
Lecture Notes:
Approximate Solutions of Prototype Problems
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 K This new and completely updated edition 

gives a detailed description of radiative 

transfer processes at a level accessible to 

advanced students. The volume gives the 

reader a basic understanding of global 

warming and enhanced levels of harmful 

ultraviolet radiation caused by ozone 

depletion. It teaches the basic physics 

of absorption, scattering, and emission 

processes in turbid media, such as the 

atmosphere and ocean, using simple  

semi-classical models. The radiative 

transfer equation, including multiple 

scattering, is formulated and solved for 

several prototype problems, using both 

simple approximate and accurate numerical 

methods. In addition, the reader has 

access to a power ful, state-of-the-ar t 

computational code for simulating radiative 

transfer processes in coupled atmosphere-

water systems including snow and ice. This 

computational code can be regarded as 

a power ful educational aid, but also as a 

research tool that can be applied  

to solve a variety of research problems  

in environmental sciences.

From reviews of the f irst edition

‘This book should not be missing on the 

desk of any person seriously interested in 

radiative transfer ... I would certainly use 

this book as a basic text and recommend it 

very highly to my students. I am sure that 

both instructor and student can profit a 

great deal from studying this excellent work.’

Meteorology and Atmospheric Physics

‘ ... should grace the shelves of all libraries 

of institutes concerned with research and 

teaching in atmospheric and oceanic science 

and it is an important part of the radiative 

transfer armoury.’       

International Journal of Climatology

‘The book is easy to read, and there are 

many examples to illustrate the concepts 

discussed...[It] should serve well as an 

introduction to radiative transfer.’

EOS

‘ ... a valuable resource for those interested 

in terrestrial radiative transfer.’

Physics Today

C O V E R  D E S I G N E D  B Y  H A RT  M c L E O D  LT D

stamnes

	Access to computational code for simulating 

radiative transfer processes

	Lecture slides based on the book and a 

solutions manual for instructor use

	PowerPoint and JPEG files of the figures in 

the book for instructor use

Based on Chapter 7 in K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the

Atmosphere and Ocean, Cambridge University Press, 2017.
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The Single Scattering Approximation (1)

In a slab geometry, the radiative transfer equation (RTE) for the full-range radiance is (−1 ≤ u ≤ +1):

udI(τ,u,φ)dτ = I(τ, u, φ)− $

4π

∫ 2π

0
dφ′

∫ 1

−1
du′p(u′, φ′;u, φ)I(τ, u′, φ′)− (1−$)B − S∗(τ, u, φ)︸ ︷︷ ︸

S(τ,u,φ)

= I(τ, u, φ)−S(τ, u, φ).

We may integrate the RTE directly if the source function S(τ, u, φ) is known.

• For thermal emission in the absence of scattering S(τ, u, φ) is known.

•When multiple scattering is negligible S(τ, u, φ) is known.

• The solution to the RTE in the absence of multiple scattering is usually referred
to as the single scattering approximation.

In a slab geometry the RTEs for the half-range radiances are (0 ≤ µ ≤ 1):

µ
dI+(τ, µ, φ)

dτ
= I+(τ, µ, φ)− S+(τ, µ, φ) (1)

−µdI
−(τ, µ, φ)

dτ
= I−(τ, µ, φ)− S−(τ, µ, φ). (2)

As usual, the independent variable is the optical depth τ , measured downwards
from the “top” of the slab.
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The Single Scattering Approximation (2)

We showed in Chapter 6 that formal solutions to these equations are a sum of
direct (Is) and diffuse (Id) contributions:

I−(τ, µ, φ) =

I−s (τ,µ,φ)︷ ︸︸ ︷
I−(0, µ, φ)e−τ/µ +

I−d (τ,µ,φ)︷ ︸︸ ︷∫ τ
0

dτ ′

µ
e−(τ−τ ′)/µS−(τ ′, µ, φ) (3)

I+(τ, µ, φ) =

I+
s (τ,µ,φ)︷ ︸︸ ︷

I+(τ ∗, µ, φ)e−(τ∗−τ)/µ

+

I+
d (τ,µ,φ)︷ ︸︸ ︷∫ τ∗

τ

dτ ′

µ
e−(τ ′−τ)/µS+(τ ′, µ, φ) . (4)

I(τ, µ = 0, φ) = S(τ ). (5)

In the single scattering approximation, we assume that the multiple scattering
contribution (the integral terms) to the source function is negligible.
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The Single Scattering Approximation (3)

In the absence of multiple scattering, the source function simplifies as follows:
udI(τ,u,φ)dτ = I(τ, u, φ)− $

4π

∫ 2π

0
dφ′

∫ 1

−1
du′p(u′, φ′;u, φ)I(τ, u′, φ′)− (1−$)B − S∗(τ, u, φ)︸ ︷︷ ︸

S(τ,u,φ)

≈ −(1−$)B − S∗

S±(τ, µ, φ) ≈ (1−$)B + S∗(τ,±µ, φ)

= (1−$)B +
$F s

4π
p(−µ0, φ0;±µ, φ)e−τ/µ0. (6)

• B is the Planck function.

• (1−$) the volume emittance.

• S±(τ, µ, φ) are the half-range source functions analogous to the half-range
radiances I±(τ, µ).

• Since S∗(τ,±µ, φ) = $F s

4π p(−µ0, φ0;±µ, φ)e−τ/µ0 – the contribution of singly-
scattered solar radiation to the source function – varies exponentially with optical
depth the integration can easily be carried out.
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The Single Scattering Approximation (4)

Substituting the simplified form (Eq. 6) into Eqs. 3 and 4, and carrying out the
integrations, we obtain the following analytic results for the first-order scattered
(diffuse) radiance:

I−d (τ, µ, φ) = (1−$)B
[
1− e−τ/µ

]

+
$µ0F

sp(−µ0, φ0;−µ, φ)

4π(µ0 − µ)

[
e−τ/µ0 − e−τ/µ

]
(7)

I+
d (τ, µ, φ) = (1−$)B

[
1− e−(τ∗−τ)/µ

]

+
$µ0F

sp(−µ0, φ0; +µ, φ)

4π(µ0 + µ)

[
e−τ/µ0 − e−[(τ∗−τ)/µ+τ∗/µ0]

]
. (8)

To obtain the total radiance, we must add to the diffuse radiance the boundary
terms in Eqs. 3 and 4.
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The Single Scattering Approximation (5)

Since I−(0, µ, φ) = F sδ(µ − µ0)δ(φ − φ0) and I+(τ ∗, µ, φ) = 0 (if the lower
boundary is assumed to be perfectly absorbing), the total radiance is given by:

I−(τ, µ, φ) = I−(0, µ, φ)e−τ/µ + I−d (τ, µ, φ)

= F se−τ/µδ(µ− µ0)δ(φ− φ0) + I−d (τ, µ, φ) (9)

I+(τ, µ, φ) =

0︷ ︸︸ ︷
I+(τ ∗, µ, φ)e−(τ∗−τ)/µ +I+

d (τ, µ, φ) = I+
d (τ, µ, φ) (10)

where the diffuse terms I−d (τ, µ, φ) and I+
d (τ, µ, φ) are given by Eqs. 7 and 8.
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The Single Scattering Approximation (6)

Favorable aspects of the single-scattering approximation are:

1. The solution is valid for any scattering phase function.

2. It is easily generalized to include polarization.

3. It applies to any geometry, as long as we replace the slant optical depth τ/µ with
the expression appropriate for the incident ray path. For example, in a spherical
geometry, τ/µ0 is replaced with τCh(µ0), where Ch(µ0) is the Chapman–
Function.

4. It is useful when an approximate solution is available for the multiple scattering.
Then the diffuse radiance is given by the sum of single-scattering and (approxi-
mate) multiple-scattering contributions.

5. It serves as a starting point for expanding the radiation field in a sum of con-
tributions from first-order scattering, second-order scattering, etc. The latter
expansion technique, known as Lambda iteration (§7.2.2), allows us to evalu-
ate more precisely the validity of the first-order scattering approximation. An
alternative expansion technique is the successive orders of scattering (SOS)
method, which is briefly discussed in §7.2.4.
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The Two-Stream Approximation: Isotropic Scattering
(1)

Approximate Differential Equations

The radiative transfer equations for the half-range radiances are given by (see
Eqs. 6.3 and 6.4):

µ
dI+(τ, µ)

dτ
= I+(τ, µ)− $

2

∫ 1
0 dµ

′I+(τ, µ′)− $

2

∫ 1
0 dµ

′I−(τ, µ′)− (1−$)B

−µdI
−(τ, µ)

dτ
= I−(τ, µ)− $

2

∫ 1
0 dµ

′I+(τ, µ′)− $

2

∫ 1
0 dµ

′I−(τ, µ′)− (1−$)B.

Because the scattering is isotropic, the radiation field has no azimuthal depen-
dence as explained previously in Chapter 6.

• In the two-stream approximation, we replace the angularly-dependent quanti-
ties I±(τ, µ′) by their averages over each hemisphere, I+(τ ) and I−(τ ) in each
hemisphere: I±(τ, µ) ≈ I±(τ ) .

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

8



The Two-Stream Approximation: Isotropic Scattering
(2)

• This approximation leads to the following pair of coupled differential equations,
which are called:

The two-stream equations

µ̄+dI
+(τ )

dτ
= I+(τ )− $

2
I+(τ )− $

2
I−(τ )− (1−$)B (11)

−µ̄−dI
−(τ )

dτ
= I−(τ )− $

2
I+(τ )− $

2
I−(τ )− (1−$)B. (12)

• Here µ̄+ or µ̄− is the average of the cosine of the polar angle θ made by a beam
in the upper or lower hemisphere, respectively.

• These linear, coupled, ordinary differential equations have simple solutions if the
medium is homogeneous so that $(τ ) = $ = constant, and if also the Planck
function B does not vary with τ : B(τ ) = B = constant.
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The Two-Stream Approximation: Isotropic Scattering
(3)

Note that the two-stream approximation

• will be most accurate when the radiation field is nearly isotropic, i.e. deep inside
the medium, far away from boundaries or sources or sinks of radiation, and it

• can teach us about radiative transfer in optically-thin as well as optically-thick
media, both for scattering and emission-dominated problems.

The approximate two-stream expressions for the source function, the net irradi-
ance, the mean radiance, and the heating rate are:

S(τ ) =
$

2

∫ 1
0 dµ[I+(τ, µ) + I−(τ, µ)] + (1−$)B

≈ $

2

[
I+(τ ) + I−(τ )

]
+ (1−$)B (13)

F (τ ) = 2π
∫ 1
0 dµµ[I+(τ, µ)− I−(τ, µ)] ≈ 2π

[
µ̄+I+(τ )− µ̄−I−(τ )

]
(14)

Ī(τ ) =
1

4π
2π

∫ 1
0 dµ[I+(τ, µ) + I−(τ, µ)] =

1

2

[
I+(τ ) + I−(τ )

]

H(τ ) = −∂F
∂z

= 4πα[Ī(τ )−B] ≈ 2πα
[
I+(τ ) + I−(τ )

]
− 4παB. (15)
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The Mean Inclination: Possible Choices for µ̄ (1)

In Eq. 15, α is the absorption coefficient. We have used the monochromatic
version of Eq. 5.75 (Generalized Gershun’s Law) for the heating rate.

•We could define µ̄± formally as the radiance-weighted angular means

µ̄± = 〈µ〉± ≡ 2π
∫1
0 dµµI

±(τ, µ)

2π
∫1
0 dµI

±(τ, µ)
=

F±

2πI±
. (16)

• But since we do not know the radiance distribution a priori, this definition
is of little use, although it demonstrates that µ̄+ and µ̄− will vary with optical
depth and have different values.

• Hence, the common practise of picking the same constant value in both hemi-
spheres (µ̄ = µ̄+ = µ̄− = constant) is clearly an approximation.

• If the radiance field were isotropic, then Eq. 16 yields µ̄+ = µ̄− = 1/2 for all
optical depths.

• If the radiance distribution were approximately linear in µ, say I(µ) ≈ Cµ,
where C is a constant, then Eq. 16 yields µ̄ = 2/3.
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The Mean Inclination: Possible Choices for µ̄ (2)

• Alternatively, we could use the root-mean-square value:

µ̄ ≡ µrms =
√
〈µ2〉 =

√√√√√√√
∫1
0 dµµ

2I(τ, µ)∫1
0 dµI(τ, µ)

.

• If the radiation field were isotropic, this definition would yield µ̄ = 1/
√

3.

• A linear variation of the radiation field would yield µ̄ = 1/
√

2 = 0.71.

• Thus, these possible choices yield µ̄–values ranging from 0.5 to 0.71, and there
is no way to decide a priori which choice is optimal.

•We have to pick the optimal µ̄–value on a trial-and-error basis for each
type of problem.

•We now assume a single value for µ̄ (the same value in both hemispheres) but
leave its value undetermined to remind us that it represents some sort of average
over a hemisphere.
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Prototype Problem 1: Isotropic Incidence (1)

τ* ∞

(c)(b)

m1

m2 ≠ m2

ρ ≠ 0

ρ = 0 ρ = 0 ρ = 0

(a)

Prototype
Problem 1

Prototype
Problem 2

Prototype
Problem 3

Semi-Infinite
Slab

Partially
Transparent
Boundary

Partially
Reflecting
Boundary

θ0

Variants of lower boundary condition

Fs

Figure 1: Illustration of Prototype Problems in radiative transfer.
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Prototype Problem 1: Isotropic Incidence (2)

If we ignore thermal emission (B = 0), Eqs. 11 and 12 become (setting µ̄+ = µ̄− =
µ̄):

Eq. 11: µ̄
dI+(τ )

dτ
= I+(τ )− $

2
I+(τ )− $

2
I−(τ )

Eq. 12: − µ̄dI
−(τ )

dτ
= I−(τ )− $

2
I+(τ )− $

2
I−(τ )

• By first adding Eqs. 11 and 12 and then subtracting Eq. 12 from Eq. 11, we
obtain:

µ̄
d(I+ − I−)

dτ
= (1−$)(I+ + I−) (17)

µ̄
d(I+ + I−)

dτ
= (I+ − I−). (18)

• Differentiating Eq. 18 with respect to τ , and substituting for d(I+ − I−)/dτ
from Eq. 17, we obtain a second-order differential equation involving only the
sum of the radiances:

d2(I+ + I−)

dτ 2
=

(1−$)

µ̄2
(I+ + I−).
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Prototype Problem 1: Isotropic Incidence (3)

• Similarly, differentiating Eq. 17 and substituting for d(I+ +I−)/dτ from Eq. 18,
we obtain a second-order differential equation

d2(I+ − I−)

dτ 2
=

(1−$)

µ̄2
(I+ − I−)

which involves only the difference between the two radiances.

•We have the same differential equation for the sum and the difference. Calling
the unknown Y , we obtain a second-order diffusion equation

d2Y

dτ 2
= Γ2Y where Γ ≡

√
1−$/µ̄ (19)

for which the general solution is a sum of positive and negative exponentials

Y = A′eΓτ + B′e−Γτ

where A′ and B′ are integration constants to be determined.
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Prototype Problem 1: Isotropic Incidence (4)

• Since the sum and difference of the two radiances are both expressed as sums
of exponentials, each radiance component must be expressed in the same way:

I+(τ ) = AeΓτ + Be−Γτ ; I−(τ ) = CeΓτ + De−Γτ (20)

where A, B, C, and D are constants to be determined.

•We now introduce boundary conditions at the top and the bottom of the medium.
For Prototype Problem 1, we have:

I−(τ = 0) = I = constant; I+(τ ∗) = 0. (21)

•We choose this case of isotropic incidence as our first example, because the
two-stream solution to this problem has a particularly simple form.
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Prototype Problem 1: Isotropic Incidence (6)

• Equations 20:

I+(τ ) = AeΓτ + Be−Γτ ; I−(τ ) = CeΓτ + De−Γτ

have four integration constants, but the two boundary conditions in Eqs. 21:
I−(τ = 0) = I = constant; I+(τ ∗) = 0 for the second-order differential
equation, suggest that there should be only two independent constants.

• To obtain the required relationships between A, B, C, and D, we substitute
Eqs. 20 into Eqs. 11–12 to find that:

C

A
=
B

D
=

$

2−$ + 2µ̄Γ
=

1− µ̄Γ

1 + µ̄Γ
=

1−
√

1−$
1 +
√

1−$
≡ ρ∞. (22)

• An explanation of the physical meaning of ρ∞ is provided in Example 7.2 (see
Eq. 39).

• Substitution from Eq. 22 into Eqs. 20 yields:

I+(τ ) = AeΓτ + ρ∞De
−Γτ (23)

I−(τ ) = ρ∞Ae
Γτ + De−Γτ . (24)
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Prototype Problem 1: Isotropic Incidence (7)

•We now apply the boundary conditions in Eqs. 21, which yield:

I−(τ = 0) = ρ∞A + D = I ; I+(τ = τ ∗) = AeΓτ∗ + ρ∞De
−Γτ∗ = 0.

• Solving for A and D we find

A =
−ρ∞Ie−Γτ∗

eΓτ∗ − ρ2
∞e
−Γτ∗

; D =
IeΓτ∗

eΓτ∗ − ρ2
∞e
−Γτ∗

.

• Hence, the solutions become

I+(τ ) =
Iρ∞
D

[
eΓ(τ∗−τ) − e−Γ(τ∗−τ)

]
(25)

I−(τ ) =
I
D

[
eΓ(τ∗−τ) − ρ2

∞e
−Γ(τ∗−τ)

]
(26)

where the denominator is:

D ≡ eΓτ∗ − ρ2
∞e
−Γτ∗. (27)

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017
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Prototype Problem 1: Isotropic Incidence (8)

The source function, irradiance and heating rate follow from Eqs. 13–15 (µ̄+ =
µ̄− = µ̄):

S(τ) =
$

2

∫ 1

0
dµ[I+(τ, µ) + I−(τ, µ)] + (1−$)B ≈ $

2

[
I+(τ) + I−(τ)

]
+ (1−$)B ←− Eq. (13)

F (τ) = 2π
∫ 1

0
dµµ[I+(τ, µ)− I−(τ, µ)] ≈ 2πµ̄

[
I+(τ)− I−(τ)

]
←− Eq. (14)

H(τ) = −∂F
∂z
≈ 2πα

[
I+(τ) + I−(τ)

]
− 4παB. ←− Eq. (15)

S(τ ) =
$I
2D

(1 + ρ∞)
[
eΓ(τ∗−τ) − ρ∞e−Γ(τ∗−τ)

]
(28)

F (τ ) = −2µ̄
πI
D

(1− ρ∞) [eΓ(τ∗−τ) + ρ∞e
−Γ(τ∗−τ)] (29)

H(τ ) =
2παI
D

(1 + ρ∞)[eΓ(τ∗−τ) − ρ∞e−Γ(τ∗−τ)]. (30)

• Note that Eq. 14 yields F−(0) = 2πµ̄I−(0) = 2πµ̄I at the top of the slab.

•We might be tempted to set µ̄ = 0.5 so that this expression would yield the exact
value πI. However, to remain consistent with the two-stream approximation,
we should use the approximate expression 2πµ̄.
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Prototype Problem 1: Isotropic Incidence (9)

The total reflectance, transmittance, and absorptance become:

ρ(−2π, 2π) =
2πµ̄I+(0)

2πµ̄I
=
ρ∞
D

[eΓτ∗ − e−Γτ∗] (31)

T (−2π,−2π) = 2πµ̄
I−(τ ∗)

2πµ̄I
=

1− ρ2
∞

D
(32)

α(−2π) = 1− ρ(−2π, 2π)− T (−2π,−2π)

=
(1− ρ∞)

D
[
eΓτ∗ + ρ∞e

−Γτ∗ − 1− ρ∞
]
. (33)

Note that the total transmittance includes the “beam” transmittance:∗

Tb(−2π,−2π) =
∫1
0 dµµIe−τ

∗/µ

∫1
0 dµµI

= 2E3(τ ∗) ←− beam transmittance.

• Thus, the diffuse transmittance is:

Td(−2π,−2π) = T (−2π,−2π)− Tb(−2π,−2π) =
1− ρ2

∞
D

− 2E3(τ ∗). (34)
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Example: Semi-infinite slab (1)

• The limit of τ ∗ → ∞ is an approximation to a very thick atmosphere (such as
Venus or Jupiter) or a deep ocean. Invoking the condition S(τ )e−τ → 0, we
must exclude the positive-exponential terms. The solutions simplify as follows:

I−(τ ) = Ie−Γτ ; I+(τ ) = Iρ∞e−Γτ (35)

S(τ ) =
$

2
I(1 + ρ∞)e−Γτ (36)

F (τ ) = −2πµ̄I(1− ρ∞)e−Γτ (37)

H(τ ) =
αI(1 + ρ∞)

2µ̄
e−Γτ . (38)

Note that:

• the sign of F (τ ) is negative, indicating that the net flow of energy is downward.

• F (τ )→ 0 as Γτ >> 1, or as τ >> 1/Γ, i.e. as τ exceeds many thermalization
lengths, Γ−1, defined below.
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Example: Semi-infinite slab (2)

• The diffuse reflectance of the semi-infinite slab is:

ρ(−2π, 2π) =
I+(τ = 0)

I
=
Iρ∞
I

= ρ∞ =
1−
√

1−$
1 +
√

1−$
(39)

• which explains the meaning of the notation ρ∞. This two-stream approximation
result for the diffuse reflectance turns out to be the exact result for the reflected
radiance (see Exercise 7.7).

• Eq. 39 also provides us with the absorptance:

α(−2π) = 1− ρ(−2π, 2π) =
2
√

1−$
1 +
√

1−$
. (40)
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Example: Thermalization Length and Random Walk
(1)

• Equation 35 and Eqs. 25 and 26 show that the (1/e)-depth of photon penetration
is:

Γ−1 =
µ̄√

1−$
• which is called the thermalization length. It is interpreted to be the mean

optical depth of photon penetration after repeated scatterings before absorption
(thermalization).

• The dependence on µ̄ is straightforward, since the steeper the mean inclination
of the rays (i.e. the smaller the value of µ̄), the smaller the penetration.

• The dependence on 1/
√

1−$ is qualitatively reasonable; when $ → 1 (con-
servative scattering or no absorption), the penetration depth becomes infinite,
as one would expect in the case of no absorption.
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Example: Thermalization Length and Random Walk
(2)

• But why should the square root of the volume emittance (1−$) be the relevant
dependence?

• To answer this question we will use the random walk picture of “diffusion” of
a multiply-scattered photon over distance.

• Imagine that photons are released repeatedly into an unbounded scattering
medium, and are randomly scattered, on the average 〈N〉 times before being
destroyed (absorbed). Since the probability of being destroyed per collision is
(1−$), then it is clear that 〈N〉(1−$) = 1 ⇒ 〈N〉 = 1/(1−$).

• According to the random-walk theory, the mean total distance through which
an average photon “wanders” after 〈N〉 collisions is

√
〈N〉lmfp, where lmfp is the

photon mean free path.

• Now lmfp is just one optical depth times the cosine of the mean ray inclination,
lmfp = µ̄. Thus, the mean total distance covered before being absorbed is just

√
〈N〉 · µ̄ = µ̄/

√
1−$.
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Example: The Conservative-Scattering Limit (1)

There are two ways to find this solution:

• The first is to take the limit $ → 1 of the expressions valid for non-conservative
scattering using L’Hôpital’s Rule to handle the 0/0 limits.

• The second way is to return to the (simplified) set of coupled differential equa-
tions, and solve them afresh. Then it turns out that only a first-order differential
equation must be solved. Both methods yield the following results (see Exercise
7.2).

I+(τ ) =
I(τ ∗ − τ )

2µ̄ + τ ∗
; I−(τ ) =

I[2µ̄ + (τ ∗ − τ )]

2µ̄ + τ ∗
(41)

S(τ ) =
I[µ̄ + (τ ∗ − τ )]

2µ̄ + τ ∗
; F (τ ) = − 4πµ̄2I

2µ̄ + τ ∗
; H(τ ) = 0. (42)

• Note that the irradiance is constant throughout the medium and the heating
rate is zero, as expected for a conservatively-scattering slab (no absorption).

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

25



Example: The Conservative-Scattering Limit (2)

• These results were derived by Schuster in 1905, one of the first published solutions
of the radiative transfer equation.

• Assuming µ̄ = 1/2, Schuster found the diffuse reflectance and transmittance of
the medium to be:

ρ(−2π, 2π) =
I+(0)

I
=

τ ∗

1 + τ ∗
; T (−2π,−2π) =

I−(τ ∗)

I
=

1

1 + τ ∗
.

• Schuster also pointed out the following remarkable property of a conservatively-
scattering slab:

• For τ ∗ � 1, its transmittance is inversely proportional to the optical thickness
τ ∗.

• In contrast, for an absorbing slab (with no scattering) the transmittance is e−τ
∗
.
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Example: Angular Distribution of the Radiation Field
(1)

• To find the radiance I±(τ, µ) in the two-stream approximation at arbitrary
values of µ, it is necessary to integrate the (approximate) source function.

• This method yields a closed-form solution for the angular dependence of the
radiance, and may provide sufficient accuracy for some problems.

•We proceed by considering the expressions for the upward and downward radi-
ance:

I+(τ, µ) =
∫ τ∗
τ

dτ ′

µ
S(τ ′)e−(τ ′−τ)/µ

I−(τ, µ) =
∫ τ
0

dτ ′

µ
S(τ ′)e−(τ−τ ′)/µ + Ie−τ/µ. (43)
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Example: Angular Distribution of the Radiation Field
(2)

• Inserting the approximate two-stream source function:

S(τ ) =
$I
2D

(1 + ρ∞)
[
eΓ(τ∗−τ) − ρ∞e−Γ(τ∗−τ)

]

into Eq. 43 and performing the integration, we find:

I+(τ, µ) =
Iρ∞
D

{
C+(µ)eΓ(τ∗−τ) − C−(µ)e−Γ(τ∗−τ)

+ [C−(µ)− C+(µ)]e−(τ∗−τ)/µ
}

(44)

I−(τ, µ) =
I
D
{C−(µ)eΓ(τ∗−τ) − C+(µ)ρ2

∞e
−Γ(τ∗−τ) + [1− C−(µ)]eΓτ∗−τ/µ

− ρ2
∞[1− C+(µ)]e−Γτ∗−τ/µ} (45)

where
C±(µ) ≡ (1± Γµ̄)/(1± Γµ).
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Example: Angular Distribution of the Radiation Field
(3)

• This form is convenient because it shows explicitly that when µ = µ̄, then
C±(µ̄) = 1 and the results become identical to Eqs. 25–26:

I+(τ ) =
Iρ∞
D

[
eΓ(τ∗−τ) − e−Γ(τ∗−τ)

]
(46)

I−(τ ) =
I
D

[
eΓ(τ∗−τ) − ρ2

∞e
−Γ(τ∗−τ)

]
. (47)

• For horizontal viewing (µ = 0), Eqs. 44 and 45 approach the source function,
I±(τ, µ→ 0) = S(τ ), which is a property shared by the exact result.

• It is easily verified that the above results satisfy the boundary conditions for all
values of µ, that is, I−(0, µ) = I and I+(τ ∗, µ) = 0.

• The expressions for the hemispherical-directional reflectance I+(0, µ)/I and the
hemispherical-directional transmittance I−(τ ∗, µ)/I become:

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

29



Example: Angular Distribution of the Radiation Field
(4)

ρ(−2π, µ) =
ρ∞
D
{C+(µ)eΓτ∗ − C−(µ)e−Γτ∗ + [C−(µ)− C+(µ)]e−τ

∗/µ}
(48)

T (−2π,−µ) =
1

D
{C−(µ)− ρ2

∞C
+(µ) + [1− C−(µ)]eΓτ∗−τ∗/µ

− ρ2
∞[1− C+(µ)]e−Γτ∗−τ∗/µ}. (49)

In the special case µ = µ̄, we have C±(µ̄) = 1, and the diffuse reflectance (Eq. 48)
agree with the two-stream result (Eq. 31):

ρ(−2π, µ̄) = ρ(−2π, 2π) =
2πµ̄I+(0)

2πµ̄I
=
ρ∞
D

[eΓτ∗ − e−Γτ∗]

and the diffuse transmittance (Eq. 49) agree with the two-stream result (Eq. 32):

T (−2π,−µ̄) = T (−2π,−2π) = 2πµ̄
I−(τ ∗)

2πµ̄I
=

1− ρ2
∞

D
.

According to the duality principle, these results are equal to the directional-
hemispherical reflectance and the directional-hemispherical transmittance, i.e.
ρ(−µ, 2π) = ρ(−2π, µ) and T (−µ,−2π) = T (−2π,−µ).
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Prototype Problem 2: Internal Source (1)

τ* ∞

(c)(b)

m1

m2 ≠ m2

ρ ≠ 0

ρ = 0 ρ = 0 ρ = 0

(a)

Prototype
Problem 1

Prototype
Problem 2

Prototype
Problem 3

Semi-Infinite
Slab

Partially
Transparent
Boundary

Partially
Reflecting
Boundary

θ0

Variants of lower boundary condition

Fs

Figure 2: Illustration of Prototype Problems in radiative transfer.
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Prototype Problem 2: Internal Source (2)

• Consider now Prototype Problem 2, where the only source of radiation is ther-
mal emission within the slab.

•We assume that the slab is isothermal, isotropically-scattering, and homoge-
neous.

The two-stream equations are:

µ̄
dI+(τ )

dτ
= I+(τ )− $

2
I+(τ )− $

2
I−(τ )− (1−$)B︸ ︷︷ ︸

internal source

(50)

−µ̄dI
−(τ )

dτ
= I−(τ )− $

2
I+(τ )− $

2
I−(τ )− (1−$)B︸ ︷︷ ︸

internal source

(51)

with the boundary conditions I−(0) = I+(τ ∗) = 0.

• These equations differ from the previous set by having an extra inhomoge-
neous term (1−$)B, on the RHS.
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Prototype Problem 2: Internal Source (3)

• It is standard practice to first seek a solution to the homogeneous equation
for which the imbedded source (1 − $)B is set equal to zero. Next, we find a
particular solution which satisfies the full equation.

• The general solution is then the sum of the homogeneous and particular solu-
tions.

We seek homogeneous solutions of the form derived previously:

I+
h (τ ) = AeΓτ + ρ∞De

−Γτ ; I−h (τ ) = ρ∞Ae
Γτ + De−Γτ

where

• A and B are to be determined from the boundary conditions, and

• Γ and ρ∞ are as defined previously:

Γ ≡
√

1−$/µ̄

ρ∞ =
1−
√

1−$
1 +
√

1−$
.
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Prototype Problem 2: Internal Source (4)

• The particular solution is obtained by guessing that I+
p = B and I−p = B are

solutions, which is easily verified by substituting these guess solutions into the
governing equations. Hence the complete solutions become: I±tot = I±h + I±p :

I+
tot(τ ) = AeΓτ + ρ∞De

−Γτ + B; I−tot(τ ) = ρ∞Ae
Γτ + De−Γτ + B.

• Imposing the boundary conditions: I−(0) = I+(τ ∗) = 0, we arrive at the
following two equations:

AeΓτ∗ + ρ∞De
−Γτ∗ + B = 0 ρ∞A + D + B = 0

which solved for A and D yields:

A =
−B(1− ρ∞e−Γτ∗)

D
; D =

−B(eΓτ∗ − ρ∞)

D

with as defined previously (Eq. 27):

D ≡ eΓτ∗ − ρ2
∞e
−Γτ∗.
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Prototype Problem 2: Internal Source (5)

• Substituting these results into the general solution, we find:

I+(τ ) =
B

D
{ρ2
∞e
−Γτ − eΓτ + ρ∞[e−Γ(τ∗−τ) − eΓ(τ∗−τ)]} + B (52)

I−(τ ) =
B

D
{ρ2
∞e
−Γ(τ∗−τ) − eΓ(τ∗−τ) + ρ∞[e−Γτ − eΓτ ]} + B. (53)

The expression for the irradiance is, from Eq. 14: F (τ ) = 2πµ̄ [I+(τ )− I−(τ )]:

F (τ ) = 2πµ̄
B

D
{
ρ2
∞

[
e−Γτ − e−Γ(τ∗−τ)

]
+

[
eΓ(τ∗−τ) − eΓτ

]}

+2πµ̄
B

D
ρ∞[e−Γ(τ∗−τ) − e−Γτ − eΓ(τ∗−τ) + eΓτ ] (54)

and the source function is, from Eq. 13:

S(τ ) =
$

2

[
I+(τ ) + I−(τ )

]
+ (1−$)B

which yields:
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Prototype Problem 2: Internal Source (6)

S(τ ) =
$

2
(I+ + I−) + (1−$)B (55)

S(τ )

B
= 1− $(1 + ρ∞)

2D
[eΓτ − ρ∞e−Γ(τ∗−τ) + eΓ(τ∗−τ) − ρ∞e−Γτ ].

(56)

• The slab emittance, or bulk emittance is:

ε(2π) =
I+(0)

B
=
I−(τ ∗)

B
=

1

D
[ρ2
∞ − 1− ρ∞(eΓτ∗ − e−Γτ∗)] + 1. (57)

• For a discussion of the accuracy of the two-stream approximation, see §S.4.5 of
Appendix S.
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Prototype Problem 3: Beam Incidence (1)

τ* ∞
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Figure 3: Illustration of Prototype Problems in radiative transfer.
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Prototype Problem 3: Beam Incidence (2)

•We now consider the most important scattering problem in planetary atmo-
spheres – that of a collimated solar beam of irradiance F s, incident from above
on a planetary atmosphere.

•We simplify to an isotropically-scattering, homogeneous atmosphere and, as
usual, assume a black lower boundary. (Both these restrictions will be removed
later.)

Setting the angle of incidence to be θ0 = cos−1 µ0, we find that the appropriate
two-stream equations are:

µ̄
dI+

d

dτ
= I+

d −
$

2
(I+

d + I−d )− $

4π
F se−τ/µ0

︸ ︷︷ ︸
solar pseudo−source

(58)

−µ̄dI
−
d

dτ
= I−d −

$

2
(I+

d + I−d )− $

4π
F se−τ/µ0

︸ ︷︷ ︸
solar pseudo−source

(59)

where I+
d and I−d are the diffuse upward and downward radiances.
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Prototype Problem 3: Beam Incidence (3)

As before, we take the sum and difference of these equations:

µ̄
d(I+

d − I−d )

dτ
= (1−$)(I+

d + I−d )− $

2π
F se−τ/µ0 (60)

µ̄
d(I+

d + I−d )

dτ
= (I+

d − I−d ). (61)

• Differentiating Eq. 61 and substituting into Eq. 60, we find:

d2(I+
d + I−d )

dτ 2
=

(1−$)

µ̄2
(I+

d + I−d )− $

2π
F se−τ/µ0.

• Similarly, by differentiating Eq. 60 and substituting into Eq. 61, we get:

d2(I+
d − I−d )

dτ 2
=

(1−$)

µ̄2
(I+

d − I−d ) +
$µ̄

2πµ0
F se−τ/µ0.
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Prototype Problem 3: Beam Incidence (4)

•We may use the same solution method used earlier for Prototype Problem 2.
Thus, the homogeneous solution can be written:

I+
d = AeΓτ + ρ∞De

−Γτ ; I−d = ρ∞Ae
Γτ + De−Γτ

where Γ and ρ∞ are defined in Eqs. 19 and 22.

•We guess that the particular solution is proportional to e−τ/µ0. Thus, the com-
plete solutions become:

I+
d = AeΓτ + ρ∞De

−Γτ + Z+e−τ/µ0

I−d = ρ∞Ae
Γτ + De−Γτ + Z−e−τ/µ0

where Z+ and Z− are constants to be determined.

• Substituting into Eqs. 58 and 59, we find:

Z+ + Z− = − $F sµ2
0

2πµ̄2(1− Γ2µ2
0)

; Z+ − Z− =
$F sµ0µ̄

2πµ̄2(1− Γ2µ2
0)
. (62)
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Prototype Problem 3: Beam Incidence (5)

• Solving for Z+ and Z−, we have:

Z+ =
$F sµ0(µ̄− µ0)

4πµ̄2(1− Γ2µ2
0)

; Z− = −$F
sµ0(µ0 + µ̄)

4πµ̄2(1− Γ2µ2
0)
. (63)

•We apply boundary conditions for the diffuse radiance I−d (τ = 0) = 0 and
I+

d (τ ∗) = 0 to obtain two equations for A and D. After some manipulation we
find:

A = − $F sµ0

4πµ̄2(1− Γ2µ2
0)D

[
ρ∞(µ̄ + µ0)e−Γτ∗ + (µ̄− µ0)e−τ

∗/µ0
]

(64)

D =
$F sµ0

4πµ̄2(1− Γ2µ2
0)D

[
(µ̄ + µ0)eΓτ∗ + ρ∞(µ̄− µ0)e−τ

∗/µ0
]

(65)

with as defined previously (Eq. 27):

D ≡ eΓτ∗ − ρ2
∞e
−Γτ∗.
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Prototype Problem 3: Beam Incidence (6)

•We may now solve for the source function, irradiance etc. For example, the
source function is:

S(τ ) =
$

2
(I+

d + I−d ) +
$F s

4π
e−τ/µ0. (66)

• For a semi-infinite medium (τ ∗ → ∞), the condition that the solution be
bounded [S(τ )eτ → 0], shows that the positive exponentials must be discarded,
so that A = 0. The constant D reduces to (D → 1):

D =
$F sµ0(µ̄ + µ0)

4πµ̄2(1− Γ2µ2
0)
.
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Prototype Problem 3: Beam Incidence (7)

• The diffuse radiances become:

I+
d (τ ) = ρ∞De

−Γτ + Z+e−τ/µ0

=
$F sµ0

4πµ̄2(1− Γ2µ2
0)

[ρ∞(µ̄ + µ0)e−Γτ + (µ̄− µ0)e−τ/µ̄] (67)

I−d (τ ) = De−Γτ + Z−e−Γ/µ0

=
$F sµ0

4πµ̄2(1− Γ2µ2
0)

[(µ̄ + µ0)e−Γτ − (µ̄ + µ0)e−τ/µ0] (68)

and the source function becomes (Eq. 66):

S(τ ) =
$F s

4π
{ $µ0

µ̄2(1− Γ2µ2
0)

[
1

2
(µ̄ + µ0)(1 + ρ∞)e−Γτ

− µ0e
−τ/µ0] + e−τ/µ0}.

(69)

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

43



Prototype Problem 3: Beam Incidence (8)

•We may ask: what happens if the denominator (1−Γ2µ2
0) is zero in the equations

for I±d ? This problem can occur if the Sun is at a specific location in the sky.

• This problem is a so-called removable singularity, that can be “cured” by the
application of L’Hôpital’s rule, which leads to a new algebraic form that varies
as τ exp(−τ/µ0).

• In computational work it is usually sufficient to use numerical “dithering” by
which µ0 is changed slightly away from the “singular value.”

• This artifice produces satisfactory results, and avoids the “inconvenience” of
having to deal with a special case involving a different solution.

The total net irradiance and heating rate become:

F (τ ) = 2πµ̄(I+
d − I−d )− µ0F

se−τ/µ0

=
$F sµ0(µ̄ + µ0)

2µ̄(1− Γ2µ2
0)

[ρ∞(µ̄ + µ0)e−Γτ − 2µ0e
−τ/µ0]− µ0F

se−τ/µ0

(70)

and

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

44



Prototype Problem 3: Beam Incidence (9)

H(τ ) = 2πα(I+
d + I−d ) + αF se−τ/µ0

= 2πα
$F sµ0(µ̄ + µ0)

4πµ̄2(1− Γ2µ2
0)

[(1 + ρ∞)(µ̄ + µ0)e−Γτ

− 2µ0e
−τ/µ0] + αF se−τ/µ0. (71)

• Note that we have added the terms −µ0F
se−τ/µ0 in the irradiance equation and

the term αF se−τ/µ0 in the heating equation to include the contributions from
the solar component.

• For a discussion of the accuracy of the two-stream approximation, see §S.4.5 of
Appendix S.

Conservative Scattering in a Finite Slab
It is instructive to solve the radiative transfer problem anew in this case, since a
new feature occurs, namely that the homogeneous solution for I+ + I− is now a
linear function of τ , (say, Bτ + C). We will not show the details of the solution
(see Exercise 7.4). The results are given below for Prototype Problem 3:
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Prototype Problem 3: Beam Incidence (10)

I+
d (τ ) =

F sm

4π
[
(m + 1)(τ ∗ − τ ) + (m− 1)(τ + 2µ̄)e−τ

∗/µ0

(τ ∗ + 2µ̄)
− (m− 1)e−τ/µ0] (72)

I−d (τ ) =
F sm

4π
[
(m + 1)(τ ∗ − τ + 2µ̄) + (m− 1)τe−τ

∗/µ0

(τ ∗ + 2µ̄)
− (m + 1)e−τ/µ0] (73)

S(τ ) =
F sm

4π(τ ∗ + 2µ̄)
[(m + 1)(τ ∗ − τ + µ̄) + (m− 1)(τ + µ̄)e−τ

∗/µ0

− m(τ ∗ + 2µ̄)e−τ/µ0] +
F s

4π
e−τ/µ0 (74)

F (τ ) = − F sµ0µ̄

(τ ∗ + 2µ̄)
[(1 + m) + (1−m)e−τ

∗/µ0] (75)

ρ(−µ0, 2π) =
F+(0)

µ0F s
=
τ ∗ + (µ̄− µ0)(1− e−τ∗/µ0)

τ ∗ + 2µ̄
(76)

T (−µ0,−2π) =
F−(τ ∗)

µ0F s
=
µ̄ + µ0 + (µ̄− µ0)e−τ

∗/µ0

τ ∗ + 2µ̄
, (77)

where m ≡ µ0/µ̄. Since Eq. 73 is the diffuse radiance, the total transmittance
given by Eq. 77 is T (−µ0,−2π) = Td(−µ0,−2π)+e−τ

∗/µ0 = (2πµ̄I−d (τ ∗)/µ0F
s)+

e−τ
∗/µ0. The sum ρ(−µ0, 2π) + T (−µ0,−2π) = 1 can be easily verified.
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Prototype Problem 3: Beam Incidence (11)

Consider the limit of large optical depth.

For τ ∗ → ∞, F (τ ∗) → 0, ρ(−µ0, 2π) → 1, T (−µ0, 2π) → 0, and the source
function becomes

S(τ ) =
F s

4π
[(1−m2)e−τ/µ0 + m(m + 1)]. (78)

From this expression, we see that our two-stream approximation yields S(τ →
∞)/S(0) = m =

√
3µ0 when µ̄ = 1/

√
3, a result that is exact.†

The angular distribution of the radiance for Prototype Problem 3 can be obtained
in the same fashion as in Prototype Problem 1, but the algebra is rather daunt-
ing. As shown in Appendix S (§S.4.3) a “short-cut” is possible, provided we are
interested only in the emergent radiances.
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Anisotropic Scattering: Two-Stream Approximation –
Beam Incidence (1)

• Two-stream approximations are used primarily to compute irradiances and mean
radiances in a slab geometry.

• Since the irradiance and mean radiance depend only on the azimuthally-averaged
radiation field, we are interested in simple solutions to the azimuthally-averaged
RTE valid for anisotropic scattering:

u
dId(τ, u)

dτ
= Id(τ, u)− $

2

∫ 1
−1 du

′p(u′, u)Id(τ, u′)− S∗(τ, u) (79)

where we have ignored thermal emission.

• To obtain approximate solutions, we proceed by integrating Eq. 79 over
each hemisphere to find two coupled, first-order differential equations for
hemispherically-averaged upward and downward radiance “streams.”

• This approach leads to the usual two-stream approximation (TSA). We
can obtain a similar result by replacing the integral in Eq. 79 by a two-term
numerical quadrature (see Example 7.10).
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Anisotropic Scattering: Two-Stream Approximation –
Beam Incidence (2)

We may alternatively proceed by approximating the angular dependence by a
linear polynomial, I(τ, u) = I0(τ )+uI1(τ ), and taking angular moments of Eq. 79,
to arrive at two coupled equations for I0 and I1 (see Appendix S, §S.4.4, for details)

dI1

dτ
=

1

〈u〉2
(1−$)I0 −

$F s

4π〈u〉2
e−τ/µ0 (80)

dI0

dτ
= (1− 3g$〈u〉2)I1 +

3$F s

4π
gµ0e

−τ/µ0, (81)

where‡

〈u〉2 ≡
1

2

∫ 1
−1 duu

2.

This approach is usually referred to as the Eddington approximation.
In the following, we examine both the Eddington and the two-stream approxima-

tion.

•We shall be particularly interested in exposing the similarities and differences
between these two approaches.
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‡Note that the symbol 〈u〉2 is used instead of the numerical value 1/3 to facilitate comparison with the two-
stream approximation at the end of this section.
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Anisotropic Scattering: Two-Stream Approximation –
Beam Incidence (3)

•We expand the scattering phase function in Legendre polynomials P`(u), and
find the azimuthally-averaged phase function to be:

p(u′, u) =
∞∑
`=0

(2l + 1)χ`P`(u)P`(u
′) ←− Legendre polynomial expansion

where the moments or expansion coefficients are given by:

χ` =
1

2P`(u)

∫ +1
−1 du

′p(u′, u)P`(u
′).

• In the TSA, we normally retain only two terms: (1) the zeroth moment which
is unity because of the normalization (χ0 = 1), and (2) the first moment which
we refer to as the asymmetry factor: g ≡ χ1. Then:

since P0(u) = 1 and P1(u) = u, we obtain the two-term approximation (TTA):

p(u′, u) ≈
1∑
`=0

(2` + 1)χ`P`(u)P`(u
′) = 1 + 3gu′u ←− TTA.
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Anisotropic Scattering: Two-Stream Approximation –
Beam Incidence (4)

We start by writing Eq. 79 in terms of the half-range radiances:

µ
dI+

d (τ, µ)

dτ
= I+

d (τ, µ)− S+(τ, µ) (82)

−µdI
−
d (τ, µ)

dτ
= I−d (τ, µ)− S−(τ, µ) (83)

S±(τ, µ) ≡ −$
2

∫ 1
0 dµ

′p(−µ′,±µ)I−d (τ, µ′)

−$
2

∫ 1
0 dµ

′p(µ′,±µ)I+
d (τ, µ′)− $F s

4π
p(−µ0,±µ)e−τ/µ0. (84)

These two equations are exact for the slab problem. We proceed by integrating
each equation of these equations over the appropriate hemisphere by applying the
operator

∫1
0 dµ · · ·:

• If I+(τ, µ) and I−(τ, µ) are replaced by their averages I+(τ ) and I−(τ ) over
the upper and lower hemisphere, respectively, and µ+ and µ− are replaced by
the same average value µ̄, this approach leads to the following pair of coupled
equations for I± (dropping the ‘d’ subscript):
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Anisotropic Scattering: Two-Stream Approximation –
Beam Incidence (5)

Two-Stream Approximation:

µ̄
dI+

dτ
= I+ −$(1− b)I+ −$bI− − S∗+ (85)

−µ̄dI
−

dτ
= I− −$(1− b)I− −$bI+ − S∗− (86)

where

S∗+ ≡ $F s

2π
b(µ0)e−τ/µ0 ≡ X+(τ )e−τ/µ0

S∗− ≡ $F s

2π
[1− b(µ0)]e−τ/µ0 ≡ X−(τ )e−τ/µ0 (87)

X+(τ ) ≡ $

2π
F sb(µ0); X−(τ ) ≡ $

2π
F s[1− b(µ0)] (88)

and b and b(µ0) are backscattering ratios (or fractions) to be defined below.

• Equations 85 and 86 are valid for anisotropic scattering. For isotropic scattering,
(p = 1 and b = 1

2, b(µ) = 1
2), they reduce to those derived previously.
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Anisotropic Scattering: Two-Stream Approximation –
Beam Incidence (6)

We have derived two sets of differential equations (Eqs. 80 and 81 and Eqs. 85
and 86) from similar assumptions. What is the relationship, if any, between them?
To answer this question, we will bring Eqs. 85 and 86 into a form similar to Eqs. 80
and 81 by using the change of variable

I±(τ ) = I0 ± µ̄I1

consistent with the Eddington approximation. By first adding Eqs. 85 and 86, and
then subtracting 85 from 86, we find after some manipulation that Eqs. 85 and 86
are equivalent to (Appendix S)

dI1

dτ
=

1−$
µ̄2

I0 −
$

4πµ̄2
F se−τ/µ0 (89)

dI0

dτ
= (1− 3g$µ̄2)I1 +

3$

4π
gµ0F

se−τ/µ0. (90)

By comparing Eqs. 80 and 81 and 89 and 90, we conclude that the equations de-
scribing the Eddington and two-stream approximations are identical provided
〈u〉2 = µ̄2.
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Anisotropic Scattering: Two-Stream Approximation –
Beam Incidence (7)

Thus, since 〈u〉2 = 1
3, the choice µ̄ = 1/

√
3 makes the governing equations for

the two methods the same. Therefore:

• any remaining difference between the two must stem from different boundary
conditions, which is readily seen as follows:

• A homogeneous boundary condition for the downward diffuse radiance consistent
with the two-stream approximation leads to the boundary condition

I−(0) = I0 − µ̄I1 = 0.

If, on the other hand, we require the downward diffuse irradiance to be zero at the
upper boundary (common practice in the Eddington approximation), then we find

I0 −
2

3
I1 = 0.

As we shall see later (Chapter 9), the value µ̄ = 1/
√

3 for the average cosine
follows from applying full-range Gaussian quadrature while a half-range Gaussian
quadrature would lead to µ̄ = 1

2.
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Anisotropic Scattering – Beam Incidence: The
Backscattering Coefficients (1)

• The backscattering ratios are defined as:

b(µ) ≡ 1

2

∫ 1
0 dµ

′ p(−µ′, µ) =
1

2

∫ 1
0 dµ

′ p(µ′,−µ) (91)

b ≡
∫ 1
0 dµ b(µ) =

1

2

∫ 1
0 dµ

∫ 1
0 dµ

′ p(−µ′, µ) =
1

2

∫ 1
0 dµ

∫ 1
0 dµ

′ p(µ′,−µ) (92)

1− b =
1

2

∫ 1
0 dµ

∫ 1
0 dµ

′ p(µ′, µ) =
1

2

∫ 1
0 dµ

∫ 1
0 dµ

′ p(−µ′,−µ). (93)

•We have used the Reciprocity Relations satisfied by the scattering phase
function, p(−µ′, µ) = p(µ′,−µ); p(−µ′,−µ) = p(µ′, µ), as well as the normal-
ization property.

• The backscattering ratios b(µ) and b (see Eqs. 91 and 92) define the fraction of
the energy that is scattered into the backward hemisphere. Of course, 1− b or
1− b(µ0) is the fraction that is forward-scattered.

• If we use the TTA: p(u′, u) ≈ 1+3gu′u and quadrature choosing µ̄ = 1/
√

3,
then b = 1

2
∫1
0 dµ

∫1
0 µ
′(1− 3gµµ′) ≈ 1

2(1− 3gµ̄2) = 1
2(1− g): the backscattering

ratio is related to the asymmetry factor through g = (1− 2b).
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Anisotropic Scattering – Beam Incidence: The
Backscattering Coefficients (2)

We normally do not use the phase function itself, but rather its expansion:

p(u′, u) =
2N−1∑
`=0

(2`+1)χ`P`(u
′)P`(u) ←− Legendre polynomial expansion

Substituting this expansion into Eqs. 91 and 92, we find:

b(µ) =
1

2

∫ 1
0 dµ

′p(−µ′, µ) =
1

2

2N−1∑
`=0

(−1)`(2` + 1)χ`P`(µ)
∫ 1
0 dµ

′P`(µ
′)

≡
2N−1∑
`=0

b`(µ) (94)

where we have used the relation P`(−µ) = (−1)`P`(µ) satisfied by the Legendre
polynomials, and defined b`(µ) ≡ 1

2(−1)`(2` + 1)χ`P`(µ)
∫1
0 dµ

′P`(µ
′).

• Using Eqs. 92 [b =
∫1
0 dµb(µ)] and 94, we obtain:

b =
∫ 1
0 dµb(µ) =

1

2

2N−1∑
`=0

(−1)`(2` + 1)χ`[
∫ 1
0 dµP`(µ)]2. (95)

• For N = 1 these formulas yield b(µ) = 1
2(1− 3

2gµ) and b = 1
2(1− 3

4g), which are
identical with the results obtained using quadrature with the choice µ̄ = 1/2.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

56



Anisotropic Scattering – Beam Incidence: The
Backscattering Coefficients (3)

• Note that whereas use of the TTA and quadrature µ̄ = 1/
√

3:

p(u′, u) ≈ 1 + 3gu′u ⇒ b(µ) ≈ 1

2
(1− 3gµ̄′µ) ⇒ b ≈ 1

2
(1− g)

yields b = 0 for complete forward scattering (g = 1) and b = 1 for complete
backscattering (g = −1), we obtain the ‘unphysical’ results b = 1/8 and b = 7/8,
respectively for µ̄ = 1/2 from b = 1

2(1− 3
4g). Thus, in the TSA:

• we may want to adopt µ̄ = 1/
√

3 and use b(µ) = 1
2(1− 3√

3
gµ) and b = 1

2(1− g)
to compute the backscattering coefficients from the asymmetry factor, g.

•We can determine these coefficients more accurately from Eqs. 91 and 92 or the
“summation” formulas above by numerical evaluation of the double integrals.

• Finally, as discussed in Chapter 6, the backscattering ratio can be computed
exactly using Eq. 6.23, involving only a single integral:

b =
1

2

∫ π
π/2 dΘ sin Θp(τ, cos Θ) =

1

2

∫ 1
0 dyp(τ,−y).
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Anisotropic Scattering – Beam Incidence: How Do We
Solve the Two-Stream Equations?

Recall:
Two-Stream Equations:

µ̄
dI+

d

dτ
= I+

d −$(1− b)I+
d −$bI−d − S∗+ (96)

−µ̄dI
−
d

dτ
= I−d −$(1− b)I−d −$bI+

d − S∗− (97)

where:

S∗+ ≡ $F s

2π
b(µ0)e−τ/µ0 ≡ X+(τ )e−τ/µ0 (98)

S∗− ≡ $F s

2π
[1− b(µ0)]e−τ/µ0 ≡ X−(τ )e−τ/µ0 (99)

X+(τ ) ≡ $

2π
F sb(µ0); X−(τ ) ≡ $

2π
F s[1− b(µ0)]. (100)
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Two-Stream Solutions for Anisotropic Scattering –
Beam Incidence (1)

Focusing first on the homogeneous solution, we add and subtract Eqs. 96 and 97
to obtain:

d(I+
d + I−d )

dτ
= −(α− β)(I+

d − I−d ) (101)

d(I+
d − I−d )

dτ
= −(α + β)(I+

d + I−d ) (102)

where we have defined α ≡ −[1−$(1− b)]/µ̄ and β ≡ $b/µ̄.

• By differentiating one equation and substituting into the second, we obtain the
following uncoupled equations to solve:

d2(I+
d + I−d )

dτ 2
= Γ2(I+

d + I−d );
d2(I+

d − I−d )

dτ 2
= Γ2(I+

d − I−d ) (103)

where
Γ =

√
(α− β)(α + β) = (1/µ̄)

√
(1−$)(1−$ + 2$b). (104)

Hence in the limit of isotropic scattering (see Eqs. 19) as b→ 1/2:

Γ→
√
(1−$)/µ̄.
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Two-Stream Solutions for Anisotropic Scattering –
Beam Incidence (2)

As in the case of isotropic scattering, the homogeneous solutions are:

I+
d (τ ) = AeΓτ + Be−Γτ = AeΓτ + ρ∞De

−Γτ (105)

I−d (τ ) = CeΓτ + De−Γτ = ρ∞Ae
Γτ + De−Γτ . (106)

• The coefficients A, B, C, and D are NOT all independent as pointed out pre-
viously. The relation between them is found by substituting Eqs. 105 and 106
into Eqs. 96 and 97, yielding:

C

A
=
B

D
=

√
1−$ + 2$b−

√
1−$√

1−$ + 2$b +
√

1−$
≡ ρ∞.

Particular Solution:
Equations 96–100 (S∗± ∝ e−τ/µ0) suggest seeking a particular solution of the form:

I±d = Z±e−τ/µ0. (107)
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Two-Stream Solutions for Anisotropic Scattering –
Beam Incidence (3)

Substitution of Eq. 107 into Eqs. 96 and 97 yields:

Z± =
$bX∓ + [1−$ + $b∓ µ̄/µ0]X±

(1−$)(1−$ + 2$b)− (µ̄/µ0)2

where X+ and X−are: X+(τ ) ≡ $
2πF

sb(µ0); X−(τ ) ≡ $
2πF

s[1− b(µ0)].

• Note that if we set b = 1
2 (g = 0) and observe that in this case X+ = X− = $F s

4π ,

it can be verified that Γ→
√
(1−$)/µ̄ (Eqs. 19) and

Z± → Z+ = $F sµ0(µ̄−µ0)
4πµ̄2(1−Γ2µ2

0)
; Z− = −$F sµ0(µ0+µ̄)

4πµ̄2(1−Γ2µ2
0)

(Eqs. 63).

• It is also clear that for b = 1
2 we recover the earlier result for ρ∞ (see Eq. 22).

•We determine the constants A and D in Eqs. 105 and 106 from the homogeneous
radiation boundary conditions appropriate for the diffuse radiances:

A =
(−Z+e−τ

∗/µ0 + Z−ρ∞e
−Γτ∗)

D
; D =

(Z+ρ∞e
−τ∗/µ0 − Z−eΓτ∗)

D
where as defined previously (Eq. 27): D ≡ eΓτ∗ − ρ2

∞e
−Γτ∗.
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Two-Stream Solutions for Anisotropic Scattering –
Beam Incidence (4)

• These solutions satisfy the differential Eqs. 96 and 97, and also obey homoge-
neous boundary conditions.

• It is easy to show that in the limit of isotropic scattering the expressions for
A and D above reduce to those in Eqs. 64 and 65, as expected. The solutions
for the diffuse radiances are:

I+
d (τ ) =

1

D
[(−Z+e−τ/µ0 + Z−ρ∞e

−Γτ∗)eΓτ

+ ρ∞(Z+ρ∞e
−τ∗/µ0 − Z−eΓτ∗)e−Γτ ] + Z+e−τ/µo

I−d (τ ) =
1

D
[(−Z+e−τ/µ0 + Z−ρ∞e

−Γτ∗)ρ∞e
Γτ

+ (Z+ρ∞e
−τ∗/µ0 − Z−eΓτ∗)e−Γτ ] + Z−e−τ/µ0.
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Two-Stream Solutions for Anisotropic Scattering –
Beam Incidence (5)

•We can now solve for the half-range source functions, the irradiance, and the
heating rate:

S+(τ ) = $(1− b)I+
d (τ ) + $bI−d (τ ) +

$F se−τ/µ0

2π
b(µ0) (108)

S−(τ ) = $(1− b)I−d (τ ) + $bI+
d (τ ) +

$F se−τ/µ0

2π
[1− b(µ0)] (109)

F (τ ) = 2πµ̄[I+
d (τ )− I−d (τ )]− µ0F

se−τ/µ0 (110)

H(τ ) = 2πα[I+
d (τ ) + I−d (τ )] + αF se−τ/µ0.

.
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Scaling Approximations for Anisotropic Scattering (1)

• In §6.5 we noted that an accurate representation of a sharply-peaked phase
function typically requires several hundred terms in a Legendre polynomial ex-
pansion.

• By making the approximation that photons scattered within this peak are not
scattered at all, we found the RTE to become more tractable (see Eq. 6.48):

p̂δ−M(cos Θ) ≡ 2fδ(1− cos Θ) + (1− f )
M−1∑
`=0

(2` + 1)χ̂`P`(cos Θ).

• This artifice is known as a scaling approximation (see §6.6), and takes on
various forms depending upon the choice of the truncation.

•We found that in the δ-isotropic approximation: p̂δ−M(cos Θ) ≡ 2fδ(1−cos Θ)+
(1− f ) the scaled RTE corresponds to an isotropic scattering problem:

µ
dI±(τ̂ , µ)

dτ
= I±(τ̂ , µ)− $̂

2

∫ 1
0 dµ

′[I+(τ̂ , µ′) + I−(τ̂ , µ′)]

but with a scaled optical depth dτ̂ = (1 − $f )dτ and a scaled single-scattering
albedo $̂ = (1−f )$/(1−$f ). The value of f is somewhat arbitrary, but a good
choice is f = g, where g is the asymmetry factor.
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Scaling Approximations for Anisotropic Scattering (2)

• Since we have solved the RTE above in the two-stream approximation for three
prototype problems, it is a trivial matter to rewrite the solutions in terms of the
scaled parameters, $̂ and τ̂ .

•We will write the asymmetry factor in terms of the backscattering coefficient,
b = (1 − g)/2. We use as an example the conservative scattering limit (no
absorption), $̂ = 1 and τ̂ = (1− g)τ = 2bτ .

• For Prototype Problem 3 the scaled solutions for the reflectance and trans-
mittance are taken from Eqs. 76 and 77 (setting τ̂ ∗ = (1− g)τ ∗ = 2bτ ∗):

ρ(−µ0, 2π) =
2bτ ∗ + (µ̄− µ0)(1− e−2bτ∗/µ0)

2bτ ∗ + 2µ̄
(111)

T (µ0, 2π) =
µ̄ + µ0 + (µ̄− µ0)e−2bτ∗/µ0

2bτ ∗ + 2µ̄
. (112)
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