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Chapter 5 - Principles of Radiative transfer

Thermal Emission from a Surface (1)

e The spectral directional emittanceis the ratio of the energy emitted by a surface
of temperature 7T to the energy emitted by a blackbody at the same frequency
and temperature:

Q. T) dwcos0IH(Q)  IH(Q)
14 S
s dwcosOB,(Ty)  B,(Ty)

oIfe=1forall Q and v, the surface is a blackbody.
o If ¢ = constant < 1 for all £ and v, the surface is a gray body.
e B,(T;) is the isotropic radiance emitted by a blackbody.
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Thermal Emission from a Surface (2)

The energy emitted by the surface into the whole hemisphere is called:

e the spectral emittance given by:

(v.27.T.) = I dwcos 014 (Q) 14 dw cos OB, (Ty)e(v, Q, To)
e(v,2m,Ty) = —
Y Iy dw cos OB,,(Ty) B, (T;)
1 A
= — [, d Oe(v, Q,Ty). 1
7T/Jr w cos Oe(v, 2, Ty) (1)

Hence, the spectral emittance is the energy emitted into a hemisphere relative to
a blackbody at a particular frequency.
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Absorption by a Surface

e The spectral directional absorptance is the ratio of absorbed energy to
incident energy:

T dw cosO0 Q) ()

& ~duw'cos H/IV_E%(Q/) [1/_a<Q/>
Q/

e The energy absorbed when radiation is incident over the whole hemisphere is
called the spectral absorptance:

a(v, —2m,Ty) =

I dw cos0' I, () - dw' cosf a(v, -, T)I; ()
Q' |

- dw cos0 T () Fr

o If the incident radiation is blackbody, then I (Q) = B,(TY), F, = 7B, (T.):

1 / /
a(v,—2m,T) = — [ dw cosf av, — ¥, Ty).
T
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Kirchoft’s law for Surfaces

Consider an opaque nonblack surface within a hohlraum that is exposed to the
isotropic radiance I, = B, (T'). Since the incident radiation is isotropic:

e the upward radiance must be isotropic. Since the surface is opaque:

e the upward radiance consists of an emitted component and a reflected compo-
nent, which must add to yield the incident radiance:

A e

]zjé(ﬂ) + [;;’(Q) - BV<TS)

e [rom conservation of energy the sum of the reflected and absorbed energy must

N

be equal to the incident energy: I () + [} () = B,(Ty).

e [rom these two relations and the definitions of the directional emittance and

absorptance, we obtain Kirchofi’s Law for an Opaque Surtface:
a(v, =, Ty) = e(v, Q, Ty).

e Note that we have assumed an isothermal enclosure in TE.

e Similarly we have in the special case of hemispherically isotropic incidence:
a(v, =21, T;) = €(v, 2w, T;)— absorptance = emittance.
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Surface Reflection: The BRDF (1)

Consider a downward beam with radiance 1,(€Y) within a cone of solid angle dw’
around €2’ that is incident on a flat surface with normal n = z (see Fig. 1).

e Incident energy: dw’ cos 6’1, (€Y).
o Reflected radiance within dw around Q: dI-(€Y).

e The Bidirectional Reflectance Distribution Function (BRDF) is the
ratio of the reflected radiance to the incident energy:

", (9
p(V7 _52/7 Q) d VI‘( )

A .

dw' cos 0" (V)

By adding contributions to the reflected radiance in direction Q2 from beams incident
on the surface in all downward directions, we obtain:

LHQ) = [ dI5(Q) = [ dw'cos @ p(v, -, Q) I, (S).

which is diffuse light due to integration over the downward hemisphere.
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Figure 1: Geometry and symbols for the definition of the BRDF. The angle « is the backscattering
angle.
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Surface Reflection: The BRDF (2)

Note the differences between a purely diffuse and a purely specular surface.
[f the reflected radiance from a diffuse surface is completely uniform:

e it is called a Lambert surface. Examples are ground glass and matte paper.

e The BRDF of a Lambert surface is independent of both direction of incidence
and direction of observation:

p(v, _le Q) = pL(V)
where pr(v) = Lambert reflectance.

e For a Lambert surface the reflected radiance is:

I =pu(v) [ dw cos8'T; () = pL(v)F,; .

14

Thus, for a Lambert surface the reflected radiance is:

e independent of the observation direction and is proportional to the incident
irradiance.
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Surface Reflection: The BRDF (3)

For a collimated incident beam of light:

e the radiance reflected from a Lambert surface is proportional to the cosine
of the angle of incidence (see below);

e the radiance reflected from a specular surface is a ¢ - function.
In general:

e the BRDF has a diffuse component pq and a specular component pq:

IO(Vv _Qla Q) — IOS<V7 _Q
and the reflected radiance becomes:

/

I[H() = ps(v, 01 (0, ¢ +7) + [ dw' cos O pa(v, =, QI ().

specular component diffuse component
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Figure 22 The bidirectional reflectance and transmittance at a smooth air-water interface based on
Fresnel’s equations. The two curves show the reflectance and transmittance for the perpendicular
and parallel components.
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Albedo for Collimated Incidence

e Incident radiance: I, (€) = F56(cos @ — cos0y)d(¢) — ¢p).
o Diffusely reflected radiance:*
LHQ) = [ dw' cos @ pa(v, =¥, Q) () = F5 cos ypa(v, — 2, ).
o lefusely reﬂected irradiance:
= [, dw cos 01, ( (Q) = F* cos b /, dw cos Opqy(v, —Q, Q).

e The reﬂectance or plane albedo is the ratio of the reflected irradiance to
the incident collimated beam (solar) irradiance:
F

Qo) = U =
plv, =S, 2m) Fs cos b

= [, dw cos Op(v, —, Q).

e Since p(v, —Qo, Q) is the sum of a specular and a diffuse component:

p(v, =, 21) = polv, =, 210) + pd(u —, 2)
= [, dw cos Opy(v, —Q, Q )+ /, dw cos Bpq(v, —Q, Q). (2)
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Diffuse Incidence - Reflectance or Albedo

o If the BRDF is Lambertian, then ps = 0, pa(v, —, 27) = pr.(v) and:
p(v, =, 21) = pL(v) 027T d¢ /OW/2 df sin @ cos = wpp(v).

e Consider now the diffuse sky light radiation I (€) reaching the Earth. It is
distributed over the entire downward hemisphere, and the reflected irradiance
1S:

Ff = /+dw<3089[+ = [ dwcosf [ dw cos p(v, —Q I ().
= [ dw'cost'| |, dw cos Op(v, —Q Q) ()
= [ dw'cos @ p(v, =V, 2m)I, (). (3)

e Comparing this result with our previous results for emitted and absorbed irradi-
ances, we see that p(v, =, 27), e(v, Q, Ty), and a(v, o) ,'T5) play similar roles
in transforming radiance distributions into irradiances.

e For an opaque surface:

alv,—Q,T) =1 — p(v, —Q, 21) <= follows from conservation of energy.
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Analytical Reflectance Expressions

e Minneart formula: p(ug, 1) = pnu{%‘l Mk—l

e k = 1 = Lambert surface
e k= 0.5 = “Dark” surface — the greater the observation (nadir) angle 6 the

brighter the surface — in general agreement with experiment.
e As k increases, p(u, i) increases — Disadvantage: No physical basis!

e Principle of reciprocity: The reflectance is unaffected by an interchange of
the directions of incidence and observation:

p(0',6:0,0) =p(0,6;0,¢)

e Lommel-Seeliger formula: p(ug, ) = /jﬁfﬂ:

— pn = p(1,1) = normal reflectance (in astronomy)
— pPmin OCcurs at normal viewing (u = 1)

— Pmaz OCCUrs at grazing view angle (u = 0) : consistent with Minneart formula

® As 6, increases from 0° to 90V, p exhibits a larger increase with § in agreement with experiments.

® Lommel-Seeliger formula applies well to dark surfaces (p, < 0.3).
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P.=1.04, k=0.97

1.0

£.=0.69, k=0.79

Minnaert BDRF

Off —nadir angle, degrees

Figure 3: The BRDF for Minneart’s formula versus the off-nadir angle. Each curve corresponds to
a different surface ranging from very dark to very bright.
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Scattering (Geometry

Nl
O

¢ = 180°,

Figure 4: Illustration of the geometry involved in the description of the BRDF. The phase angle « is the supple-
mentary angle of the scattering angle ©, i.e., « = m — ©. The relative azimuth angle A¢ = 0° corresponds to
the glint (specular) direction, and A¢ = 180° to the backscattering (hot-spot) direction.
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The Opposition Effect

e The phase angle or backscattermg angle « is defined as the complement
of the angle between Q' (¢', ¢/) and (6, ¢):

a =7 — arccos(€) - §) = 7 — arccos|—pu + \/(1 — 12)(1 — p'?) cos(p — ¢')].
Planetary surfaces exhibits the opposition effect (O. E.), Heiligenschein, en-
hanced backscattering or hot spot phenomenon (see Fig. 5):

e an abrupt increase in the reflected light as @ — 0. Thus, at lunar opposition
when the sun is behind the observer, the Moon is brighter than at other phases.

e The opposition effect can be accounted for by a multiplicative correction to the
Lommel-Seeliger formula:

ploio ) = 2 — 11+ Bexpl— tan(a/2)]

Ho + M
A = normalization constant; B > 0 is the opposition enhancement factor; h
= compaction parameter = measure of angular width of O. E. Correction is
maximum at o = 0 with a width proportional to h.
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Figue 5: Measured BRDFs versus the off-nadir angle for prairie grassland (upper panel) and for

alkali flat (lower panel).
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Reflection from a wind-roughened sea surface (1)

The slope distribution of surface facets of a wind-roughened body of water can
be approximated by a one-dimensional Gaussian distribution derived by Cox and

Munk [1954]:

1 1 — p? 1 tan? 6,
p(pn) = WGXP - o212 = WGXP T2 (4)
pt
a oor J2(1 — cos ©) (%)
o* = 0.003 4+ 0.00512 - U (6)
where U is the wind speed in m/s, and the BRDF can be written as:
1
p(p, o', ') = - p(py) - 7(cos©,m) - s(p, 1, 0). 7
( ) TIIAL (ptn) - 7°( ) - sl ) (7)

e r(cos ©,m) is the Fresnel reflectance,

e s(u, 1, 0) is a shadowing term that is important for large angles of incidence

(92 > 750) and

e m 1Is the refractive index of water.
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Reflection from a wind-roughened sea surface (2)

0,, = cos~* p,, = tilt angle (see Fig. 6): angle between surface normal of a scattering
facet for which specular reflection occurs and zenith direction.

. >N
>3

Incident ray

Figure 6: [llustration of tilt angle (6,) and relative azimuth angle (¢ = A¢) in rough surface scattering. Here n is
the normal to the facet, 6, is the tilt angle, and ¢ is the azimuth angle relative to the glint direction (¢ = 0).
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Reflection from a wind-roughened sea surface (3)

Figure 7 shows the Cox-Munk BRDF for several values of the relative azimuth
difference, an angle of incidence of i/ = cos 30°, a refractive index m = 1.34 and a
wind speed of U =5 m/s.

— A¢=0
- - - A9=45

Cox—Munk 1D Reflectance
(@]
(@]
N

0 20 40 60 80
VIEW ZENITH ANGLE (DEGREE)

Figure 7: Analytic Cox-Munk 1D Gaussian BRDF for m = 1.34, wind speed U = 5 m/s, and angle of incidence
= 30°.
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Transmission through a slab medium — (1)

e The transmittance is a measure of how much light reaches the lower surface of
a slab either as a direct attenuated beam or as diffuse (scattered) radiation.

e The spectral bidirectional transmittance or simply transmittance
is defined as the ratio of the transmitted radiance dI ;(€2) to the incident energy:

AN

T, -, @)= alD
I (€2) cos 0/ dw’

e Adding up contributions from the beams incident in all downward directions
— Q' we obtain the total transmitted radiance:

L) = [ dI() = [dw cosO'T (v, -, —Q)I, ().

e Since the transmitted radiance consists of a direct and a diffuse part, we have:
—(C —(O),—Ts(v / / ~/ N T/
L(Q)=1,(Q)e ™ + [ du cos§Ta(v, -, —Q) I, ()
where Tq(v, —Q', —Q) = diffuse transmittance.
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Transmission through a slab medium — (2)

For an incident collimated beam,
I7(Q) = F50(2 — Q) = Fo(cos @ — cosby)d (qb — ¢p), we get:

I(Q2) = F56(cos 0 — cos 0)0(p — do)e™ ™) + 5 cos 0y Ta(v, —Qp, —£2).
The corresponding irradiance becomes:

F,=[ dwcosfI (Q) = F cos fple” W) 4 [ dwcos b Ta(v, —QO,Q)}

e The transmittance is the ratio of the transmitted irradiance to the collimated

incident irradiance (e =) is the beam transmittance Ty(v)):
A F
T (v, —Qy, —27) = FVSC(V)tSQO e ™) 1+ [ dwcosf Ta(v, —Qy, —K2).

e For a uniform incident radiation field Z,, the transmittance is:

fo. dw cos 0 T, e~ "W/ 1 oty
T =2 [ dup e TV = 2F5(1(v)),

where E3(7(v)) is the exponential integral of order 3.

ﬁot<y> —

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP -+ April 2017

22




Spherical or Bond Albedo

e For definition of the spherical or bond albedo we refer to Fig. 8:
e Area of annulus presented to the Sun: dA = 27 R - Rsin 6, - cos 6ydb

e Solar energy received by annulus:

dAFS = F5[27 R*sin 0 cos 0ydby] = 2m R*F® piod .
e Energy reflected from annulus:

p(v, o, 2m)(dAF}) = 2w R* Fyp(v, —puo, 27) prodpo.

e Integration over the entire planetary disk gives the total spectral reflected energy:.
e Total incoming solar energy: wR*F5.

e The spectral spherical albedo (bond albedo) is the ratio of the disk-integrated
reflected energy to the disk-integrated incoming solar energy:

_2mRPES g p(v, —po, 2m) podpy

1
R =2 |, dpopop(v, —po, 27).

pv)
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R sin6g

dA = 2rR2 sin 6 cos 0o dfg

R cos 6 dbg

Figure 8: Geometry for the definition of the spherical albedo.
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Spherical Transmittance and Absorptance

e Spectral spherical transmittance and absorptance are defined analogously:

T(v) = 2/01 T (v, — g, 27) prod g

a(v) =2 /01 a(v, — g, 270) pod o

e [requency - integrated quantities:
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Kirchhoff’s Law: Volume Absorption and Emission (1)

To discuss radiative processes in an extended medium we must define absorption
and emission per unit volume. For a hohlraum filled with matter throughout the
volume, which both scatters and absorbs radiation at frequency v:

e Kirchhoff’s Law relates the thermal emission coefficient ;' to the
absorption coefficient and the Planck function

Kirchhoff’s Law Applied to Volume Emission

jy' = a(v)B,(T). (8)

e Since S, = j,/k(v) (Eq. 2.27), we define the thermal contribution to the source
function by:

gh= I _oWp (9)
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Kirchhoff’s Law: Volume Absorption and Emission (2)

e We define the spectral volume emittance ev(u,Q,T), as the ratio of the
thermal emission per unit volume of the matter under consideration to that of a
perfectly “black” material of the same mass and temperature T', SP8 = B, (T):

S, T)

B,(T)
Most atmospheric and oceanic absorbers are isotropic emitters, so that the absorp-
tion coefficient is independent of angle.

€y (v, Q, T) =

e Thus, dropping the angular dependence and using Eq. (9), we find:

a(v,T)
k(v)

e The volume emittance ¢, is proportional to the absorption coeffi-
cient, «.

e,(v, T) = (10)
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Kirchhoff’s Law: Volume Absorption and Emission (3)

A planetary medium is far from an artificial closed system such as a hohlraum.
It is therefore surprising that within spectral lines in the IR, planetary media radiate
approximately as a blackbody:

e the source function is equal to the Planck function.
This situation prevails when (recall discussion for two-level atom):

e the collisional rates of excitation/de-excitation of the quantum states are much
larger than the corresponding radiative loss rates.

e Then the populations of these states are determined by the local kinetic tem-
perature of the medium, rather than by the radiation field.

e In the troposphere thermal IR radiation is in local thermodynamic equi-
librium (LTE), which implies that Eqs. 8-10 are valid, but the radiance is not
equal to the Planck function, as it would be in TE. (At very low atmospheric
densities LTE will break down even in the IR, and Eqgs. 8-10 are no longer valid.)

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP -* Apri 2017
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Kirchhoff’s Law: Volume Absorption and Emission (4)

e However, LTE does not apply to shortwave radiative processes, because

e the kinetic energy involved in thermal collisions (~ kgT') is much less than the
excitation energies associated with visible and UV transitions (F;).

e Thus, at shortwave energies the collisional quenching rates greatly exceed the
collisional excitation rates.

e Absorption of sunlight, followed by collisional quenching, heats the medium.
The absence of the opposite process (collisional energy converting to radiative
energy) “uncouples” the shortwave radiation from the thermal state of the gas.

e There is little overlap between the radiation spectra of the Sun and the Earth
(Fig. 9): We may treat the two spectra separately.

Due to lack of strong absorption by the major atmospheric gases in the visible
spectrum:

e The major shortwave interaction is in the UV spectrum below 300 nm where
sunlight never reaches the surface.

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP -* April 2017
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Solar Radiation Terrestrial Radiation
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Figure 9: Spectral distribution of solar and terrestrial radiation fields. Also shown are the approxi-
mate shapes and positions of the scattering and absorption features of the Earth’s atmosphere.
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Chapter 5 - Principles of Radiative transfer - continued

Differential Equation of Radiative Transfer (1)

e Recall that: the radiative energy that is incident normally on the area dA in the
direction )" and within the solid angle dw’ centered around €)', in time dt and
within frequency interval dv is the fourth-order quantity (see Fig. 10):

d*E' = I,(Q) dAdt dvdw'.
e The radiative energy which is scattered in all directions is:

ods d*'E' = o ds I,(Y) dA dt dvdd,

where ds is the length of the scattering volume element in the direction normal to
dA, and o is the scattering coefficient.

e We are interested in that fraction of the scattered energy which is
directed into the solid angle dw centered around the direction ().

e This fraction is proportional to p(@’ : Q) dw /47, where p(@’ : Q) is the scattering
phase function (see §3.4).
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5>

dA dw

v

r

Figure 10 The flow of radiative energy carried by a beam in the direction Q through a transparent

surface element dA. The flow direction () is at an angle 6 with respect to the surface normal n
(cosf =n-Q).
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Differential Equation of Radiative Transfer (2)

If we multiply the scattered energy by this fraction, 7.e. form

odsd*E' p(QY, Q) dw /41 = odsI,(Q)dAdtdvdy p(Q, Q)dw /4r,
and then integrate over all incoming directions dw':

e we find that the total scattered energy emerging from the volume element
dV = ds dA in the direction ) is:
p(, Q)
A
e We define the emission coefficient for scattering as:

"SC d4E dw' e N/
W atdrdn = O e P DL

e The source function for scattering is thus:

d'E = o(v)dV dt dv dw [,_dw’ L(Y). (11)

SﬁC(Q) _ Ju L O(”)

k) = ki) D g P OIAY) (12)
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Differential Equation of Radiative Transfer (3)

The quantity o(v)/k(v) appearing in Eq. 12 is called the single-scattering
albedo, w(v). Since k(v) = o(v) + a(v), it is clear that

w(v)=o@)/lo(v) +alv) < 1.

e We interpret w(v) as the probability that a photon will be scattered,
given an extinction event.

e Given that an interaction has occurred, the quantity 1—w(v) is the probability
of absorption per extinction event or the co-albedo.

e For thermal emission, €, = a(v)/k(v) = 1 — w(v) is the volume emittance.
Thus, the complete time-independent radiative transter equation is:

Radiative Transfer Equation including Absorption
Thermal Emission and Multiple Scattering

dI,(Q)
dT,

=L+ L= BB+ T [ @ L), (13

thermal emission

multiple scattering

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP - April 2017
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Solution of the Radiative Transfer equation for zero
scattering (1)

Equation 13 includes both scattering (Eq. 12) and thermal emission (Eq. 9):

e [t reveals the major mathematical complexity of radiative transfer theory:
it involves the solution of an integro-differential equation.

e In the limit of no scattering (w(v) = 0), the radiation is affected only by ab-
sorption and emission processes. Then Eq. 13 simplifies to:

dl,
dT,

where the source function S, = B, (T") may be considered to be a known.

=—1,+ B,(T) (14)

e This local problem is much easier to solve than the more general non-local
problem involving multiple scattering.

e Note that the slant optical depth 7 is measured along the beam direction, taken
to be a straight line since we are ignoring refraction.

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP -+ April 2017

35



Solution of the Radiative Transfer equation for zero
scattering (2)

e A solution of Eq. 14, satisfying the appropriate boundary conditions, yields the
radiation field [, at all positions 74 along the beam direction.

e The solution will clearly vary with the frequency v, the temperature 1, and the
optical properties of the medium, embodied in the absorption coefficient a(v),
which in general may vary from point to point in the medium.

e We consider an inhomogeneous medium in LTE, which at each point radiates
thermal emission according to the Planck function at the local temperature.

e The medium may have arbitrarily shaped boundaries. It is illuminated by a
beam of radiation in the direction €2 at the boundary point P; (see Fig. 11).

AN

e We want to find the elementary solution for the radiance I,,(P,()) which
emerges from the medium at point P, along the same direction.
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Figure 11: A beam of radiation is incident on an absorbing/emitting region at the boundary point
P,. It is attenuated along the path P, P, and emerges at the point . The propagation direction
of the beam is denoted by Q. In addition, thermal emission adds to the beam at all points within
the medium.

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP -+ April 2017

37



Solution of the Radiative Transfer equation for zero
scattering (3)

o A completely general distribution of radiance in angle and frequency can be
obtained by repeating the elementary solution I,(P, 2) for all incident beams
and for all frequencies.

e The elementary solution will be found to be a sum of two terms:
(a) the incident radiance I(Py, Q) attenuated by the intervening optical path
along PP, and
(b) the contributions from the internal sources at all points P between P; to Py

and attenuated by the intervening optical path along PP;.

e Fq. (14) is readily integrated by using an integrating factor, which in this case
is €. After multiplying by €™, Eq. 14 may be written as a perfect differential:

d[ T Ts ___ d Ts\ __ Ts
dTSe + Ie —dTS(Ie ) = Be™. (15)

K. Stamnes, G. E. Thomas, and J. J. Stamnes *+ STS-RT_ATM_OCN-CUP -* April 2017

38




Solution of the Radiative Transfer equation for zero
scattering (4)

[gnoring refraction, we integrate along a straight path from the point P; to the
point P, the latter point being at the boundary of the medium (see Fig. 11).

e The optical path from the point P; to an intermediate point P is given by:
(P, P) = /]izoz ds = /Opoa ds — /OP1 a ds = 14(P) — 15(Py).

e The optical path may be measured from an arbitrary reference point P outside
the medium, even though 7(Fy, P;) = 0. 7y increases monotonically with dis-
tance in the medium due to the addition of absorbing matter along the beam.

e Integration of Eq. (15) along the straight line from P; to P, yields:

- d ! T T, s e
[ drt  (16%) = TPl — Tn(R)e™ ™) = 5 drlB(r!)e?

where the integration variable 7/ stands for the slant optical depth.
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Solution of the Radiative Transfer equation for zero
scattering (5)

e Solving for the radiance at the point P, we find:

I[r(Py)] = I[n(Py)e =Pt o RO 4ol p(l)en (1)
= I[r(Py)Je ™) 4[RO dT’B( e R), (16)

This result has a direct physical mterpretatlon. The radiance at the point P,
emerging from the medium in the beam direction P P, consists of two parts:

1. The first term is the contribution from the radiance incident at the boundary
point P, which has been attenuated by the beam transmittance.

2. The second term is due to thermal emission from the medium which lies along
the beam, weighted by the appropriate transmittance e~ ™2 Note:

e The above solution is valid whether or not the points P, and P, lie at the
boundaries of the medium (both P; and P, may be interior points).
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Solution with Zero Scattering in Slab Geometry (1)

e The most common geometry in the theory of radiative transfer is that of a
plane-parallel medium, or a slab (see Fig. 12). This geometry is appropriate
because:

e oravity imposes a density stratification, so that the medium properties tend
to vary primarily in the vertical direction. In many cases, we can ignore the
horizontal variation in the medium.

e We will distinguish the vertical optical path 7 (which we hereafter call the op-
tical depth) from the slant optical depth 7.

e [t is convenient to measure the optical depth along the vertical direction down-
ward from the ‘top’ of the medium.

The relationship between the vertical and the slant optical depths is:
T(2) = [7 d2"k(2) = 7| cos 0] = 75|

L is the polar angle of the beam direction.

where 6 = cos™
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Solution with Zero Scattering in Slab Geometry (2)

e Since it is used so frequently, we assign a special symbol, u to cosf, so that

drs = —kdz/|u| = —kdz/p, p = |cos | = |ul.

e The extinction optical depth can also be written in terms of the vertical column
number A and the extinction cross section &, (see Egs. 1.10 and 2.20)

7(2) =k 7 dZ' n(2) = kN (2)

or in terms of the extinction coefficient k&, (see Eq. 2.19):

T(2) = ky, [ d2'p(2) = kpM(2),
where M(z) is the mass of the material in a vertical column of unit cross-
sectional area.

e If R is the radial distance from the center of the planet, and H is the vertical
scale length of the absorber, the slab approximation is valid if H/R < 1, and 6
not too close to 90°.

e [f these conditions are violated, it is necessary to take into account the curvature
of the atmospheric layers.
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Figure 12: Half-range radiances in a slab geometry. The optical depth variable 7 is measured down-
ward from the ‘top’ of the medium (7 = 0) to the ‘bottom’ (7 = 7). pu = |u|] = |cosé)| is equal to
the absolute value of the cosine of the angle 0, the polar angle of the propagation vector (2.

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP - April 2017

43



Half-range Quantities in a Slab Geometry (1)

e The half-range radiances are defined by (see Fig. 12):
Iy(,0,¢) = L(1,0 < 7/2,0)
L (7,0,0) = L(7,0 > 7/2,0). (17)
These definitions may also be expressed in terms of u = cosf > 0, and u < 0.

e [t will become apparent later that the variable p = |u| makes the notation for
slant optical depth simple and straightforward.

e The irradiance defined in terms of half-range quantities:

E (1) = [, dwcos OIF(Q) = 027T do /07T/2 dfsin 6 cos 01 (1,0, ¢)
= [, d fy dp plf (7, 1, ) (18)

F (1) = — [ dwcosbI; (Q) = — 027 dqb/ﬂw/z dfsinfcosOI (7,60, 9)
= [ do fy dp pl, (T, 1, 8). (19)
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Half-range Quantities in a Slab Geometry (2)

e The downward irradiance F'~ is seen to be a positive quantity. The net irradiance
1S:

AN AN N

EF, (1) = |, dwcosOI,(S2) = [, dwcos 01 (2) + [ dw cos 01, (12)
= F/(1) = F, (7). (20)

e Note: the net irradiance in slab geometry is positive if the net radiative energy
flows in the upward (positive) direction, or toward increasing z and decreasing
T.

In the limit of no scattering the radiative transfer equations for the half-range
radiances become:

dlf (7
p AT 10 g 0) — B (21)
dl - (T
AT i) - B (22)

e Note: the independent variable is now the absorption optical depth, measured
downwards from the ‘top’ of the medium, which accounts for the difference in

sign of the LHS of Egs. 21 and 22.

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP - Apnril 2017

45



Formal Solution in a Slab Geometry (1)

e We first obtain a formal solution of Eq. 22. Choosing the integrating factor to
be e/ we obtain:
d dl, 1 B, (1)
[T/ T/ TV e 23
d7'< c ) ( dr ) (u © (23)

e The physical picture in Fig. 12 of downgoing beams which start at the “top”
and interact with the medium in the slab on their way downward, suggest that
we integrate Eq. 23 along the vertical from the “top” (7 = 0) to the “bottom”
(7 = 7*) of the medium to obtain:

- dr’

e = * "/ o7/
[ ar (1 ) = I ) 1 0.0,0) = [ BT
e Solving for I (7%, i, ¢), we find:
* T*d ! * /
I (e d) = I, (0, d)e ™" 4 [T S5 B, (r) e (T (24)
v

for the radiance emerging from the bottom of the slab.
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Formal Solution in a Slab Geometry (2)

e For an interior point, 7 < 7*, we integrate from 0 to 7. The solution is easily
found by replacing 7* by 7 in Eq. 24, 7.e.

dT

I (1, 0) = I, (0, i, )™+ [T =B, () e 7)1, (25)

e For the upper-half range radiance the integrating factor for Eq. 21 is e/ h-
_|_
dr dr u "’ [

e The physical picture (Fig. 12) involves upgoing beams. Therefore, we integrate
from the “bottom” to the “top” of the medium:

d / % ¥
frdr' (e ) = 1501, 0) = L (7", g)e T
o dr’ o dT’!

= [V e T/ e T/EB, ().
Joo —— L A7) =l . (7')
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Formal Solution in a Slab Geometry (3)

e Solving for I.7(0, i, ¢), we find:

* T* d ! /
LHO, p, ) = I (7%, d)e ™ /P4 [T “e /B, (7).
]

e 'To find the radiance at an interior point 7, we integrate from 7* to 7, to obtain:

* * d ! /
I ¢) = L (7 py e U0 [T EL g () (26)
7

e Integration along the beam direction promotes a good physical understand-
ing of the radiative transfer process. Mathematically, the integration direction
is irrelevant: either direction gives the same answer.

e What happens when p — 0, that is, when the line-of-sight traverses an infinite
distance parallel to the slab? Since B, (7) is constant in Eqs. 25 and 26:

Iy (1,1 =0,¢) = B,(7). (27)
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Formal Solution Including Scattering and Emission (1)

e If we cannot neglect scattering, the source function is written (see Eq. 13):

Source Function due to Thermal Emission
and Multiple Scattering

A W(T) A

S(r, Q) = [l = @(MIB(r) + == f, de'p(r, &', I (1,€Y). (28)

We note that the independent variable is the:

e extinction optical depth = sum of absorption and scattering optical depths.

e The source function is generally a function of the direction Q) of the “emitted”
beam, and also a function of the local radiance distribution.

The general radiative transfer equation is:

AN

dl(7s, <)
dT,

= —I(1,,Q) + S(7, Q). (29)
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Formal Solution Including Scattering and Emission (2)

e Using the method of the integrating factor, we can write the formal solution of
Eq. 29 by replacing B with S in Eq. 16:

Radiance in terms of an Integration over the Source Function

I[r(Po), Q) = I[7(Py), Qe ™) 4 o003 ) qrt S(r!, Qe PR (30)

We stress that:

e This solution is only a formal solution, since (in contrast to Eq. 16) the source
function is unknown: it depends upon the radiation field, as seen in Eq. 28.

e The importance of this ‘solution’ is that it emphasizes that, apart from boundary
terms, a knowledge of the source function, S(7,¢)), is equivalent
to knowledge of the complete solution of the radiative transfer

problem.
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Formal Solution Including Scattering and Emission (3)

e For a slab the solutions to Eqgs. 28 and 30 are given by Eqs. 25, 26, and 27:

I (7,1, 0) =T (0, p, p)e ™+ [ MS 7, p) e T (31)

I (r, p,d) = I (7%, p e Ty [T ijsxf pag) e T (32)

IF(r,p=0,0) = S(1, 11 =0, 9). (33)

The source function is easily derived from Eq. 28:

S(r.p,8) = (L= @)B(r)+ 1 77 dd' [} dplplp, &1, )7 (7 1,6

+ ZT T ) dp'p(—p s, )T (7,44, ). (34)
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Radiative Heating Rate (1)

e The differential change of energy over the distance ds along a beam is:

§(d'E) = dI, dA dt dv dw.
Dividing this expression by dsdA = dV', and also by dvdt, we obtain:

e The time rate of change in radiative energy per unit volume per unit frequency;,
due to the change in radiance for beams within the solid angle dw.

e Since there is (generally) incoming radiation from all directions, the total change
in energy per unit frequency per unit time per unit volume is:

dl,
J,.. dw y

e The spectral radiative heating rate H, is (minus) the rate of change of
the radiative energy per unit volume:

= [y dw (Q-V1,).

S

H, = — [, dw (Q-V[V>.
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Radiative Heating Rate (2)

The net radiative heating rate, H is

H=— [ dv [, do(Q-VI,). (35)
e In slab geometry the radiative heating rate is written:
00 aFV 00 +1 a]V
H,=— ), dv 3 = =21 |, dv [ duuaz (36)

where F,, = FF — F is the irradiance in the z direction (Eq. 20).

14

Now, recall the RTE (Eq. 13):

ZZ: = L+ L= =) BAT) +

4

;”) [ do p(&, Q) L,(Y) .

th 1 emissi i i
ermal emission multiple scattering
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Generalized Gershun’s Law (1)

Substituting dI,/drs = —udl,/dT in Eq. 36 from the radiative transfer equation
[Eq. 13: 217: = -1, +[1 —w)]|B,(T) + 7”4(7?) Iy dow" p(§2, Q) 1,(€2)], and using
k(v) = o(v) + a(v), we obtain:

dro(v)l,

H, = 47roz(u)l_y + 47TJ(V>I_I/ —A4na(v)B,(T) — o(v) /47r dw//&r WP(Q/, QﬂV@/)

where I, is the angular average of the radiance: I, = i dw'’ ]V(Q’ ) /4w

e Employing the normalization condition for the phase function, we see that the
two scattering terms cancel. Integration over frequencies therefore yields:

The radiative heating rate is the rate at which radiative energy is
absorbed, less the rate at which it is emitted:

H=-V.-F=dr b dva(v)l, — An [ dva(v)B,(T). (37)

e When internal emission is absent, Eq. 37 is known as Gershun’s Law.
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Generalized Gershun’s Law (2)

e When H = 0, the volume absorption rate exactly balances the volume emission
rate.

e This situation may happen locally at points where the net heating rate happens
to change sign, but if the entire medium experiences this balance, we have the
condition of planetary radiative equilibrium.

e Clearly, if there is no absorption anywhere in the medium, then H = 0 every-
where. In a slab medium, radiative equilibrium implies that 0F/dz = 0 and
thus F' = constant.
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