A
N

SFE
R

 in the 
A

T
M

O
SP

H
E

R
E A

N
D

 O
C

E
A

N
SE

C
O

N
D

 E
D

IT
IO

N

Knut Stamnes
Gary E. Thomas
Jakob J. Stamnes

Stam
nes

T
hom

as
Stam

nes

S ECOND EDITION

97
81

10
70

9
47

3
4 

ST
A

M
N

E
S,

 T
H

O
M

A
S 

A
N

D
 S

T
A

M
N

E
S 

– 
R

A
D

IA
T

IV
E 

T
R

A
N

SF
E

R
 I

N
 T

H
E 

A
T

M
O

SP
H

E
R

E 
A

N
D

 O
C

E
A

N
 P

P
C

 C
 M

 Y
 K This new and completely updated edition 

gives a detailed description of radiative 

transfer processes at a level accessible to 

advanced students. The volume gives the 

reader a basic understanding of global 

warming and enhanced levels of harmful 

ultraviolet radiation caused by ozone 

depletion. It teaches the basic physics 

of absorption, scattering, and emission 

processes in turbid media, such as the 

atmosphere and ocean, using simple  

semi-classical models. The radiative 

transfer equation, including multiple 

scattering, is formulated and solved for 

several prototype problems, using both 

simple approximate and accurate numerical 

methods. In addition, the reader has 

access to a power ful, state-of-the-ar t 

computational code for simulating radiative 

transfer processes in coupled atmosphere-

water systems including snow and ice. This 

computational code can be regarded as 

a power ful educational aid, but also as a 

research tool that can be applied  

to solve a variety of research problems  

in environmental sciences.

From reviews of the f irst edition

‘This book should not be missing on the 

desk of any person seriously interested in 

radiative transfer ... I would certainly use 

this book as a basic text and recommend it 

very highly to my students. I am sure that 

both instructor and student can profit a 

great deal from studying this excellent work.’

Meteorology and Atmospheric Physics

‘ ... should grace the shelves of all libraries 

of institutes concerned with research and 

teaching in atmospheric and oceanic science 

and it is an important part of the radiative 

transfer armoury.’       

International Journal of Climatology

‘The book is easy to read, and there are 

many examples to illustrate the concepts 

discussed...[It] should serve well as an 

introduction to radiative transfer.’

EOS

‘ ... a valuable resource for those interested 

in terrestrial radiative transfer.’

Physics Today

C O V E R  D E S I G N E D  B Y  H A RT  M c L E O D  LT D

stamnes

	Access to computational code for simulating 

radiative transfer processes

	Lecture slides based on the book and a 

solutions manual for instructor use

	PowerPoint and JPEG files of the figures in 

the book for instructor use

Based primarily on Chapter 9 in K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative

Transfer in the Atmosphere and Ocean, Cambridge University Press, 2017.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017



A Tutorial Review of the DISORT Formulation

Motivation: Why Do We Study Radiative Transfer?

One reason is illustrated in Figure 1:

– Sunlight passing through the atmosphere interacts with molecules
and aerosol particles.

– A fraction of the light is transmitted into the ocean where it
interacts with pure water as well as embedded (algal and non-
algal) particles.

– Some of this light is scattered upwards, transmitted back into the air and then
to the top of the atmosphere, where it is measured by an instrument deployed
on a satellite (Earth-orbiting or geostationary).

– Such measurements are carried out at several selected wavelengths
in the UV, visible and infrared spectral region.

– What can we learn about the atmosphere and the ocean from
such measurements of “ocean color”?
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Figure 1: A schematic illustration showing aspects of the retrieval problem.
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Generic Radiative Transfer Equation and Formal Solution (1)

Ignoring time-dependence, we may write the differential equation of radiative
transfer as:

Ω̂ · ∇I(ν, s, Ω̂) =
dI(ν, s, Ω̂)

ds
= −k(ν, s)I(ν, s, Ω̂) + S(ν, s, Ω̂) (1)

• I(ν, s, Ω̂) is the monochromatic radiance in direction Ω̂ at frequency ν and
position s.

The extinction coefficient k(ν, s) is:

• the sum of the scattering coefficient σ(ν, s) and the absorption coefficient α(ν, s),
i.e., k(ν, s) = σ(ν, s) + α(ν, s).

• The operator Ω̂ · ∇ indicates the rate of change of the radiance in the direction
Ω̂.
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Generic Radiative Transfer Equation and Formal Solution (2)

In local thermodynamic equilibrium (LTE) the source function becomes:

S(ν, s, Ω̂) = α(ν, s)B[ν, T (s)] +
σ(ν, s)

4π

∫
4π dΩ̂′ p(ν, s, Ω̂′, Ω̂)I(ν, s, Ω̂′) (2)

• B[ν, T (s)] is the Planck function, T (s) is the temperature, and p(ν, s, Ω̂′, Ω̂) is
the scattering phase function.

We introduce the dimensionless differential optical path:

•
dτ (ν, s) =

∑
i
[αi(ν, s) + σi(ν, s)]ds = [α(ν, s) + σ(ν, s)]ds = k(ν, s)ds (3)
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Generic Radiative Transfer Equation and Formal Solution (3)

Here αi(ν, s) and σi(ν, s) are the absorption and scattering coefficients of the ith

radiatively significant species, and:

• α(ν, s) and σ(ν, s) are the total absorption and scattering coefficients with units
[m−1].

Defining the single-scattering albedo:

•
$(ν, τ ) ≡ σ(ν, τ )/[σ(ν, τ ) + α(ν, τ )] (4)

we may rewrite Eq. 1 as follows:

dI(ν, τ, Ω̂)

dτ
= −I(ν, τ, Ω̂) + S(ν, τ, Ω̂). (5)
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Generic Radiative Transfer Equation and Formal Solution (4)

The dependence of τ on s and ν has been suppressed to simplify the notation,
and the source function is:

S(ν, τ, Ω̂) = [1−$(ν, τ )]B[ν, T (τ )] +
$(ν, τ )

4π

∫
4π dω

′ p(ν, τ, Ω̂′, Ω̂)I(ν, τ, Ω̂′). (6)

Equation 5:
dI(ν, τ, Ω̂)

dτ
= −I(ν, τ, Ω̂) + S(ν, τ, Ω̂)

illustrates that if we know the source function, S(ν, τ, Ω̂), then the radiance emerg-
ing in direction Ω̂ from an optical path originating at point s1 and ending at point
s2 is obtained by integration:

I [ν, τ (s2), Ω̂] = (7)

= I [ν, τ (s1), Ω̂]e−[τ(s2)−τ(s1)] +
∫ τ(s2)
τ(s1) dtS(ν, t(s), Ω̂)e−[τ(s2)−t(s)].
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Figure 2: A beam of radiation is incident on an absorbing/emitting region at the boundary point
P1. It is attenuated along the path P1P2, and emerges at the point P2. The propagation direction
of the beam is denoted by Ω̂. In addition, multiple scattering and thermal emission adds to the
beam at all points within the medium.
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Generic Radiative Transfer Equation and Formal Solution (5)

Equation 7:

I [ν, τ (s2), Ω̂] =

= I [ν, τ (s1), Ω̂]e−[τ(s2)−τ(s1)] +
∫ τ(s2)
τ(s1) dtS(ν, t(s), Ω̂)e−[τ(s2)−t(s)]

shows that knowledge of the source function is the key to predicting the radi-
ance. In the absence of sources due to multiple scattering and thermal emission
Eq. 7 becomes:

•
I [ν, τ (s2), Ω̂] = I [ν, τ (s1), Ω̂]e−[τ(s2)−τ(s1)] ←− Beer’s law (8)

describing exponential beam attenuation along the optical path between point s1

and point s2.
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Formulation of the 1-D forward problem including multiple
scattering and surface effects (1)

In general, multiple scattering, absorption, and thermal emission as well as solar
forcing may be important, BUT

In the absence of horizontally inhomogeneous cloud and aerosol particles in the
atmosphere, and hydrosols in the water:

• a plane-parallel (slab) or one-dimensional (1-D) geometry is appropriate in both
the atmosphere and the ocean because gravity forces a density stratification.

It is common practice to measure the optical depth along the vertical direction
downward from the “top” of the medium (see Fig. 3).

Thus, we define the vertical optical depth in terms of the slant optical depth
τ (ν, s) (see Eq. 3) as follows:

τ (ν, z) ≡
∫ ∞
z dz′ k(ν, z′) ≡ τ (ν, s)/µ.

Here z is the vertical co-ordinate, u = cos θ, µ = |u|, and θ is the polar angle or
the solar zenith angle (θ = θ0, see Fig. 3). Thus:

• for an arbitrary slant path through the plane-parallel medium we have dτ (ν, s) =
−k(ν, z)dz/µ = −dτ (ν, z)/µ.
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Figure 3: Schematic illustration of two adjacent media with a flat interface such as the atmosphere
overlying a calm ocean. Because the atmosphere has a different index of refraction (mr ≈ 1) than
the ocean (mr ≈ 1.34), radiation distributed over 2π sr in the atmosphere will be confined to a
cone less than 2π sr in the ocean (region II). Radiation in the ocean within region I will be totally
reflected when striking the interface from below.
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Formulation of the 1-D forward problem (3)

Definitions:

dτ = −[α(z) + σ(z)] dz differential vertical optical depth (9)

α(z) = absorption coefficient [m−1] (10)

σ(z) = scattering coefficient [m−1] (11)

$(z) =
σ(z)

α(z) + σ(z)
single− scattering albedo (12)

α(z) ≡
∑
i

αi(z) =
∑
i

ni αin ; σ(z) ≡
∑
i

σi(z) =
∑
i

ni σ
i
n (13)

αin = absorption cross section [m2] (14)

σin = scattering cross section [m2] (15)

ni = concentration of i th species [m−3] (16)

Scattering phase function (normalized angular scattering cross section):

p(τ, cos Θ) = p(τ, u′, φ′;u, φ) =

∑
i σ

i(τ, cosΘ)∑
i
∫
4π d cosΘ σi(τ, cosΘ)/4π

=

∑
i σ

i(τ, cosΘ)∑
i σi(τ)

=
σ(τ, cosΘ)

σ(τ)
(17)

Θ = scattering angle (18)

(θ′, φ′) = polar and azimuthal angles prior to scattering (19)

(θ, φ) = polar and azimuthal angles after scattering (20)

These angles are related through the cosine law of spherical geometry:

cos Θ = cos θ′ cos θ + sin θ′ sin θ cos(φ′ − φ). (21)
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Formulation of the 1-D forward problem (4)

Solar radiation penetrating the atmosphere and the underlying surface medium
consists of a direct and a diffuse component.
For a 1-D medium the direct (solar) component (Eq. 8) becomes:

•
Isol(τ, u, φ) = F sδ(u− µ0)δ(φ− φ0)e−τ/µ0. (22)

Here τ = τ (z) is the vertical optical depth, F s is the solar irradiance (normal to
the solar beam) incident at the TOA in direction (θ0, φ0).

Note that:

• the product of the δ-functions in Eq. 22 has units [sr−1]. Thus Isol is a radiance
with units [W·m−2· sr−1], while F s is an irradiance with units [W· m−2].

In the 1-D case we assume that:

• the atmosphere as well as the underlying surface consist of slabs separated by a
smooth, flat interface.
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Formulation of the 1-D forward problem (5)

In such a stratified medium the integro-differential equation of radiative transfer
(Eq. 5) describing the transport of diffuse radiation may be written as two coupled
equations:

±µdI
±(τ, µ, φ)

dτ
= I±(τ, µ, φ)− S±(τ, µ, φ) (23)

where I±(τ, µ, φ) ≡ I(τ,±µ, φ) denotes the diffuse radiance at optical depth τ , in
directions (±µ, φ).

The source function S±(τ, µ, φ) ≡ S(τ,±µ, φ) consists of three terms:

S±(τ, µ, φ) = STH(τ ) + S±MS(τ, µ, φ) + S∗±(τ, µ, φ). (24)

The first term is the (isotropic) contribution from thermal radiation:

STH(τ ) = [1−$(τ )]B[T (τ )]. (25)

The second term S±MS(τ, µ, φ) is due to multiple scattering.
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Formulation of the 1-D forward problem (6)

We rewrite it as:

S±MS(τ, µ, φ) =
$(τ )

4π

∫ 2π
0 dφ

′ ∫ 1
−1 du

′ p(τ, u
′
, φ
′
;±µ, φ)I(τ, u

′
, φ
′
) (26)

=
$(τ )

4π

∫ 2π
0 dφ

′{∫ 1
0 dµ

′p(τ,−µ′, φ′;±µ, φ)I−(τ, µ
′
, φ
′
)

+
∫ 1
0 dµ

′p(τ, µ
′
, φ
′
;±µ, φ)I+(τ, µ

′
, φ
′
)
}

to emphasize more clearly the coupling between the downward radiance I+(τ, µ, φ)
and upward radiance I−(τ, µ, φ) implicit in Eqs. 23:

±µdI
±(τ,µ,φ)
dτ = I±(τ, µ, φ)− S±(τ, µ, φ).

The third term S∗±(τ, µ, φ) in Eq. 24 is:

• the solar “pseudo-source”, which drives the diffuse radiation field in the case of
collimated solar beam forcing.

• To describe this term we need to make a choice about how to treat the underlying
surface as described below.
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Surface Reflection, Transmission, and Emission (1)

We must know the reflectance, transmittance, and emittance of underlying sur-
faces to compute the diffuse radiation field.

It is frequently assumed that the underlying land or ocean surface reflects incom-
ing radiation isotropically. Such a surface is called:

• a Lambert reflector, with reflectance, ρL, the surface albedo.

Because most natural surfaces are non-Lambertian, we should use the bidirec-
tional reflection distribution function (BRDF). Then:

• the radiative transfer problem that we have formulated is determined by solving
Eq. 23 [±µdI

±(τ,µ,φ)
dτ = I±(τ, µ, φ)− S±(τ, µ, φ)] with the pseudo-source:

S∗±air (τ, µ, φ) =
$(τ ) F s

4π
p(τ,−µ0, φ0;±µ, φ) e−τ/µ0 (27)

subject to the boundary condition at the TOA (τ = 0):

I−(0, µ, φ) = 0, (28)
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Surface Reflection, Transmission, and Emission (2)

and the boundary condition at bottom of the atmosphere (τ = τa):

I+(τa, µ, φ) =
∫ 2π
0 dφ′

∫ 1
0 dµ

′µ′ρd(−µ′, φ′; +µ, φ)I−(τa, µ, φ)

+
µ0

π
ρd(−µ0, φ0; +µ, φ)F se−τa/µ0 + ε(µ)B(Ts). (29)

Here we have assumed that:

• the thermal emission, ε(µ), is independent of φ, and ρd(−µ′, φ′; +µ, φ) is the
BRDF, which for a Lambert reflector reduces to ρL.

For the coupled atmosphere-ocean system it is preferable to consider two strata:

• one for the atmosphere, and one for the ocean, but with different indices of
refraction, mr.

Since the basic radiance, I/m2
r , is conserved (if no reflection):

• it must be constant across the interface between the two strata.

• The basic radiance satisfies Snell’s law and Fresnel’s equation.

• The downward radiation distributed over 2π sr in the atmosphere will be re-
stricted to a cone less than 2π sr in the ocean.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

17



Sun

τ = 0

τ = τa

τ = τ

µ0FS

II

I I

µ0

µ0n

Top

Atmosphere

Ocean

θ

Figure 4: Schematic illustration of two adjacent media with a flat interface such as the atmosphere
overlying a calm ocean. Because the atmosphere has a different index of refraction (mr ≈ 1) than
the ocean (mr ≈ 1.34), radiation distributed over 2π sr in the atmosphere will be confined to a
cone less than 2π sr in the ocean (region II). Radiation in the ocean within region I will be totally
reflected when striking the interface from below.
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Surface Reflection, Transmission, and Emission (4)

For a planar, smooth interface (a calm ocean), conservation of energy demands that
(see Fig. 4):

Beams outside the refractive region in the ocean:

• are in the total reflection region (referred to as region I in Fig. 4).

The demarcation between the refractive and the total reflection region in the ocean
is given by:

• the critical angle µc =
√
1− 1/m2

rel, where mrel = mr,ocn/mr,air is the index of
refraction of the ocean relative to the air.

For the atmosphere-ocean system, the source term S∗±(τ, µ, φ) in the air can be
expressed as:

S∗±air (τ, µ, φ) =
$(τ )F s

4π
p(τ,−µ0, φ0;±µ, φ) e−τ/µ0

+
$(τ )F s

4π
p(τ, µ0, φ0;±µ, φ) R(−µ0,mrel) e

−(2τa−τ)/µ0. (30)
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Surface Reflection, Transmission, and Emission (5)

Here τa is the total optical depth of the atmosphere, R(−µ0,mrel) is the Fresnel
reflectance of the solar beam at the interface, and:

• the first term in Eq. 30 represents the contribution from the attenuated incident
solar beam source, while

• the second term represents the contribution from the Fresnel reflection of this
beam source by the air-water interface.

In the water, the source term can be written as:

S∗±w (τ, µ, φ) =
$(τ )F s

4π

µ0

µt
p(τ,−µt, φ0;µ, φ)e−τa/µ0 T (−µ0,mrel) e

−(τ−τa)/µt (31)

where T (−µ0,mrel) is the transmittance through the air/water interface, µt is the
cosine of the SZA in the water (see Fig. 4), which is related to µ0 by Snell’s law:

µt =
√
1− (1− µ2

0)/m2
rel (→ µ0 as mrel → 1).
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Surface Reflection, Transmission, and Emission (6)

In summary, the radiative transfer problem that we have formulated is determined
by:

• solving Eq. 23 [±µdI
±(τ,µ,φ)
dτ = I±(τ, µ, φ)− S±(τ, µ, φ)], with the pseudo-sources described

by Eq. 30
[S∗±air (τ, µ, φ) = $(τ)F s

4π p(τ,−µ0, φ0;±µ, φ) e−τ/µ0 + $(τ)F s

4π p(τ, µ0, φ0;±µ, φ) R(−µ0,mrel) e
−(2τa−τ)/µ0]

for the atmosphere, and Eq. 31
[S∗±w (τ, µ, φ) = $(τ)F s

4π
µ0

µt
p(τ,−µt, φ0;µ, φ)e−τa/µ0 T (−µ0,mrel) e

−(τ−τa)/µt]

for the water, subject to:

• the boundary conditions given by Eq. 28 at τ = 0, and by Eq. 29 with τa replaced
by τ ∗, the total optical depth of the atmosphere-ocean system (see Fig. 4).

Note that:

• In mathematical terms the forward model that we have formulated corresponds
to a two-point boundary-value problem.
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Isolation of the Azimuthal Dependence (1)

To isolate the azimuth dependence in Eq. 23, we expand the scattering phase
function p(τ, u′, φ′;u, φ) in Legendre polynomials:

p(τ, u′, φ′;u, φ) =
2N−1∑
m=0

(2− δ0m) pm(τ, u′, u) cosm(φ′ − φ) (32)

where:

pm(τ, u′, u) =
2N−1∑
`=m

(2` + 1)χ`(τ )Λm
` (u′)Λm

` (u). (33)

Here 2N is the number of terms required to obtain an adequate representation of
the scattering phase function, Λm

` (u) ≡
√
(`−m)!/(` + m)!Pm

` (u), Pm
` (u) is the

associated Legendre polynomial, and χ`(τ ) is the expansion coefficient.

Expanding the radiance in a similar way:

I(τ, u, φ) =
2N−1∑
m=0

Im(τ, u) cosm(φ0 − φ) (34)

one finds that each Fourier component satisfies the following radiative transfer
equation (same as Eq. 23, except for φ-dependence):
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Isolation of the Azimuthal Dependence (2)

±µdI
m±(τ, µ)

dτ
= Im±(τ, µ)− Sm±(τ, µ) where: (35)

Sm±(τ, µ) =
$(τ )

2

∫ 1
−1 du

′
pm(τ, u

′
,±µ)Im(τ, u

′
) + S∗m±(τ, µ) + (1− δ0m)STH(τ ),

(36)
pm(τ, u′,±µ) is given by Eq. 33, and

S∗m±(τ, µ) = Xm
0 (τ,±µ)e−τ/µ0 (37)

Xm
0 (τ,±µ) =

$(τ )

4π
F s(2− δ0m)

2N−1∑
`=m

(−1)`+m(2` + 1)χ`(τ )Λm
` (±µ)Λ`(µ0). (38)

Since there is no diffuse radiation incident at the top of the atmosphere:

Im−(τ = 0, µ) = 0 (see Eq. 28). (39)

At the lower boundary Eq. 29 applies with τa replaced by τ ∗:

I+(τ ∗, µ, φ) =
∫ 2π
0 dφ′

∫ 1
0 dµ

′µ′ρd(−µ′, φ′; +µ, φ)I−(τ ∗, µ, φ)

(40)

+
µ0

π
ρd(−µ0, φ0; +µ, φ)F se−τ

∗/µ0 + ε(µ)B(Ts).
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To proceed we consider a multi-layered medium:

sample	
  

ϖ ϖ 

Fig.	
  8.3	
  

ϖ1 

ϖ2 

ϖp 

Figure 5: Schematic illustration of a multi-layered, inhomogeneous medium overlying an emitting
and partially reflecting surface.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

24



Discrete-Ordinate-Method – Brief Historical Perspective

The discrete-ordinate-method originated with:

•Wick and Chandrasekhar in the 1940’s, and was

• extensively developed by Chandrasekhar as documented in his classic treatise:
Radiative Transfer, 1950.

The method was almost abandoned due to numerical difficulties associated with:

• the computation of eigensolutions; and

• the computation of the constants of integration in a multi-layered medium.

However, the method has been rescued from oblivion:

• first by the work of Liou in the 1970’s; and

• then by the work of Stamnes and co-workers in the 1980’s.
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The DISORT Radiative Transfer Method (1)

The set of equations formulated above may be solved by converting the integro-
differential equations to:

• a set of coupled ordinary differential equations by replacing the integrals by
quadrature sums. For a homogeneous slab:

• the discrete ordinate approximation to the radiative transfer equation (DISORT)
is described by Stamnes et al. (1988; 2000).

Application of the discrete ordinate approximation to:

•
±µdI

m±(τ, µ)

dτ
= Im±(τ, µ)− Sm±(τ, µ) (Eq. 35)

and Eq. 36

Sm±(τ, µ) =
$(τ )

2

∫ 1
−1 du

′
pm(τ, u

′
,±µ)Im(τ, u

′
)+S∗m±(τ, µ)+(1−δ0m)STH(τ )

for a multi-layered air-water system with L1 layers in the air, and L2 in the
water is described in some detail elsewhere [Jin and Stamnes, 1994; Stamnes,
Thomas, and Stamnes, 2017].
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The DISORT Radiative Transfer Method (2)

We approximate the integral over polar angles in Eq. 36 by a quadrature sum
(numerical integration) consisting of:

• 2N1 terms or “streams” in the atmosphere: N1 ‘streams’ in the upper hemisphere
and N1 in the the downward hemisphere.

The N1 ‘streams’ in the downward hemisphere are refracted through the interface
when the radiation penetrates into the water.

To represent the radiation in the total reflection region we need additional “streams.”
Thus, we choose:

• 2N2 (N2 > N1) streams for the radiation in the water, implying:

• 2(N2 −N1) streams in the total reflection region.

The solution to the discrete ordinate approximation to Eqs. 35 and 36 for the
radiance in discrete upward (+µi) and downward (−µi) directions in the pth layer
in the atmosphere becomes (dropping the m-superscript):
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The DISORT Radiative Transfer Method (3)

Ip(τ,±µa
i ) =

N1∑
j=1

[C−jpg
a
−jp(±µa

i )e
ka
jpτ + Cjpg

a
jp(±µa

i )e
−ka

jpτ ] + Up(τ,±µa
i ) (41)

where i = 1, ..., N1 and p ≤ L1, and where the superscript “a” is used to denote
atmospheric parameters.

Similary, for the pth layer in the water, we have:

Ip(τ,±µw
i ) =

N2∑
j=1

[C−jpg
w
−jp(±µw

i )ek
w
jpτ + Cjpg

w
jp(±µw

i )e−k
w
jpτ ] + Up(τ,±µw

i ) (42)

where i = 1, ..., N2, L1 < p ≤ L1 + L2, and where the superscript “w” is used to
denote aquatic parameters. Here:

• ka
jp, g

a
jp, k

w
jp, and gw

jp are eigenvalues and eigenvectors required for the homo-
geneous solution to Eq. 35 [S∗±(τ, µ) = STH(τ ) = 0 in Eq. 36; ignoring the
m-superscript].

• The term Up(τ,±µ) represents the particular solution.
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The DISORT Radiative Transfer Method (4)

The coefficients C±jp are determined by applying:

• (i) boundary conditions at the top of the atmosphere and the bottom of the
water,

• (ii) radiance continuity conditions at each interface between the layers, and

• (iii) Fresnel’s equations at the atmosphere-water interface as discussed above
[see Stamnes, Thomas, and Stamnes, 2017 for details].

This procedure leads to a system of linear algebraic equations of the form:

Ax = B (43)

which has solution
x = A−1B.
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The DISORT Radiative Transfer Method (5)

The matrix A contains information about:

• the system inherent optical properties (layer-by-layer) as well as the lower bound-
ary BRDF properties.

The column vector x contains:

• all the unknown coeffcients, the C±jp, and

the column vector B contains:

• information about the particular solutions as well as the lower boundary emis-
sivity.

The dimension of the matrix A is:

• (2N1×L1) + (2N2×L2), the same as the number of unknown coefficients C±jp.
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The DISORT Radiative Transfer Method (6)

To compute the diffuse radiance and the corresponding irradiances we need to
turn the formalism outlined above into a suitable radiative transfer code:

• For a single slab with a constant index of refraction the DISORT code [Stamnes
et al., 1988, 2000; Lin et al., 2015 (DISORT3)] is available.

This code was extended by Jin and Stamnes (1994) to:

• apply to the coupled atmosphere-ocean (CAO) system as described above to
allow for radiances to be computed at the quadrature angles at any desired level
in the atmosphere-ocean system.

The method was extended (Yan and Stamnes, 2002):

• to compute radiances at arbitrary angles (not just the discrete quadrature angles)
by integrating the source function as indicated schematically in Eq. 7:

I [ν, τ (s2), Ω̂] =

= I [ν, τ (s1), Ω̂]e−[τ(s2)−τ(s1)] +
∫ τ(s2)
τ(s1) dtS(ν, t(s), Ω̂)e−[τ(s2)−t(s)]
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The DISORT Radiative Transfer Method (7)

In summary the CAO-DISORT method works as follows:

1. The air and water are treated as two adjacent plane-parallel media (slabs) sepa-
rated by an interface across which the index of refraction changes from mr ≈ 1.0
in air to mr ≈ 1.34 in water.

2. Each of the two slabs is divided into a sufficient number of layers to adequately
resolve the variation of the IOPs.

3. The reflection by and transmission through the air-water interface are computed
by Fresnel’s equations, and the bending of the rays across the interface follows
Snell’s law.

4. The radiative transfer equation is solved separately for each layer in the atmo-
sphere and water using the discrete-ordinate method.

5. The solution is completed by applying boundary conditions at the TOA and
bottom of the water as well as radiance continuity conditions at layer interfaces
in the atmosphere as well in the water.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

32



0 0.5 1 1.5
0

20

40

60

80

100

H
ei

gh
t (

K
m

)

Irradiance down

(W m−2 nm−1)

DISORT dir
DISORT dif
MC dir    
MC dif    

0 0.05 0.1 0.15
0

20

40

60

80

100
Irradiance up

H
ei

gh
t (

K
m

)

(W m−2 nm−1)

DISORT dir
DISORT dif
MC dir    
MC dif    

10−2 10−1 100
−70

−60

−50

−40

−30

−20

−10

0
Irradiance down

D
ep

th
 (m

)

(W m−2 nm−1)

DISORT dir
DISORT dif
MC dir    
MC dif    

10−5
−70

−60

−50

−40

−30

−20

−10

0
Irradiance up

(W m−2 nm−1)

D
ep

th
 (m

)

DISORT
MC    

Figure 6: Comparison of CAO-DISORT and Monte Carlo Results for the Coupled Atmopshere Ocean
System (Gjerstad et al., 2003).

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

33



The Discrete-Ordinate Method: Mathematical and
Numerical Aspects

• Formulation and Overview – Brief Review

•Discrete Ordinate Method – Isotropic Scattering – Quadrature
Formulas

• Discrete Ordinate Method – Anisotropic Scattering

•Matrix Formulation of the Discrete Ordinate Method

•Matrix Eigensolutions

• Solutions to Prototype Problems

• Boundary Conditions – Removal of Ill-Conditioning

•Multi-Layered Inhomogeneous Slab

• Source Functions and Angular Distributions

• Computational Example
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Overview – (1)

Sun

τ = 0

τ = τa

τ = τ

µ0FS

II

I I

µ0

µ0n

Top

Atmosphere

Ocean

θ

Figure 7: Schematic illustration of two adjacent media with a flat interface such as the atmosphere
overlying a calm ocean. Because the atmosphere has a different index of refraction (mr ≈ 1) than
the ocean (mr ≈ 1.34), radiation distributed over 2π sr in the atmosphere will be confined to a
cone less than 2π sr in the ocean (region II). Radiation in the ocean within region I will be totally
reflected when striking the interface from below.
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Overview – (2)

The RT problem we formulated involves solving:

±µdI
±(τ, µ, φ)

dτ
= I±(τ, µ, φ)− S±(τ, µ, φ)

where S±(τ, µ, φ) = STH(τ )+S±MS(τ, µ, φ)+S∗±(τ, µ, φ) with thermal contribution
STH(τ ) = [1−$(τ )]B[T (τ )], multiple scattering contribution

S±MS(τ, µ, φ) =
$(τ )

4π

∫ 2π
0 dφ

′ ∫ 1
−1 du

′ p(τ, u
′
, φ
′
;±µ, φ)I(τ, u

′
, φ
′
)

and pseudo-sources described by

S∗±air (τ, µ, φ) =
$(τ)F s

4π
p(τ,−µ0, φ0;±µ, φ) e−τ/µ0+

$(τ)F s

4π
p(τ, µ0, φ0;±µ, φ) R(−µ0,mrel) e

−(2τa−τ)/µ0

in the atmosphere, and (τ ∗ = total optical depth of atmosphere–ocean system)

S∗±w (τ, µ, φ) =
$(τ)F s

4π

µ0
µt

p(τ,−µt, φ0;µ, φ)e−τa/µ0 T (−µ0,mrel) e
−(τ−τa)/µt

in the water, subject to: boundary condition: I−(0, µ, φ) = 0 at TOA, and

I+(τ ∗, µ, φ) =
∫ 2π
0 dφ′

∫ 1
0 dµ

′µ′ρd(−µ′, φ′; +µ, φ)I−(τ ∗, µ′, φ′) + ε(µ)B(Ts)

+
µ0

π
ρd(−µ0, φ0; +µ, φ)

µ0

µt
T (−µ0,mrel)F

s e−τa/µ0e−(τ∗−τa)/µt.(44)
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Overview – (3)

To isolate the azimuth dependence in RTE: expand phase function:

p(τ, u′, φ′;u, φ) =
2N−1∑
m=0

(2− δ0m) pm(τ, u′, u) cosm(φ′ − φ) (45)

pm(τ, u′, u) =
2N−1∑
`=m

(2`+ 1)χ`(τ)Λm
` (u′)Λm

` (u). (46)

Here 2N = # of terms required to obtain an adequate representation of the phase function, Λm
` (u) ≡√

(`−m)!/(`+m)!Pm
` (u), Pm

` (u) = associated Legendre polynomial, and χ`(τ) = expansion coefficient. Ex-
panding the radiance similarly:

I(τ, u, φ) =
2N−1∑
m=0

Im(τ, u) cos m(φ0 − φ) (47)

one finds that each Fourier component satisfies the following RTE:

±µdI
m±(τ, µ)

dτ
= Im±(τ, µ)− Sm±(τ, µ) (48)

Sm±(τ, µ) =
$(τ)

2

∫ 1

−1
du
′
pm(τ, u

′
,±µ)Im(τ, u

′
) + S∗m±(τ, µ) + (1− δ0m)STH(τ) (49)

and pm(τ, u′,±µ) is given by Eq. 33, and

S∗m±(τ, µ) = Xm
0 (τ,±µ)e−τ/µ0 (50)

Xm
0 (τ,±µ) =

$(τ)

4π
F s(2− δ0m)

2N−1∑
`=m

(−1)`+m(2`+ 1)χ`(τ)Λm
` (±µ)Λm

` (µ0) (51)
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RTE equations

Now recall that substitution of

p(τ, u′, φ′;u, φ) =
2N−1∑
m=0

(2− δ0m)pm(τ, u′, u) cosm(φ′ − φ)

pm(τ, u′, u) =
∑2N−1
`=m (2`+ 1)χ`Λ

m
` (u′)Λm

` (u), Λm
` (u) ≡

√
(`−m)!
(`+m)! P

m
` (u) and:

I(τ, u, φ) =
2N−1∑
m=0

Im(τ, u) cosm(φ0 − φ)

into the full-range slab geometry RTE:

u
dI(τ, u, φ)

dτ
= I(τ, u, φ)− $(τ)

4π

∫ 2π

0
dφ′

∫ 1

−1
du′p(τ, u′, φ′;u, φ)I(τ, u′, φ′)− (1−$(τ))B − S∗(τ, u, φ) (52)

yields:

u
dIm(τ, u)

dτ
= Im(τ, u)− $(τ)

2

∫ 1

−1
du′pm(τ, u′, u)Im(τ, u′)−Xm

0 (τ, u)e−τ/µ0

−(1−$(τ))B(τ)δ0m (m = 0, 1, 2, . . . , 2N − 1). (53)

Xm
0 (τ, u) =

$(τ)

4π
F s(2− δ0m)

2N−1∑
`=m

(−1)`+m(2`+ 1)χ`(τ)Λm
` (u)Λm

` (µ0). (54)
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Accurate Numerical Solutions (1)

Accurate techniques include:

• The discrete-ordinate method −→ two-stream approximation;

• The spherical-harmonic method −→ Eddington approximation;

• The doubling-adding method.

In “in lowest order” the first two methods become the two-stream, and Ed-
dington approximations, respectively.

Discrete-Ordinate Method – Isotropic Scattering

Quadrature Formulas

• The solution of the isotropic-scattering problem involves the following integral
over angle (pm(τ, u′, u) = 1):

∫ 1
−1 du I(τ, u) =

∫ 1
0 dµ I

+(τ, µ) +
∫ 1
0 dµ I

−(τ, µ).
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Accurate Numerical Solutions (2)

• In the two-stream method:∫ 1
−1 du I ≈ I+(τ ) + I−(τ ).

•We could improve the accuracy by including more points:∫ 1
−1 du I(τ, u) ≈

m∑
j=1

w′jI(τ, uj) where

• w′j is a quadrature weight and uj is the discrete ordinate.

• The simplest example is the trapezoidal rule:
∫ 1
−1 du I ≈ ∆u(

1

2
I1 + I2 + I3 + · · · + Im−1 +

1

2
Im)

• The more accurate Simpson’s rule is:
∫ 1
−1 duI ≈

∆u

3
(I1 + 4I2 + 2I3 + 4I4 + · · · + Im)

where

• ∆u is the (equal) spacing between the adjacent points, uj, and the Ij ≡ I(τ, uj).
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Accurate Numerical Solutions (3)

INTERPOLATION FORMULA

• If we have m points at which we evaluate I(τ, u), we can replace I(τ, u) with its
approximating polynomial φ(u), which is a polynomial of degree (m− 1).

• Consider the following form for φ(u), for m = 3:

φ(u) = I(u1)
(u− u2)(u− u3)

(u1 − u2)(u1 − u3)
+ I(u2)

(u− u1)(u− u3)

(u2 − u1)(u2 − u3)

+I(u3)
(u− u1)(u− u2)

(u3 − u1)(u3 − u2)
.

• φ(u) is a second-degree polynomial which, when evaluated at the points u1, u2,
and u3, yields φ(u1) = I(u1), φ(u2) = I(u2), and φ(u3) = I(u3), respectively.

• φ(u) is an example of Lagrange’s interpolation formula, which we can
write as follows. First, we define:

F (u) ≡
m∏
j=1

(u− uj) = (u− u1)(u− u2) · · · (u− um).
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Accurate Numerical Solutions (4)

• Then, since (u− u1)(u− u2) · · · (u− uj−1)(u− uj+1) · · · (u− um) becomes:

F (u)/(u− uj) =
m∏
k 6=j

(u− uk)

we can write the polynomial φ(u) in a shorthand form:

φ(u) =
m∑
j=1

I(uj)
F (u)

(u− uj)F ′(uj)
F ′(uj) ≡ dF/ducu=uj.

• The derivative will give a long string of polynomials of degree (m− 1); however,
when it is evaluated at u = uj, all terms vanish except the term
(u− u1)(u− u2) · · · (u− uj−1)(u− uj+1) · · · (u− um).

• Hence, the quadrature formula arising from the assumption that the radiance is
a polynomial of degree (m− 1) is:

∫ 1
−1 du I(u) =

m∑
j=1

w′jI(uj); w′j =
1

F ′(uj)

∫ 1
−1

duF (u)

(u− uj)
.

The quadrature points uj are, so far, arbitrary.
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Accurate Numerical Solutions (5)

• The error incurred by using the Lagrange interpolation formula
is proportional to the mth derivative of the functions [I(u)] being
approximated.∗

• Thus, it is clear that if I(τ, u) happens to be a polynomial of degree (m− 1) or smaller, then the m-point
quadrature formula is exact. We may now ask:

• Is it possible to obtain higher accuracy? For example, by choosing the
quadrature points in an optimal manner? Gauss showed that:

• If F (u) is a certain polynomial, and the uj are the roots of that polynomial,
then we get the accuracy of a polynomial of degree (2m− 1).

• This polynomial is the Legendre polynomial Pm(u). It has the special
property of being orthogonal to every power of u less than m, i.e.:∫ 1

−1
du Pm(u)ul = 0 (l = 0, 1, 2, · · · ,m− 1).

• Note that if uj is a root of an even Legendre polynomial, then −uj is also a root.
Also, all m roots are real.
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Accurate Numerical Solutions (6)

The Double-Gauss Method

• It is customary to choose the even-order Legendre polynomials as the approx-
imating polynomial. This choice is made because:

• The roots of the even-orders appear in pairs: u−i = −u+i.

• The quadrature weights are the same in each hemisphere, i.e., w′i = w′−i.

• The ‘full-range’ approach assumes that I(τ, u) is a smoothly-varying function of
u (−1 ≤ u ≤ +1) with no “sharp corners” for all values of τ .

• For small τ , the intensity changes rather rapidly as u passes through zero. In
fact, at τ = 0, this change is quite abrupt:

• I(τ = 0, u) = 0 for slightly negative u-values; for slightly positive u-values it
will generally have a finite value.

• It is difficult to ‘fit’ such a discontinuous distribution with a low-order polynomial
that span the full range between u = −1 and u = 1.

• It is most difficult to get accurate solutions near the surface (τ = 0):

•we should pay the most attention to this region.
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Accurate Numerical Solutions (7)

To remedy this situation, the ‘Double-Gauss’ method was devised:

• We break the angular integration into two hemispheres, and approximate each
integral separately:

∫ 1
−1 du I =

∫ 1
0 dµ I

+ +
∫ 1
0 dµ I

− ≈
M∑
j=1

wjI
+(µj) +

M∑
j=1

wjI
−(µj).

• The wj and µj are the weights and roots of the approximating polynomial for
the half-range. Note: we use the same set of wj and µj for both hemispheres.

• To obtain the highest accuracy, we must again use Gaussian quadrature.
However, our new interval is (0 ≤ µ ≤ 1) instead of (−1 ≤ u ≤ 1).

• This new interval (0 ≤ µ ≤ 1) is easily arranged by defining the variable
u = 2µ− 1, so that the orthogonal polynomial is PM(2µ− 1).

The new quadrature weight is given by:

wj =
1

P ′M(2µj − 1)

∫ 1
0 dµ

PM(2µ− 1)

(µ− µj)
(55)

and the µj are the roots of the half-range polynomials.
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Accurate Numerical Solutions (8)

• Algorithms to compute the roots and weights are usually based on the full range:

•Must relate the half-range quadrature µj and wj to uj and w′j for the full range.

• Since the linear transformation t = (2x− x1− x2)/(x2− x1) maps any interval
[x1, x2] into [−1, 1] provided x2 > x1, Gaussian quadrature (GQ) yields:

∫ x2
x1
dxI(x) =

∫ 1
−1 dtI

(x2 − x1)t + x2 + x1

2

 x2 − x1

2
.

Choosing x1 = 0, x2 = 1, x = µ and t = u, we find:
∫ 1
0 dµI(µ) =

1

2

∫ 1
−1 duI

u + 1

2


and applying GQ to each integral, we find on setting M = 2N for the half-range:

∫ 1
0 dµI(µ) =

2N∑
j=1

wjI(µj) =
1

2

∫ 1
−1 duI

u + 1

2

 =
1

2

N∑
j=−N
j 6=0

w′jI
uj + 1

2

 . (56)

• Thus, in even orders:

µj =
uj + 1

2
; wj =

1

2
w′j. (57)
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Accurate Numerical Solutions (9)

Anisotropic Scattering

•We will generalize the discrete ordinate method to anisotropic scattering
in finite inhomogeneous (layered) media.

We introduce a matrix formulation, because:

• it allows for a compact notation and facilitates the numerical implementation;

• it is valid for isotropic scattering as well as for any scattering phase function.

For simplicity we start by considering a homogeneous slab.

• Recall: When the radiance is written as a Fourier cosine series, each Fourier
component satisfies a RTE mathematically identical to the azimuthally-averaged
equation.

• Thus, we may focus on the RTE for the m = 0 component (or the scaled version
if we want to utilize the δ-M scaling):

u
dI(τ, u)

dτ
= I(τ, u)− $(τ )

2

∫ 1
−1 du

′p(τ, u′, u)I(τ, u′)−X0(τ, u)e−τ/µ0. (58)
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Accurate Numerical Solutions (10)

•Mathematically, un-scaled and scaled equations are identical: scaling influences
the optical properties of the medium, but will not affect the mathematics.

• Therefore, consider the following pair of coupled equations for half-range diffuse
radiances, Im(τ, µ) with m = 0 (similar equations for m 6= 0):

µ
dI+(τ, µ)

dτ
= I+(τ, µ)− $

2

∫ 1
0 dµ

′ p(µ′, µ)I+(τ, µ′)

− $

2

∫ 1
0 dµ

′ p(−µ′, µ)I−(τ, µ′)−X+
0 e
−τ/µ0 (59)

−µdI
−(τ, µ)

dτ
= I−(τ, µ)− $

2

∫ 1
0 dµ

′ p(µ′,−µ)I+(τ, µ′)

− $

2

∫ 1
0 dµ

′ p(−µ′,−µ)I−(τ, µ′)−X−0 e−τ/µ0 (60)

where

p(µ′, µ) =
2N−1∑
`=0

(2` + 1)χ`P`(µ)P`(µ
′) (61)

X±0 ≡ X0(±µ) =
$

4π
F sp(−µ0,±µ). (62)
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We consider the collimated beam case for which we need to deal with the:

• full azimuthal dependence: I(τ, u, φ) =
∑2N−1
m=0 Im(τ, u) cosm(φ0 − φ).

The discrete ordinate approximation to the half-range RTE is obtained by:

• For each m, replacing the integrals by sums to transform the pair of coupled integro-differential equations

into a system of coupled 2N ODEs (i = 1, . . . N):

µi
dI+(τ, µi)

dτ
= I+(τ, µi)−

$

2

N∑
j=1

wjp(µj, µi)I
+(τ, µj)

− $

2

N∑
j=1

wjp(−µj, µi)I−(τ, µj)−X+
0ie
−τ/µ0 (63)

−µi
dI−(τ, µi)

dτ
= I−(τ, µi)−

$

2

N∑
j=1

wjp(µj,−µi)I+(τ, µj)

− $

2

N∑
j=1

wjp(−µj,−µi)I−(τ, µj)−X−0ie−τ/µ0. (64)

•We use the same quadrature in each hemisphere: µ−i = −µi and w−i = wi.
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Accurate Numerical Solutions (12)

• Gaussian quadrature ensures that the phase function is correctly normalized:
N∑

j=−N
j 6=0

wjp(τ, µi, µj) =
N∑

i=−N
i 6=0

wip(τ, µi, µj) = 1. (65)

Advantages of Expanding the the Phase Function
in Legendre Polynomials are:

• (i) Normalization holds for arbitrary values of N ;
(ii) the “isolation” of the azimuth dependence is accomplished.

The Main Advantage of the “Double-Gauss” Scheme is that:

• The quadrature points (in even orders) are distributed symmetrically around
|u| = 0.5 and clustered both towards |u| = 1 and |u| = 0, WHEREAS

• In full-range (−1 < u < 1) Gaussian scheme, they are clustered towards u = ±1.

• The clustering towards |u| = 0 will give superior results near the boundaries
where the intensity varies rapidly around |u| = 0.

• A half-range scheme is also preferable since the intensity is discontinuous at the
boundaries.
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Accurate Numerical Solutions (13)

• Another advantage is that half-range quantities such as F± and Ī± are obtained
immediately without any further approximations.

Matrix Formulation of the Discrete-Ordinate Method

• Before we consider the general multi-stream solution, we shall first describe the
two-and four-stream cases (N = 1 and 2).

Two-stream approximation (N = 1):

The two-stream approximation is obtained by:

• Setting N = 1 in the half-range RTE (Eqs. 63 and 64) yields 2 coupled ODEs:

µ1
dI+(τ )

dτ
= I+(τ )− $

2
p(−µ1, µ1)I−(τ )− $

2
p(µ1, µ1)I+(τ )−Q′+(τ ) (66)

−µ1
dI−(τ )

dτ
= I−(τ )−$

2
p(−µ1,−µ1)I−(τ )−$

2
p(µ1,−µ1)I+(τ )−Q′−(τ ) (67)

where
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I±(τ ) ≡ I±(τ, µ1)

Q′±(τ ) ≡ $

4π
F sp(−µ0,±µ1)e−τ/µ0

$

2
p(µ1,−µ1) ≡ $

2
(1− 3gµ2

1) ≡ $b =
$

2
p(−µ1, µ1)

$

2
p(µ1, µ1) ≡ $

2
(1 + 3gµ2

1) ≡ $(1− b) =
$

2
p(−µ1,−µ1).

Recall that:

• b ≡ 1
2(1− 3gµ2

1) is called the backscattering ratio and that g is the first moment
of the scattering phase function, commonly referred to as the asymmetry factor.

• If we take µ1 = 1/
√

3, then b = 1
2(1− g) =⇒

– for g = −1 we have complete backscattering (b = 1),

– for g = 1 complete forward scattering (b = 0), and

– for g = 0 isotropic scattering (b = 1
2).

• The value µ1 = 1/
√

3 corresponds to Gaussian quadrature for the full-range
[−1, 1], while Gaussian quadrature for the half range [0, 1] (referred to as Double-
Gauss) yields µ1 = 1

2.
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We may rewrite Eqs. 66 and 67 in matrix form as:

d

dτ

I
+

I−

 =
−α −β
β α


I

+

I−

−
Q

+

Q−

 (68)

where

Q± ≡ ±µ−1
1 Q′±

α ≡
$

2
p(µ1, µ1)− 1

 /µ1 =
$

2
p(−µ1,−µ1)− 1

 /µ1 = [$(1− b)− 1]/µ1

β ≡ $

2
p(µ1,−µ1)/µ1 =

$

2
p(−µ1, µ1)/µ1 = $b/µ1.

Note that:

•We may interpret α and β as local transmission and reflection coeffi-
cients.
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Four-stream approximation (N = 2):

µ1
dI+(τ, µ1)

dτ
= I+(τ, µ1)−Q′+(τ, µ1)

−w2
$

2
p(−µ2, µ1)I−(τ, µ2)− w1

$

2
p(−µ1, µ1)I−(τ, µ1)

−w1
$

2
p(µ1, µ1)I

+(τ, µ1)− w2
$

2
p(µ2, µ1)I

+(τ, µ2)

µ2
dI+(τ, µ2)

dτ
= I+(τ, µ2)−Q′+(τ, µ2)

−w2
$

2
p(−µ2, µ2)I−(τ, µ2)− w1

$

2
p(−µ1, µ2)I−(τ, µ1)

−w1
$

2
p(µ1, µ2)I

+(τ, µ1)− w2
$

2
p(µ2, µ2)I

+(τ, µ2)

−µ1
dI−(τ, µ1)

dτ
= I−(τ, µ1)−Q′−(τ, µ1)

−w2
$

2
p(−µ2,−µ1)I−(τ, µ2)− w1

$

2
p(−µ1,−µ1)I−(τ, µ1)

−w1
$

2
p(µ1,−µ1)I+(τ, µ1)− w2

$

2
p(µ2,−µ1)I+(τ, µ2)

−µ2
dI−(τ, µ2)

dτ
= I−(τ, µ2)−Q′−(τ, µ2)

−w2
$

2
p(−µ2,−µ2)I−(τ, µ2)− w1

$

2
p(−µ1,−µ2)I−(τ, µ1)

−w1
$

2
p(µ1,−µ2)I+(τ, µ1)− w2

$

2
p(µ2,−µ2)I+(τ, µ2).
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We may rewrite these equations in matrix form as follows:

d

dτ


I+(τ, µ1)
I+(τ, µ2)
I−(τ, µ1)
I−(τ, µ2)

 =


−α11 −α12 −β11 −β12
−α21 −α22 −β21 −β22
β11 β12 α11 α12

β21 β22 α21 α22




I+(τ, µ1)
I+(τ, µ2)
I−(τ, µ1)
I−(τ, µ2)

−

Q+(τ, µ1)
Q+(τ, µ2)
Q−(τ, µ1)
Q−(τ, µ2)

 (69)

where

Q±(τ, µi) = ±µ−1i Q′±(τ, µi), i = 1, 2,

α11 = µ−11 [w1
$

2
p(µ1, µ1)− 1] = µ−11 [w1

$

2
p(−µ1,−µ1)− 1],

α12 = µ−11 w2
$

2
p(µ2, µ1) = µ−11 w2

$

2
p(−µ2,−µ1),

α21 = µ−12 w1
$

2
p(µ1, µ2) = µ−12 w1

$

2
p(−µ1,−µ2),

α22 = µ−12 [w2
$

2
p(µ2, µ2)− 1] = µ−12 [w2

$

2
p(−µ2,−µ2)− 1],

β11 = µ−11 w1
$

2
p(µ1,−µ1) = µ−11 w1

$

2
p(−µ1, µ1),

β12 = µ−11 w2
$

2
p(−µ2, µ1) = µ−11 w2

$

2
p(µ2,−µ1),

β21 = µ−12 w1
$

2
p(−µ1, µ2) = µ−12 w1

$

2
p(µ1,−µ2),

β22 = µ−12 w2
$

2
p(−µ2, µ2) = µ−12 w2

$

2
p(µ2,−µ2).
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Accurate Numerical Solutions (18)

By introducing the vectors:

I± =
{
I±(τ, µi)

}
, Q± = {Q±(τ, µi)}, i = 1, 2

we may write Eq. 69 in a more compact form as:

d

dτ

I
+

I−

 =
−α̃ −β̃
β̃ α̃


I

+

I−

−
Q

+

Q−

 (70)

where all the elements of the matrices α̃ and β̃ are defined above.

Note that:

• Equation 70 is similar to the one obtained in the two-stream approximation
except that the scalars α and β have become 2× 2 matrices.

• α̃ and β̃ may be interpreted as local transmission and reflection oper-
ators.
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Multi-stream approximation (N arbitrary):

It should now be obvious how to generalize this scheme:

• We write Eqs. 63 and 64 in matrix form as:

d

dτ

I+

I−

 =

[−α̃ −β̃
β̃ α̃

] I+

I−

−
Q+

Q−

 (71)

where

I± = {I±(τ, µi)} i = 1, . . . , N

Q± = ±M−1Q′± = {Q±(τ, µi)} i = 1, . . . , N

M = {µiδij} i, j = 1, . . . , N

α̃ = M−1{D+W − 1}
β̃ = M−1D−W

W = {wiδij} i, j = 1, . . . , N

1 = {δij} i, j = 1, . . . , N

D+ =
$

2
{p(µj, µi)} =

$

2
{p(−µj,−µi)} i, j = 1, . . . , N

D− =
$

2
{p(−µj, µi)} =

$

2
{p(µj,−µi)} i, j = 1, . . . , N.
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We note that the structure of the (2N × 2N) matrix:

−α̃ −β̃
β̃ α̃


in Eq. 71 can be traced to:

• the dependence of the scattering phase function on only the scattering angle (i.e.
the angle between Ω̂(µ, φ) and Ω̂(µ′, φ′).

• This special structure is also a consequence of having chosen a quadrature rule
satisfying µ−i = −µi, w−i = wi.

• Because of this structure, Eq. 71 permits eigensolutions with eigenvalues occur-
ring in positive/negative pairs:

•We can reduce the dimension of the resulting algebraic eigenvalue problem by a
factor of 2 which leads to a decrease of the computational burden by a factor of
8.
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Matrix Eigensolutions

Two-stream solutions (N = 1):

• Seeking solutions to the homogeneous version of Eq. 68 (Q± = 0) of the form
I± = g±e−λτ , g± = g(±µ1), leads to the algebraic eigenvalue problem:

 α β
−β −α


g

+

g−

 = λ

g
+

g−

 . (72)

Writing this matrix equation as follows:

αg+ + βg− = λg+

−βg+ − αg− = λg−

and adding and subtracting these two equations, we find:

(α− β)(g+ − g−) = λ(g+ + g−) (73)

(α + β)(g+ + g−) = λ(g+ − g−). (74)
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Substitution of the last equation into Eq. 73 yields:

(α− β)(α + β)(g+ + g−) = λ2(g+ + g−)

which has the solutions λ1 = k, λ−1 = −k with

k =
√
α2 − β2 =

1

µ1

√
(1−$)(1−$ + 2$b) > 0 ($ < 1) (75)

g+ + g− = arbitrary constant (= 1) (76)

which we may set equal to unity.

For λ1 = k Eq. 74 yields:

g+ − g− = (α + β)/k (77)

(assuming k 6= 0 or $ 6= 1).
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• Combining Eqs. 76 and 77, we find:

g+
1

g−1
=
k + (α + β)

k − (α + β)
=

√
1−$ + 2$b−

√
1−$√

1−$ + 2$b +
√

1−$
≡ ρ∞ (78)

and thus

g
+
1

g−1

 =
ρ∞

1

 (79)

which is the eigenvector belonging to eigenvalue λ1 = k.

• Repeating this procedure for λ−1 = −k, we find g−−1/g
+
−1 = ρ∞, and:

g
+
−1

g−−1

 =

 1

ρ∞

 . (80)
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The complete homogeneous solution becomes a linear combination of the expo-
nential solutions for eigenvalues λ1 = k and λ−1 = −k, i.e.

I+(τ ) = I(τ,+µ1) = C−1g−1(+µ1)e+kτ + C1g1(+µ1)e−kτ

= C−1g−1(+µ1)e+kτ + ρ∞C1g1(−µ1)e−kτ (81)

I−(τ ) = I(τ,−µ1) = C−1g−1(−µ1)e+kτ + C1g1(−µ1)e−kτ

= ρ∞C−1g−1(+µ1)e+kτ + C1g1(−µ1)e−kτ (82)

where C1 and C−1 are constants of integration. We note that:

• These solutions are identical to those given previously (see Chapter 7) for the
two-stream approximation as they should be.

• In anticipation of the extension to more than two streams we may rewrite the
solution in the following somewhat artificial form:

I±(τ, µi) =
1∑
j=1

C−jg−j(±µi)ekjτ +
1∑
j=1

Cjgj(±µi)e−kjτ i = 1, 1 (83)

with k1 = k, given by Eq. 75.
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Multi-stream solutions (N arbitrary)

The coupled Eqs. 71: d
dτ

[
I+

I−

]
=

−α̃ −β̃
β̃ α̃

 [I+

I−

]
−

[
Q+

Q−

]
constitue:

• a system of 2N coupled, ordinary differential equations with constant coeffi-
cients.

• These coupled equations are linear and our goal is to uncouple them by using
well-known methods of linear algebra.

• Our discussion of the two- and four-stream cases suggest that we should proceed
by seeking solutions to the homogeneous version (Q = 0) of the form:

I± = g±e−kτ . (84)

We find:  α̃ β̃
−β̃ −α̃


g

+

g−

 = k

g
+

g−

 . (85)

• Equation 85 is a standard algebraic eigenvalue problem of dimension 2N × 2N
with eigenvalues k and eigenvectors g±.
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Because of the special structure of the matrix in Eq. 85:

• the eigenvalues occur in positive/negative pairs and the dimension of the alge-
braic eigenvalue problem (Eq. 85) may be reduced as follows:

We rewrite the homogeneous version of Eq. 71 as:

dI+

dτ
= −α̃I+ − β̃I−

dI−

dτ
= α̃I− + β̃I+.

Adding these two equations, we find:

d(I+ + I−)

dτ
= −(α̃− β̃)(I+ − I−) (86)

and subtracting them, we find:

d(I+ − I−)

dτ
= −(α̃ + β̃)(I+ + I−). (87)
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Combining Eqs. 86 and 87, we obtain:

d2(I+ + I−)

dτ 2
= (α̃− β̃)(α̃ + β̃)(I+ + I−)

or in view of Eq. 84:

(α̃− β̃)(α̃ + β̃)(g+ + g−) = k2(g+ + g−). (88)

• Note reduction of dimension from 2N to N [(α̃− β̃)(α̃+ β̃) has dimension N ].

• To proceed we solve Eq. 88 to obtain eigenvalues and eigenvectors (g+ + g−).

•We then use Eq. 87 to determine (g+ − g−), and proceed as in the four-stream
case to construct a complete set of eigenvectors.

Inhomogeneous Solution

• It is easily verified that a particular solution for collimated beam incidence is:

I(τ, ui) = Z0(ui)e
−τ/µ0. (89)
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The Z0(ui) are determined by the following system of linear algebraic equa-
tions:

N∑
j=−N
j 6=0

(1 + uj/µ0)δij − wj
$

2
p(uj, ui)

Z0(uj) = X0(ui). (90)

Equation 90 is obtained by substituting the “trial” solution Eq. 89 into Eqs. 63–64.

Thermal Source

For thermal sources the emitted radiation is isotropic (and azimuth-independent):

Q′(τ ) = (1−$)B(τ ).

To account for the temperature variation in the slab we may approximate the Planck
function for each layer by a polynomial in optical depth τ :

B[T (τ )] =
K∑
`=0

b`τ
`.

• Then, we assume that the solution should also be a polynomial in τ , i.e.

I(τ, ui) =
K∑
`=0

Y`(ui)τ
`.
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The Y`(ui) are determined by solving this system of linear algebraic equations:

YK(ui) = (1−$)bK
N∑

j=−N

δij − wj$
2
p(uj, ui)

Y`(uj) = (1−$)b` − (` + 1)uiY`+1(ui)

` = K − 1, K − 2, . . . , 0.

•K = 1: only requires T at layer interfaces to compute B(τ ) there.

General Solution

The general solution to Eqs. 63 and 64 consists of a linear combination, with
coefficients Cj, of all the homogeneous solutions, plus the particular solution:

I±(τ, µi) =
N∑
j=1

C−jg−j(±µi)ekjτ +
N∑
j=1

Cjgj(±µi)e−kjτ

+Z0(±µi)e−τ/µ0 i = 1, . . . , N. (91)

• The kj and gj(±µi) are the eigenvalues and eigenvectors; the±µi are the quadra-
ture angles; the C±j the constants of integration.
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Boundary Conditions – Removal of Ill-Conditioning

Boundary Conditions

• If the diffuse bidirectional reflectance, ρd(µ, φ;−µ′, φ′), is a function only of the
difference between the azimuthal angles before and after reflection, then:

ρd(−µ′, φ′;µ, φ) = ρd(−µ′, µ;φ− φ′) =
2N−1∑
m=0

ρmd (−µ′, µ) cosm(φ− φ′)

where the expansion coefficients are computed from:

ρmd (−µ′, µ) =
1

π

∫ π
−π d(φ− φ′)ρd(−µ′, µ;φ− φ′) cosm(φ− φ′).

• Each Fourier component must satisfy the bottom boundary condition (Ts is
temperature, and ε(µ) emittance of the surface):

Im(τ ∗,+µ) = δm0ε(µ)B(Ts) + (1 + δm0)
∫ 1
0 dµ

′ µ′ρmd (−µ′, µ)Im(τ ∗,−µ′)

+
µ0F

s

π
e−τ

∗/µ0ρmd (µ,−µ0) ≡ Ims (µ).
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Accurate Numerical Solutions (31)

Thus, Eqs. 91 must satisfy boundary conditions as follows:

Im(0,−µi) = Im(−µi), i = 1, . . . , N (92)

Im(τ ∗,+µi) = Ims (µi), i = 1, . . . , N (93)

where

Ims (µi) = δm0ε(µi)B(Ts) + (1 + δm0)
N∑
j=1

wjµjρ
m
d (µi,−µj)Im(τ ∗,−µj)

+
µ0F

s

π
e−τ

∗/µ0ρmd (µi,−µ0). (94)

Im(−µi) is the radiation incident at the top boundary.

Note that:

• For Prototype Problem 1 we would have Im(−µi) = constant (the same for all
µi) for m = 0, and Im(−µi) = 0 for m 6= 0 (uniform illumination).

• For Prototype Problems 2 and 3 we have, of course, Im(−µi) = 0 since
there is by definition no diffuse radiation incident in Prototype Problem
3 and Prototype Problem 2 is assumed to be driven entirely by internal
radiation sources.
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Accurate Numerical Soln’s – Prototype Problems (32)

τ* ∞

(c)(b)

m1

m2 ≠ m2

ρ ≠ 0

ρ = 0 ρ = 0 ρ = 0

(a)
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Problem 1
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Problem 2

Prototype
Problem 3

Semi-Infinite
Slab

Partially
Transparent
Boundary

Partially
Reflecting
Boundary

θ0

Variants of lower boundary condition

Fs

Figure 8: Illustration of Prototype Problems in radiative transfer.
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Accurate Numerical Solutions (33)

Note also that since Eqs. 92 and 93 introduce:

• a fundamental distinction between downward directions (denoted by −) and
upward directions (denoted by +), one should select a quadrature rule which
integrates separately over the downward and upward directions.

• The Double-Gauss rule that we have adopted satisfies this requirement.

For the discussion of boundary conditions, it is convenient to write the discrete
ordinate solution in the following form (kj > 0 and k−j = −kj):

I±(τ, µi) =
N∑
j=1

[
Cjgj(±µi)e−kjτ + C−jg−j(±µi)e+kjτ

]
+ U±(τ, µi). (95)

Here:

• The sum contains the homogeneous solution involving the unknown coefficients
(the Cj) and

• U±(τ, µi) is the particular solution given by Eq. 89.
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Accurate Numerical Solutions (34)

Insertion of Eq. 95 into Eqs. 92–94 yields (omitting the m-superscript):

N∑
j=1
{Cjgj(−µi) + C−jg−j(−µi)} = I(−µi)− U−(0, µi), i = 1, . . . , N (96)

N∑
j=1

{
Cjrj(µi)gj(+µi)e

−kjτ∗ + C−jr−j(µi)g−j(+µi)e
kjτ
∗}

= Γ(τ ∗, µi),

i = 1, . . . , N (97)

where

rj(µi) = 1− (1 + δm0)
N∑
n=1

ρd(µi,−µn)wnµngj(−µn)/gj(+µi) (98)

Γ(τ ∗, µi) = δm0 ε(µi)B(Ts)− U+(τ ∗, µi)

+ (1 + δm0)
N∑
j=1

ρd(µi,−µj)wjµjU−(τ ∗, µj)

+
µ0F

s

π
e−τ

∗/µ0ρd(µi,−µ0). (99)
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Accurate Numerical Solutions (35)

Note that:

• Eqs. 96 and 97 constitute a 2N × 2N system of linear algebraic equations from
which the 2N unknown coefficients, the Cj (j = ±1, . . . ,±N) are determined.

Removal of Numerical Ill-Conditioning

• The numerical solution of this set of equations is seriously hampered by the fact
that Eqs. 96 and 97 are intrinsically ill-conditioned.

By “ill-conditioning” we mean:

•When Eqs. 96 and 97 are written in matrix form the resulting matrix cannot be
successfully inverted by existing computers using “finite-digit” arithmetic.

• If τ ∗ is sufficiently large, some of the elements of the matrix become huge while
others become tiny: this situation leads to ill-conditioning.

• Fortunately, this ill-conditioning may be eliminated by a scaling transformation.

• The ill-conditioning is due to the occurrence of exponentials with positive argu-
ments in Eqs. 96 and 97 (recall that kj > 0) which must be removed.
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Accurate Numerical Solutions (36)

• The ill-conditioning is removed by applying the scaling transformation:

C+j = C ′+je
kjτt and C−j = C ′−je

−kjτb. (100)

To generalize this scaling to apply to a multi-layered medium we have written:

• τt and τb for the optical depths at the top and the bottom of the layer, respec-
tively. In the present one-layer case we have τt = 0 and τb = τ ∗.

Using Eqs. 100 in Eqs. 96 and 97 and solving for the C ′j instead of the Cj:

• All the exponential terms in the coefficient matrix have negative arguments
(kj > 0, τb > τt). Consequently:

• Numerical ill-conditioning is avoided: the system of algebraic equations deter-
mining the C ′j will be unconditionally stable for arbitrary layer thickness.

• The merit of the scaling transformation is to remove all positive arguments of
the exponentials occurring in the matrix elements of the coefficient matrix.

BUT HOW DOES IT WORK?
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Accurate Numerical Solutions (37)

Example: Removal of Ill-Conditioning – Two-Stream Case (N = 1)

In this simple case, Eqs. 96 and 97 reduce to: (see Eqs. 81 and 82)

C1g1(−µ1)e−kτt + C−1g−1(−µ1)ekτt = C1g
−
1 e
−kτt + C−1g

−
−1e

kτt = (RHS)t

r1C1g1(+µ1)e−kτb+r−1C−1g−1(+µ1)ekτb = r1C1g
+
1 e
−kτb+r−1C−1g

+
−1e

kτb = (RHS)b
The left hand side may be written in matrix form as: g−1 e

−kτt g−−1e
kτt

r1g
+
1 e
−kτb r−1g

+
−1e

kτb


 C1

C−1

 .
This matrix is ill-conditioned because: One element becomes very large while an-
other one becomes very small as kτb increases. Using the scaling transformation
we find that the above matrix becomes: g−1 g−−1e

−k(τb−τt)

r1g
+
1 e
−k(τb−τt) r−1g

+
−1


 C

′
1

C ′−1

 .
In the limit of large values of k(τb − τt) this matrix reduces to: g−1 0

0 r−1g
+
−1

 .
• The ill-conditioning problem has been completely eliminated.
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Accurate Numerical Soln’s – Inhomogeneous Slab (38)

So far we have considered only a homogeneous slab: the single scatter-
ing albedo and the scattering phase function were assumed to be constant
throughout the slab. We shall now allow for both to be a function of optical depth:

• To approximate the behavior of a vertically inhomogeneous slab we will divide
it into a number of layers. Thus:

• the slab is assumed to consist of L adjacent layers in which the single scattering
albedo and the scattering phase function are taken to be constant within each
layer, but are allowed to vary from layer to layer.

• For an emitting slab we assume that we know the temperature at the layer
boundaries.

• The idea is that by using enough layers we can approximate the
actual variation in optical properties and temperature as closely
as desired.

• The advantage of this approach is that we can use the solutions derived previ-
ously because each of the layers by assumption is homogeneous.
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Accurate Numerical Soln’s – Multiple Layers (39)
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Figure 9: Schematic illustration of a multi-layered, inhomogeneous
medium overlying an emitting and partially reflecting surface.
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Accurate Numerical Soln’s – Inhomogeneous Slab (40)

• Thus, we may write the solution for the pth layer as (kjp > 0 and k−jp = −kjp)

I±p (τ, µi) =
N∑
j=1

[
Cjpgjp(±µi)e−kjpτ + C−jpg−jp(±µi)e+kjpτ

]
+ U±p (τ, µi)

p = 1, 2, . . . , L. (101)

• The sum contains the homogeneous solution involving the unknown coefficients
(the Cjp) and U±p (τ, µi) is the particular solution given by Eq. 89.

• Except for the layer index p, Eq. 101 is identical to Eq. 95. The solution contains
2N constants per layer yielding a total of 2N × L unknown constants.

• Now, Eq. 91 must now satisfy boundary and continuity conditions as follows:

Im1 (0,−µi) = Im(−µi), i = 1, . . . , N (102)

Imp (τp, µi) = Imp+1(τp, µi), i = ±1, . . . ,±N ; p = 1, . . . , L− 1 (103)

ImL (τL,+µi) = Ims (µi), i = 1, . . . , N (104)

• Ims (µi) is given by Eq. 94 with τ ∗ replaced by τL.

• Equation 103 ensures that the radiance is continuous across layer interfaces.
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Accurate Numerical Soln’s – Inhomogeneous Slab (41)

Insertion of Eq. 101 into Eqs. 102–104 yields (omitting the m-superscript):

N∑
j=1
{Cj1gj1(−µi) + C−j1g−j1(−µi)} = I(−µi)− U1(0,−µi), i = 1, . . . , N

(105)

N∑
j=1
{Cjpgjp(µi)e−kjpτp + C−jpg−jp(µi)e

kjpτp

−
[
Cj,p+1gj,p+1(µi)e

−kj,p+1τp + C−j,p+1g−j,p+1(µi)e
kj,p+1τp

]
} =

Up+1(τp, µi)− Up(τp, µi), (106)

i = ±1, . . . ,±N ; p = 1, . . . , L− 1

N∑
j=1

{
CjLrj(µi)gjL(µi)e

−kjLτL + C−jLr−j(µi)gjL(µi)e
kjLτL

}
= Γ(τL, µi),

i = 1, . . . , N (107)

where rj is given by Eq. 98 with gj replaced by gjL, and Γ is given by Eq. 99 with
U± replaced by U±L and τ ∗ by τL.
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Accurate Numerical Soln’s – Inhomogeneous Slab (42)

Equations 105–107 constitute:

• a (2N × L) × (2N × L) system of linear algebraic equations from which the
2N × L unknown coefficients, the Cjp (j = ±1, . . . ,±N ; p = 1, . . . , L) are to
be determined.

Note that:

• Eqs. 105 and 107 constitute the boundary conditions and are therefore identical
to Eqs. 96 and 97 (again except for the layer indices);

• Eqs. 106 constitute the interface radiance continuity conditions.

• As in the one-layer case, we must deal with the fact that Eqs. 105–107 are
intrinsically ill-conditioned.

• Again, this ill-conditioning is entirely eliminated by the scaling transformation
introduced previously (Eqs. 100).
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Accurate Numerical Solutions (43)

Source Function and Angular Distributions
For a slab of thickness τ ∗, we may formally solve Eqs. 63 and 64 (µ > 0):

I+(τ, µ) = I+(τ ∗, µ)e−(τ∗−τ)/µ +
∫ τ∗
τ

dt

µ
S+(t, µ)e−(t−τ)/µ (108)

I−(τ, µ) = I−(0, µ)e−τ/µ +
∫ τ
0

dt

µ
S−(t, µ)e−(τ−t)/µ. (109)

These two equations show that:

• If we know S±(t, µ), we can find the intensity at arbitrary µ.

Analytic Expression for the Source Function

• In view of Eqs. 63 and 64 the discrete-ordinate approximation to the source
function may be written as:

S±(τ, µ) =
$

2

N∑
i=1
wip(−µi,±µ)I−(τ, µi)

+
$

2

N∑
i=1
wip(+µi,±µ)I+(τ, µi) + X±0 (µ)e−τ/µ0. (110)
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Accurate Numerical Solutions (44)

Substituting the general solution of Eq. 91 into Eq. 110, we find:

S±(τ, µ) =
N∑
j=1

C−jg̃−j(±µ)ekjτ +
N∑
j=1

Cjg̃j(±µ)e−kjτ + Z̃±0 (µ)e−τ/µ0 (111)

where

g̃j(±µ) =
a

2

N∑
i=1
{wip(−µi,±µ)gj(−µi) + wip(+µi,±µ)gj(+µi)} (112)

Z̃±0 (µ) =
a

2

N∑
i=1
{wip(−µi,±µ)Z0(−µi) + wip(+µi,±µ)Z0(+µi)} + X0(±µ).

(113)
Note that:

• Equations 112 and 113 are convenient analytic interpolation formulas for the
g̃j(±µ) and the Z̃0(±µ).

• The fact that they are derived from the basic radiative transfer equation to
which we are seeking solutions, indicates that these expressions may be superior
to any other standard interpolation scheme.
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Accurate Numerical Solutions (45)

Interpolated Intensities

Using Eqs. 111 in Eqs. 108 and 109, we find that for a layer of thickness τ ∗, the
radiances become:

I+(τ, µ) = I+(τ ∗, µ)e−(τ∗−τ)/µ

+
N∑

j=−N
Cj
g̃j(+µ)

1 + kjµ

{
e−kjτ − e−[kjτ

∗+(τ∗−τ)/µ]
}

(114)

I−(τ, µ) = I−(0, µ)e−τ/µ +
N∑

j=−N
Cj
g̃j(−µ)

1− kjµ
{
e−kjτ − e−τ/µ

}
(115)

•We have for convenience included the particular solution as the j = 0 term in
the sum so that C0g̃0(±µ) ≡ Z̃0(±µ) and k0 ≡ 1/µ0.

• The basic virtue of Eqs. 114 and 115 has been demonstrated numerically.
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Accurate Numerical Soln’s – Inhomogeneous Slab (46)

In a multi-layered medium we may evaluate the integral in Eqs. 108 and 109:

I+(τ, µ) = I+(τ ∗, µ)e−(τ
∗−τ)/µ +

∫ τ∗
τ

dt

µ
S+(t, µ)e−(t−τ)/µ (116)

I−(τ, µ) = I−(0, µ)e−τ/µ +
∫ τ
0

dt

µ
S−(t, µ)e−(τ−t)/µ (117)

by integrating layer by layer as follows (τp−1 ≤ τ ≤ τp and µ > 0):

∫ τL
τ

dt

µ
S+(t, µ)e−(t−τ)/µ =

∫ τp
τ

dt

µ
S+
p (t, µ)e−(t−τ)/µ

+
L∑

n=p+1

∫ τn
τn−1

dt

µ
S+
n (t, µ)e−(t−τ)/µ (118)

∫ τ
0

dt

µ
S−(t, µ)e−(τ−t)/µ =

p−1∑
n=1

∫ τn
τn−1

dt

µ
S−n (t, µ)e−(τ−t)/µ

+
∫ τ
τp−1

dt

µ
S−p (t, µ)e−(τ−t)/µ. (119)
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Accurate Numerical Soln’s – Inhomogeneous Slab (47)

Using Eq. 111 [S±(τ, µ) =
∑N
j=1C−j g̃−j(±µ)ekjτ +

∑N
j=1Cj g̃j(±µ)e−kjτ + Z̃±0 (µ)e−τ/µ0] for S±n (t, µ)

in each layer (properly indexed) in Eqs. 118 and 119, we find:

I+
p (τ, µ) = I+(τL, µ)e−(τL−τ)/µ

+
L∑
n=p

N∑
j=−N

Cjn
g̃jn(+µ)

1 + kjnµ
[e−[kjnτn−1+(τn−1−τ)/µ] − e−[kjnτn+(τn−τ)/µ]]

(120)

with τn−1 replaced by τ for n = p,

I−p (τ, µ) = I−(0, µ)e−τ/µ

+
p∑

n=1

N∑
j=−N

Cjn
g̃jn(−µ)

1− kjnµ
[e−[kjnτn+(τ−τn)/µ] − e−[kjnτn−1+(τ−τn−1)/µ]]

(121)

with τn replaced by τ for n = p.
For a single layer (τn−1 = τ , τn = τL = τ ∗ in Eq. 120; τn = τ , τn−1 = 0 in Eq. 121),
Eqs. 120 and 121 reduce to Eqs. 114 and 115 as they should.
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Accurate Numerical Soln’s – Inhomogeneous Slab (48)

Scaled Solutions

Equations 101 and 120 and 121 contain exponentials with positive arguments
which will eventually lead to numerical overflow for large enough values of these
arguments. Fortunately:

• we can remove all these positive arguments by introducing the scaling transfor-
mation into our solutions.

Since only the homogeneous solution is affected, it suffices to substitute Eqs. 100
into the homogeneous version of Eq. 101 ignoring the particular solution U±p (τ, µi):

I±p (τ, µi) =
N∑
j=1

{
C ′jpg

′
jp(±µi)e−kjp(τ−τp−1) + C ′−jpg−jp(±µi)e−kjp(τp−τ)

}
. (122)

Since kjp > 0 and τp−1 ≤ τ ≤ τp, all exponentials in Eq. 122 have negative
arguments as they should to avoid overflow in the numerical computations.
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