
Lecture Notes:
Formulation of Radiative Transfer Problems – I
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 K This new and completely updated edition 

gives a detailed description of radiative 

transfer processes at a level accessible to 

advanced students. The volume gives the 

reader a basic understanding of global 

warming and enhanced levels of harmful 

ultraviolet radiation caused by ozone 

depletion. It teaches the basic physics 

of absorption, scattering, and emission 

processes in turbid media, such as the 

atmosphere and ocean, using simple  

semi-classical models. The radiative 

transfer equation, including multiple 

scattering, is formulated and solved for 

several prototype problems, using both 

simple approximate and accurate numerical 

methods. In addition, the reader has 

access to a power ful, state-of-the-ar t 

computational code for simulating radiative 

transfer processes in coupled atmosphere-

water systems including snow and ice. This 

computational code can be regarded as 

a power ful educational aid, but also as a 

research tool that can be applied  

to solve a variety of research problems  

in environmental sciences.

From reviews of the f irst edition

‘This book should not be missing on the 

desk of any person seriously interested in 

radiative transfer ... I would certainly use 

this book as a basic text and recommend it 

very highly to my students. I am sure that 

both instructor and student can profit a 

great deal from studying this excellent work.’

Meteorology and Atmospheric Physics

‘ ... should grace the shelves of all libraries 

of institutes concerned with research and 

teaching in atmospheric and oceanic science 

and it is an important part of the radiative 

transfer armoury.’       

International Journal of Climatology

‘The book is easy to read, and there are 

many examples to illustrate the concepts 

discussed...[It] should serve well as an 

introduction to radiative transfer.’

EOS

‘ ... a valuable resource for those interested 

in terrestrial radiative transfer.’

Physics Today

C O V E R  D E S I G N E D  B Y  H A RT  M c L E O D  LT D

stamnes

	Access to computational code for simulating 

radiative transfer processes

	Lecture slides based on the book and a 

solutions manual for instructor use

	PowerPoint and JPEG files of the figures in 

the book for instructor use

Based on Chapter 6 in K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the

Atmosphere and Ocean, Cambridge University Press, 2017.
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Separation into Diffuse and Direct (Solar) Components
(1)

In full-range slab geometry the radiance is found by solving [Iν(τ, u, φ) ≡ Iν(τ, Ω̂)]

u
dIν(τ, u, φ)

dτ
= Iν(τ, u, φ)− $

4π

∫ 2π
0 dφ′

∫ 1
−1 du

′p(u′, φ′;u, φ)Iν(τ, u
′, φ′)

− (1−$)Bν. (1)

Recall that in half-range geometry, we defined

I+
ν (τ, Ω̂) = I+

ν (τ, θ, φ) ≡ Iν(τ, θ ≤ π/2, φ)

I−ν (τ, Ω̂)− I−ν (τ, θ, φ) ≡ Iν(τ, θ > π/2, φ).

The shortwave radiation field consists of two components:

• The direct or solar component, Iνs, which is that part of the solar radiation
field having survived extinction, i.e.,

I−νs(τ, µ, φ) = F s
νe
−τ/µ0δ(Ω̂− Ω̂0) = F s

νe
−τ/µ0δ(µ− µ0)δ(φ− φ0). (2)

• The diffuse component, Id, which consists of light that has been scattered at
least once. This part is also called the multiple-scattering component.
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Separation into Diffuse and Direct (Solar) Components
(2)

Since the direct component is described by the extinction law, we may isolate this
part from the total radiation field. We start by writing:

I−ν (τ, µ, φ) = I−νd(τ, µ, φ) + I−νs(τ, µ, φ) ←− diffuse + solar. (3)

Let the lower surface at be black and ignore thermal emission from the surface,
but include thermal radiation from the medium itself. Then:

I+
νs(τ

∗, µ, φ) = 0, and I+
ν (τ, µ, φ) = I+

νd(τ, µ, φ)

where τ ∗ denotes the total optical depth of the medium.

In slab geometry [Ω̂ = (µ, φ), Ω̂′ = (µ′, φ′)] the RTE for I±ν (τ, Ω̂) becomes:

−µdI
−
ν (τ, Ω̂)

dτ
= I−ν (τ, Ω̂)− (1−$)Bν −

$

4π

∫
+ dω

′p(+Ω̂′,−Ω̂)I+
ν (τ, Ω̂′)

− $

4π

∫
− dω

′p(−Ω̂′,−Ω̂)I−ν (τ, Ω̂′) (4)

µ
dI+

ν (τ, Ω̂)

dτ
= I+

ν (τ, Ω̂)− (1−$)Bν −
$

4π

∫
+ dω

′p(+Ω̂′,+Ω̂)I+
ν (τ, Ω̂′)

− $

4π

∫
− dω

′p(−Ω̂′,+Ω̂)I−ν (τ, Ω̂′). (5)
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Separation into Diffuse and Direct (Solar) Components
(3)

Here I−ν (τ, µ, φ) ≡ I−ν (τ, Ω̂) ≡ Iν(τ,−Ω̂) and

p(−Ω̂′,+Ω̂) −→ photon is moving downward (−Ω̂′) before, and upward (+Ω̂) after
the scattering.

Substituting for the total radiance field, the sum of the diffuse and the direct or
solar components [I−ν (τ, µ, φ) = I−νd(τ, µ, φ) + I−νs(τ, µ, φ)], into Eq. 4, we obtain:

−µdI
−
νd(τ, Ω̂)

dτ
−µdI

−
νs(τ, Ω̂)

dτ
=

I−νd(τ, Ω̂) + I−νs(τ, Ω̂)− (1−$)Bν −
S∗ν(τ,−Ω̂)︷ ︸︸ ︷

$

4π

∫
− dω

′p(−Ω̂′,−Ω̂)I−νs(τ, Ω̂
′)

−$
4π

∫
+ dω

′p(+Ω̂′,−Ω̂)I+
νd(τ, Ω̂′)− $

4π

∫
− dω

′p(−Ω̂′,−Ω̂)I−νd(τ, Ω̂′).

(6)

The two non-integral terms involving the direct (solar) component
cancel, because −µdI−νs/dτ = I−νs.
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Separation into Diffuse and Direct (Solar) Components
(4)

If we substitute for I−νs from Eq. 2 [I−νs(τ, µ, φ) = F s
νe
−τ/µ0δ(Ω̂ − Ω̂0) =

F s
νe
−τ/µ0δ(µ− µ0)δ(φ− φ0)] in the first integral term, we obtain the result:

−µdI
−
νd(τ, Ω̂)

dτ
= I−νd(τ, Ω̂)− (1−$)Bν − S∗ν(τ,−Ω̂)

− $

4π

∫
+ dω

′p(Ω̂′,−Ω̂)I+
νd(τ, Ω̂′)− $

4π

∫
− dω

′p(−Ω̂′,−Ω̂)I−νd(τ, Ω̂′) (7)

where [Ω̂ = (µ, φ)]

S∗ν(τ,−Ω̂) =
$

4π

∫
− dω

′p(−Ω̂′,−Ω̂)F s
νe
−τ/µ0δ(Ω̂′ − Ω̂0)

=
$

4π
p(−Ω̂0,−Ω̂)F s

νe
−τ/µ0

=
$

4π
p(−µ0, φ0;−µ, φ)F s

νe
−τ/µ0. (8)
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Separation into Diffuse and Direct (Solar) Components
(5)

We repeat this procedure for the upward component (Eq. 5) to obtain:

µ
dI+

νd(τ, Ω̂)

dτ
= I+

νd(τ, Ω̂)− (1−$)Bν − S∗ν(τ,+Ω̂)

− $

4π

∫
+ dω

′p(+Ω̂′,+Ω̂)I+
νd(τ, Ω̂′)− $

4π

∫
− dω

′p(−Ω̂′,+Ω̂)I−νd(τ, Ω̂′) (9)

where [Ω̂ = (µ, φ)]

S∗ν(τ,+Ω̂) =
$

4π

∫
− dω

′p(−Ω̂′,+Ω̂)F s
νe
−τ/µ0δ(Ω̂′ − Ω̂0)

=
$

4π
p(−Ω̂0,+Ω̂)F s

νe
−τ/µ0

=
$

4π
p(−µ0, φ0; +µ, φ)F s

νe
−τ/µ0. (10)
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Separation into Diffuse and Direct (Solar) Components
(6)

The equations of transfer for the total field, and for the diffuse field differ by the
presence of an extra, single-scattering “source” term S∗ν(τ,±Ω̂):

• This single-scattering source term “drives” the diffuse radiation field.

•Without S∗ν(τ,±Ω̂) there would be no diffuse radiation (if Bν = 0).

• Note also that the azimuthal dependence of the radiation field can
be traced to that of S∗ν(τ,±Ω̂) through the phase function p(−Ω̂0,±Ω̂).

In full-range slab geometry the radiative transfer equation for the diffuse radiance
may be written more compactly as:

u
dIνd(τ, u, φ)

dτ
= Iνd(τ, u, φ)− $

4π

∫ 2π
0 dφ′

∫ 1
−1 du

′p(u′, φ′;u, φ)Iν(τ, u
′, φ′)

− (1−$)Bν − S∗ν(τ, u, φ) (11)

where S∗ν(τ, u, φ) denotes the solar beam driving term derived above:

S∗ν(τ, u, φ) =
$

4π
p(−µ0, φ0;u, φ)F s

νe
−τ/µ0.
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Single versus Multiple Scattering

The interpretation of Eqs. 7–10 for the diffuse radiance is straightforward:

• The extra term S∗ (dropping the ν subscript) is an “imbedded source”
of radiation which has been scattered once (first-order or single scattering)
within the medium.

• The integral terms constitute the source of multiply-scattered radiation.

Thus, the total source function consists of the following sum:

S(τ, Ω̂) = [1−$]B(T )︸ ︷︷ ︸
thermal emission

+ S∗(τ, Ω̂)︸ ︷︷ ︸
first-order scattering

+
$

4π

∫
4π dω

′p(Ω̂′, Ω̂)Id(Ω̂′)︸ ︷︷ ︸
multiple scattering

.

(12)
Here Sν(τ, Ω̂) refers to the sources of all internal radiation.
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Example: Isotropic Scattering in Slab Geometry

Assume that the scattering is isotropic, so that p(Ω̂′, Ω̂) = 1. The source term is
then isotropic: S∗±ν (τ, Ω̂) = $

4πp(−Ω̂0,±Ω̂)F s
νe
−τ/µ0 = $

4πF
s
νe
−τ/µ0 = S∗(τ ), and:

• The RT equations for the half-range diffuse radiance fields are
greatly simplified because the integrals are independent of φ.

Dropping subscripts ‘ν’ and ‘d’, and assuming a black lower boundary, we find∗

µ
dI+(τ, µ)

dτ
= I+(τ, µ)−(1−$)B−S∗(τ )−$

2

∫ 1
0 dµ

′I+(τ, µ′)−$
2

∫ 1
0 dµ

′I−(τ, µ′)

(13)

−µdI
−(τ, µ)

dτ
= I−(τ, µ)−(1−$)B−S∗(τ )−$

2

∫ 1
0 dµ

′I+(τ, µ′)−$
2

∫ 1
0 dµ

′I−(τ, µ′)

(14)
where S∗(τ ) = $

4πF
se−τ/µ0 ←− isotropic.

Because S∗(τ ) is isotropic in this case:

• The radiances are also independent of the angle φ, which is an
enormous simplification over the anisotropic scattering case.

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

∗The corresponding equation for the full range is: udI(τ,u)dτ = I(τ, u)− $
4π

∫ 1
−1 du

′p(u′, u)I(τ, u′)− S∗(τ).

9



Azimuth-Independence of Irradiance and Mean
Radiance (1)

We now prove an important result:

• In slab geometry, the irradiances and the mean radiance depend
only on the azimuthally averaged radiance.

By averaging Eqs. 7 and 9 over azimuth, we obtain the following pair of equa-
tions for the azimuthally averaged half-range diffuse radiances (applying operator
(1/2π)

∫2π
0 dφ · · ·):

µ
dI+(τ, µ)

dτ
= I+(τ, µ)− (1−$)B − $

2

∫ 1
0 dµ

′p(+µ′,+µ)I+(τ, µ′)

− $

2

∫ 1
0 dµ

′p(−µ′,+µ)I−(τ, µ′)− S∗(τ, µ) (15)

−µdI
−(τ, µ)

dτ
= I−(τ, µ)− (1−$)B − $

2

∫ 1
0 dµ

′p(+µ′,−µ)I+(τ, µ′)

− $

2

∫ 1
0 dµ

′p(−µ′,−µ)I−(τ, µ′)− S∗(τ,−µ) (16)
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Azimuth-Independence of Irradiance and Mean
radiance (2)

where we have introduced the azimuthally averaged radiance:

I±(τ, µ) ≡ 1

2π

∫ 2π
0 dφ′I±(τ, µ, φ′) (17)

the azimuthally averaged scattering phase function:

p(±µ′,±µ) ≡ 1

2π

∫ 2π
0 dφ′p(±µ′, φ′;±µ, φ′) ≡ 1

2π

∫ 2π
0 d(φ′ − φ)p(±µ′,±µ;φ′ − φ)

(18)
and the azimuthally averaged source function:

S∗(τ,±µ) =
1

2π

∫ 2π
0 dφ′S∗(τ,±µ, φ′) =

$

4π
p(−µ0,±µ)F se−τ/µ0. (19)

The presence of S∗ is always the clue that we are referring to the diffuse radiance.
By definition:

F±(τ ) ≡
∫ 2π
0 dφ′

∫ 1
0 dµ

′ µ′ I±(τ, µ′, φ′) =

2π
∫ 1
0 dµ

′ µ′
1

2π

∫ 2π
0 dφ′ I±(τ, µ′, φ′) = 2π

∫ 1
0 dµ

′ µ′ I±(τ, µ′). (20)
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Azimuth-Independence of Irradiance and Mean
Radiance (3)

We have used the absence of φ-arguments to indicate independence of azimuth
angle.

Hence, we see that:

• In slab geometry the irradiance, F±(τ ), depends only on the az-
imuthally averaged radiance, I±(τ, µ).

Thus, if we are interested only in irradiance (as opposed to angular-dependent
radiances):

•We need to consider only the azimuthally independent component of
the radiance.

• Similarly, we find that the mean radiance depends only on the az-
imuthally averaged radiance.
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Azimuth-Independence of Irradiance and Mean
Radiance (4)

Switching back to the u-coordinate, we have:

Ī(τ ) =
1

4π

∫ 2π
0 dφ′

∫ 1
−1 du

′I(τ, u′, φ′) =
1

2

∫ 1
−1 du

′ 1

2π

∫ 2π
0 dφ′I(τ, u′, φ′)

=
1

2

∫ 1
−1 du

′I(τ, u′). (21)

Finally, we may integrate Eqs. 4 and 5 (or Eq. 1 with S∗(τ, u, φ) = 0) over 4π
steradians so that we consider the total (diffuse plus direct) radiation field. The
result is:

dF

dτ
= 4π(1−$)(Ī −B) ←− net irradiance divergence

= (1−$)F se−τ/µ0 + 4π(1−$)(Īd −B) (22)

which shows that a constant net irradiance (F = constant) is obtained if:

• There is no absorption in the medium ($ = 1)

• The slab is in monochromatic radiative equilibrium (Ī = B).

Eq. (22) is proportional to the spectral heating rate.
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Azimuthal Dependence of the Radiation Field (1)

If only irradiances or heating rates are desired:

• a radiative transfer problem involving only two variables, τ and u must be
solved

However, if we desire the radiance or the source function:

• we have to deal with a function of three variables, τ , u, and φ.

We will show that:

• by using an Addition Theorem we can reduce the problem to solving for
only two variables, also when we desire radiances.

Below we describe a transformation that reduces the problem to
one of solving a finite set of uncoupled radiative transfer equations,
each of which depends on only two variables, τ and u.

We start by expanding the scattering phase function in a finite series of 2N
Legendre polynomials as follows:
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Azimuthal Dependence of the Radiation Field (2)

p(τ, Ω̂′, Ω̂) = p(τ, Ω̂′ · Ω̂) = p(τ, cos Θ) ≈
2N−1∑
`=0

(2` + 1)χl(τ )P`(cos Θ) (23)

where P` is the `th Legendre polynomial. The `th expansion coefficient is given by:

χ`(τ ) =
1

2

∫ 1
−1 d(cos Θ)P`(cos Θ)p(τ, cos Θ). (24)

It is common to denote the first moment of the phase function by the symbol
g ≡ χ1. (Another notation is 〈cos Θ〉.)

The first moment represents the degree of asymmetry of the angular scattering
and is therefore called the asymmetry factor. Special values for the asymmetry
factor are given below:

g = 0 ←− isotropic scattering, or symmetric about cos Θ = 0

g = −1 ←− complete backscattering

g = 1 ←− complete forward scattering.

The probability of scattering into the backward hemisphere is given by the backscat-
tering ratio (y = − cos Θ, dy = sin ΘdΘ):

b =
1

2

∫ π
π/2 dΘ sin Θp(τ, cos Θ) =

1

2

∫ 1
0 dyp(τ,−y). (25)
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Azimuthal Dependence of the Radiation Field (3)

The Legendre polynomials P`(u = cos Θ) are a natural basis set of orthogonal
polynomials over the angular domain (0◦ ≤ Θ ≤ 180◦ or ;−1 ≤ u ≤ 1). The first
few Legendre polynomials are

P0(u) = 1; P1(u) = u; P2(u) =
1

2
(3u2 − 1)

P3(u) =
1

2
(5u3 − 3u); P4(u) =

1

8
(35u4 − 30u2 + 3).

An important property of the Legendre polynomials is that they are orthogonal
to one another

1

2

∫ +1
−1 duP`(u)Pk(u) =

1

2` + 1
δ`k. (26)

Here, δ`k is the Kronecker delta (δ`k = 1 for ` = k and δ`k = 0 for ` 6= k).

The number of terms, 2N , in the expansion required for an ac-
curate representation of p(τ, cos Θ) depends on how asymmetric the
phase function is.
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A one-parameter phase function first proposed by the astronomers Henyey and
Greenstein in 1941 is

pHG(cos Θ) =
1− g2

(1 + g2 − 2g cos Θ)3/2
.
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Figure 1: Illustration of Legendre polynomial fit to the synthetic Henyey-Greenstein (HG) scattering phase function
for two values of the asymmetry factor g = χ1 as indicated. The larger the value of g the more anisotropic the
phase function. Less anisotropic scattering phase functions require fewer Legendre polynomial expansion terms
to obtain a reasonable fit.
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Azimuthal Dependence of the Radiation Field (4)

• For isotropic scattering (p(cos Θ) ≈ ∑2N−1
`=0 (2`+ 1)χl(τ )P`(cos Θ) = 1) only one

term is needed: χ0 = 1 and χ` = 0 for ` = 1, 2, 3 . . . , 2N .

• In general, the more asymmetric the phase function the more terms are required
for an accurate representation.

• The Θ-representation is of little use in the transfer equation, which employs
polar coordinates θ and φ measured with respect to the vertical axis.

The relationship between the polar and azimuthal angles (θ′, φ′ before scattering
and θ, φ after scattering) and the scattering angle, Θ, is given by (u = cos θ):

cos Θ = cos θ′ cos θ + sin θ′ sin θ cos(φ′− φ) = u′u+
√

1− u′2
√

1− u2 cos(φ′− φ).

However, use of this relationship in the Legendre polynomials yields a rather
complicated and useless form. The key in simplifying the expansion of the scatter-
ing phase function is the Addition Theorem for Spherical Harmonics:

P`(cos Θ) = P`(u
′)P`(u) + 2

∑̀
m=1

Λm
` (u′)Λm

` (u) cosm(φ′ − φ)

=
∑̀
m=0

(2− δ0m)Λm
` (u′)Λm

` (u) cosm(φ′ − φ). (27)
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Azimuthal Dependence of the Radiation Field (5)

To simplify the formulas we have introduced the normalized associated Leg-
endre polynomial defined by

Λm
` (u) ≡

√√√√√√√(`−m)!

(` + m)!
Pm
` (u) (28)

where Pm
` (u) is the associated Legendre polynomial. The following orthog-

onality properties apply

1

2

∫ 1
−1 duP

m
` (u)Pm

k (u) =
(` + m)!

(2` + 1)(`−m)!
δ`k

or
1

2

∫ 1
−1 duΛm

` (u)Λm
k (u) =

δ`k
2` + 1

.

If m = 0, Λ0
`(u) = P 0

` (u) ≡ P`(u), the Legendre polynomial. Note that we have
defined Λm

` (u) in such a way that it satisfies the same orthogonality condition as
P`(u).

• Thus, the function
√
(2` + 1)/2 Λm(u) is orthonormal with respect to the polar

angle θ.
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Azimuthal Dependence of the Radiation Field (6)

The first few associated Legendre Polynomials are:

P 1
1 (u) =

√
1− u2; P 2

1 (u) = 3u
√

1− u2; P 2
2 (u) = 3

√
1− u2

P 2
3 (u) = 15u(1− u2); P 1

3 (u) =
3

2

√
1− u2(5u2 − 1).

Application of azimuthal averaging, i.e., 1
2π

∫2π
0 dφ · · ·, to both sides of (23) gives

p(τ, u′, u) =
1

2π

∫ 2π
0 dφ p(τ, cos Θ) ≈

2N−1∑
l=0

(2` + 1)χ`(τ )P`(u)P`(u
′), (29)

where we have made use of Eq. 27 (see also Eq. 33). From Eq. 29 it follows that

1

2

∫ 1
−1 p(τ, u′, u)Pk(u

′)du′ ≈
2N−1∑
`=0

(2` + 1)χ`(τ )P`(u)
1

2

∫ 1
−1 P`(u

′)Pk(u
′)du′, (30)

which by the use of orthogonality (Eq. 26) leads to

χ`(τ ) =
1

P`(u)

1

2

∫ 1
−1 p(τ, u′, u)P`(u

′)du′. (31)

Thus, to calculate the moments (expansion coefficients), we can use the azimuthally
averaged scattering phase function, p(τ, u′, u).
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Azimuthal Dependence of the Radiation Field (7)

The addition theorem allows us to express the scattering phase function as:

Legendre polynomial expansion of scattering phase function:

p(cos Θ) = p(u′, φ′;u, φ)

=
2N−1∑
`=0

(2` + 1)χ`
∑̀
m=0

(2− δ0m)Λm
` (u′)Λm

` (u) cosm(φ′ − φ). (32)

Inverting the order of the summation, we have:

p(u′, φ′;u, φ) =
2N−1∑
m=0

(2− δ0m)pm(u′, u) cosm(φ′ − φ) (33)

pm(u′, u) =
2N−1∑
`=m

(2` + 1)χlΛ
m
` (u′)Λm

` (u). (34)

Since the expansion of the scattering phase function in Eq. 33 is essentially a
Fourier cosine series, we should expand the radiance in a similar way:

I(τ, u, φ) =
2N−1∑
m=0

Im(τ, u) cosm(φ0 − φ). (35)
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Azimuthal Dependence of the Radiation Field (8)

Recall: in full-range slab geometry the radiative transfer equation for the diffuse
radiance may be written as:

u
dI(τ, u, φ)

dτ
= I(τ, u, φ)− $

4π

∫ 2π
0 dφ′

∫ 1
−1 du

′p(u′, φ′;u, φ)I(τ, u′, φ′)

− (1−$)B − S∗(τ, u, φ). (36)

If we substitute Eqs. 33 and 35 into Eq. 36, we obtain the following equation for
each of the Fourier components (using Λm

` (−u) = (−1)`+mΛm
` (u)):

u
dIm(τ, u)

dτ
= Im(τ, u)− (1−$)Bδ0m, m = 0, 1, . . . , 2N − 1

− $

2

∫ 1
−1 du

′pm(τ, u′, u)Im(τ, u′)−Xm
0 (τ, u)e−τ/µ0 (37)

Xm
0 (τ, u) =

$

4π
F s(2− δ0m)pm(τ,−µ0, u)

=
$

4π
F s(2− δ0m)

2N−1∑
`=m

(−1)`+m(2` + 1)χ`Λ
m
` (u)Λm

` (µ0). (38)
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Azimuthal Dependence of the Radiation Field (9)

We have effectively:

• “Isolated” the azimuthal dependence from the radiative transfer equation in the
sense that:

• The various Fourier components in Eq. 37 are entirely uncoupled.

Thus, in slab geometry:

• Independent solutions for each m give the azimuthal components,
Im(τ, u), and the sum:

I(τ, u, φ) =
2N−1∑
m=0

Im(τ, u) cosm(φ0 − φ) (Eq. 35)

yields the complete azimuthal dependence of the radiance.

Note that in slab geometry:

• The azimuthal dependence is forced upon us by the beam source
and the boundary conditions.
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Azimuthal Dependence of the Radiation Field (10)

•When there is no beam source and no azimuth-dependent re-
flection at either of the slab boundaries, the sum in Eq. 35
[I(τ, u, φ) = ∑2N−1

m=0 Im(τ, u) cosm(φ0 − φ)] reduces to the m = 0 term.

• Then the angles µ0 and φ0 are irrelevant and there is no azimuthal dependence.

We also note that:

• if the particles scatter isotropically, there is no azimuthal depen-
dence, as we already showed in Eqs. 13–14.

This behavior follows from Eq. 38 [Xm
0 (τ, u) = $

4πF
s(2−δ0m)pm(τ,−µ0, u)], since

Xm
0 = 0 for m > 0 if the phase function is set to unity. Finally, we note that:

• Eq. 37 is of the same mathematical form for all azimuth compo-
nents m. This fact implies that:

•Any method available for solving the m = 0 azimuth-independent
equation can be readily applied to solve the equation for all m > 0.
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Radiative Transfer in an Atmosphere-Water System (1)

• The basic radiance I/m2
r is invariant along a beam path in the absence of

scattering and absorption.

•We have so far assumed that we are dealing with media for which the refractive
index is constant throughout the medium. BUT:

• In a coupled atmosphere-water system we must consider the change in the
refractive index across the interface between the atmosphere
(with mr ≈ 1) and the water (with mr ≈ 1.34). HOW do we:

• describe radiative transfer throughout a system consisting of two
adjacent strata with different refractive indices?

First: radiative transfer in aquatic media is similar to that in gaseous media:

• In pure aquatic media density fluctuations lead to Rayleigh-like scattering.

• Turbidity in an aquatic medium is caused by particles acting to scatter and
absorb radiation like aerosol and cloud “particles” do in the atmosphere.
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Figure 2: Schematic illustration of two adjacent media with a flat interface such as the atmosphere overlying a calm
water body. The atmosphere has a different refractive index (mr ≈ 1) than the water (mr = 1.34). Therefore,
radiation in the atmosphere distributed over 2π sr will be confined to a cone less than 2π sr in the water (region
II). Radiation in the water within region I will be totally reflected when striking the interface from below.
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Radiative Transfer in an Atmosphere-Water System (2)

• In the following, we focus on the transfer of solar radiation in an atmosphere-
water system as illustrated in Fig. 2. To simplify the situation, we assume that
the water surface is calm (i.e., perfectly flat).

• In principle, the radiative coupling of the two media is very simple because:

• It is described by the well-known laws of reflection and refraction that apply
at the interface as expressed mathematically by Snell’s Law and Fresnel’s
Equations.

• The practical complications that arise are due to multiple scattering and total
internal reflection.

• The downward radiation distributed over 2π sr in the atmosphere will be re-
stricted to an angular cone less than 2π sr (region II in Fig. 2) after being
refracted across the interface into the water.

• Beams outside the refractive region in the water are in the total reflection region
(referred to as region I hereafter, see Fig. 2).
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Radiative Transfer in an Atmosphere-Water System (3)

• The demarcation between the refractive and total reflective region in the water
is given by the critical angle (see Eq. 44), schematically illustrated by the dashed
line separating regions I and II in Fig. 2.

• Upward travelling beams in region I in the water will be reflected back into the
water upon reaching the interface.

• Thus, beams in region I cannot reach the atmosphere directly (and vice versa);
they must be scattered into region II in order to be returned to the atmosphere.
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Two Stratified Media with Different Indices of
Refraction (1)

• Since the radiation field in the water is driven by solar radiation passing through
the atmosphere:

• we may use the same radiative transfer equation in the water as in the at-
mosphere as long as we properly incorporate the changes occurring at the
atmosphere-water interface.

• Thus, the appropriate radiative transfer equation in either medium is Eq. 1:

u
dI(τ, u, φ)

dτ
=

I(τ, u, φ)− $(τ )

4π

∫ 2π
0 dφ′

∫ 1
−1 du

′p(τ, u′, φ′;u, φ)I(τ, u′, φ′)− S∗(τ, u, φ)

where

• S∗(τ, u, φ) represents the solar “driving” term.

• This driving term is different in the atmosphere and the water.
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Two Stratified Media with Different Indices of
Refraction (2)

• In the atmosphere, we have:

S∗air(τ, u, φ) =
$(τ )F s

4π
p(τ,−µ0, φ0;u, φ)e−τ/µ0

+
$(τ )F s

4π
ρs(−µ0;mrel)p(τ, µ0, φ0;u, φ)e−(2τa−τ)/µ0

• µ0, φ0, and F s refer to the incident solar beam at the top of the atmosphere;

•mrel ≡ mocn/matm is the real index of refraction in the water (ocean) relative to
air;

• τa is the optical depth of the atmosphere;

• the first term is due to the usual solar beam source, whereas the second
term is due to specular reflection by the atmosphere-water interface.

• To simplify the notation we have written ρs(−µ0,mrel) ≡ ρs(−µ0, φ0;µ0, φ0 +
π;mrel) for the specular reflection by the atmosphere-water interface.
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Two Stratified Media with Different Indices of
Refraction (3)

• The source term in the water consists of the attenuated solar beam refracted
through the interface:

S∗ocn(τ, u, φ) =
$(τ )F s

4π

µ0

µ0m
Tb(−µ0;mrel)p(τ,−µ0m, φ0;u, φ)e−τa/µ0e−(τ−τa)/µ0m

where

• Tb(−µ0;mrel) ≡ Tb(−µ0, φ0;−µ0m, φ0;mrel) is the beam transmittance through
the interface, and

• µ0m is the cosine of the solar zenith angle in the water, related to µ0 by Snell’s
Law:

µ0m ≡ µ0m(µ0,mrel) =
√
1− (1− µ2

0)/m2
rel.
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Two Stratified Media with Different Indices of
Refraction (4)

• The “isolation” of the azimuth dependence is now accomplished as usual. The
source terms become:

S∗air(τ, u) = Xm
0 (τ, u)e−τ/µ0 + Xm

01(τ, u)eτ/µ0; S∗ocn(τ, u) = X02(τ, u)e−τ/µ0m

where

•Xm
0 (τ, u) is given by Eq. 38, and

Xm
01(τ, u) =

$(τ )F s

4π
ρs(−µ0;mrel)e

−2τa/µ0(2− δ0m)

×
2N−1∑
`=0

(2` + 1)χ`(τ )Λm
` (u)Λm

` (µ0) (39)

Xm
02(τ, u) =

$(τ )F s

4π

µ0

µ0m
Tb(−µ0,−µ0m;mrel)e

−τa(1/µ0−1/µ0m)(2− δ0m)

×
2N−1∑
`=0

(−1)`+m(2` + 1)χ`(τ )Λm
` (u)Λm

` (µ0m). (40)
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Two Stratified Media with Different Indices of
Refraction (5)

•We must properly account for the reflection from and transmission through the
interface. Here the following conditions apply:

I+
a (τa, µ

a) = ρs(−µa;mrel)I
−
a (τa, µ

a) + Tb(µo;mrel)[I
+
o (τa, µ

o)/m2
rel] (41)

I−o (τa, µ
o)

m2
rel

= ρs(µ
o;mrel)

I+
o (τa, µ

o)

m2
rel

+ Tb(−µa;mrel)I
−
a (τa, µ

a) (µo > µc) (42)

I−o (τa, µ
o) = I+

o (τa, µ
o) (µo < µc). (43)

Here:

• Ia(τa, µ
a) refers to the radiance in the atmosphere evaluated at the interface;

• Io(τa, µ
o) refers to the radiance in the water (ocean) evaluated at the interface.

• Equation 41 states that the upward radiance at the interface in the atmosphere consists of the specularly
reflected downward atmospheric radiation plus the transmitted upward aquatic radiation.

• Equation 42 states that the downward radiance at the interface in the water consists of the reflected
component of aquatic origin plus a transmitted component originating in the atmosphere.

• Equation 43 ensures that radiation in the total reflection region is properly taken into account.
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Two Stratified Media with Different Indices of
Refraction (6)

• The demarcation between the refractive and the total reflective region in the
water is given by the critical angle, whose cosine is:

µc =
√
1− 1/m2

rel. (44)

• µo and µa are connected through the relation:

µo = µo(µa) =
√
1− [1− (µa)2]/m2

rel.

• Note that we have defined ρs(µ;mrel) and Tb(µ;mrel) as the specular reflectance
and transmittance of the invariant radiance, I/m2

r , where mr is the local value
of the real part of the refractive index.

• The reflectance and transmittance are derived from Fresnel’s equations (see Ap-
pendix D).
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Prototype Radiative Transfer Problems (1)

We now describe a few “prototype” radiative transfer problems, which will allow
us to compare approximate solutions to “exact” solutions. Also,

• methods deemed to be successful when applied to these prototype problems can
be applied with more confidence to more realistic problems.

For each prototype problem, we consider:

• A slab consisting of an optically uniform (homogeneous) medium.

• The radiation to be monochromatic and unpolarized.

The complete specification of a prototype problem requires five input variables:

1. τ ∗, the vertical optical depth of the slab;

2. S∗(τ, Ω̂), the internal or external sources;

3. p(Ω̂′, Ω̂), the scattering phase function;

4. $, the single-scattering albedo; and

5. ρ(−Ω̂′, Ω̂), the bidirectional reflectance of the underlying surface (ρL = constant
for a Lambert surface).
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Prototype Radiative Transfer Problems (2)

A cartoon illustration of the standard problems we describe below is provided in
Fig. 3. The solution of the radiative transfer equation provides the following two
sets of output variables:

1. the reflectance, transmittance, absorptance, and emittance; and

2. the source function, the internal radiance, the heating rate, and the net irradiance
throughout the medium.

Prototype Problem 1: Uniform Illumination

• The incident radiance has the same value I in all downward directions.

• Because of the azimuthal symmetry of the incident radiance, the radiation de-
pends only on τ and µ.

• Furthermore, the source function depends only upon τ .

For conservative and isotropic scattering, the frequency-integrated problem reduces
mathematically to that of a simple greenhouse problem.

• This problem describes the enhancement of the surface temperature over that
expected for planetary radiative equilibrium as discussed in Chapter 8.
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Prototype Radiative Transfer Problems (3)

In addition, Prototype Problem 1 approximately reproduces the illumination con-
ditions provided by an optically thick cloud overlying an atmosphere. The source
for the diffuse emission is

S∗(τ ) =
$

4π

∫ 2π
0 dφ

∫ 1
0 dµIe

−τ/µ =
$

2
IE2(τ ),

where E2(τ ) is the second exponential integral defined by Eq. 5.62. However,

• this problem is solved more efficiently by setting S∗ = 0 in Eq. 1 and applying
a uniform upper boundary condition to the total radiance I−(τ = 0, µ) = I.

• It is straightforward to add the effects of surface reflection, as described below.

Prototype Problem 2: Constant Imbedded Source

• For thermal radiation problems, (1−$)B “drives” of the scattered radiation.

• This “imbedded source” is a strong function of frequency and of course depends
upon the temperature, through Eq. 4.4.

• In our Prototype Problem 2, we assume that the product (1−$)B is constant
with depth. In the conservative limit ($ → 1), Prototype Problem 2 is known
as the Milne Problem (see Appendix S, §S.3.3).

K. Stamnes, G. E. Thomas, and J. J. Stamnes · STS-RT ATM OCN-CUP · April 2017

37



τ* ∞

(c)(b)

m1

m2 ≠ m2

ρ ≠ 0

ρ = 0 ρ = 0 ρ = 0

(a)

Prototype
Problem 1

Prototype
Problem 2

Prototype
Problem 3

Semi-Infinite
Slab

Partially
Transparent
Boundary

Partially
Reflecting
Boundary

θ0

Variants of lower boundary condition

Fs

Figure 3: Illustration of Prototype Problems in radiative transfer.
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Prototype Radiative Transfer Problems (4)

Prototype Problem 3: Diffuse Reflection Problem
In this problem, we consider collimated incidence at τ = 0, and a lower boundary
that may be partly reflecting as explained below.

• The case of collimated incidence as opposed to uniform incidence can be consid-
ered to be the classical planetary problem.

• For shortwave applications, the term (1 − $)B can be ignored and the only
source term is

S∗(τ,±µ, φ) =
$F s

4π
p(−µ0, φ0;±µ, φ)e−τ/µ0. (45)

• Note that in contrast to Prototype Problems 1 and 2, the radiation depends
upon both µ and the azimuthal coordinate φ. The lower boundary condition
appropriate for this problem is described below.

Boundary Conditions: Reflecting and Emitting Surface
We first consider a Lambertian surface (BRDF = ρL), which also emits thermal IR
radiation with an emittance εs and temperature Ts.
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Prototype Radiative Transfer Problems (5)

The upward radiance at the surface is given by (see Eq. 5.11)

I+(τ ∗, µ, φ) = ρLF
−
d (τ ∗) + ρL

∫ 2π
0 dφ′

∫ 1
0 dµ

′µ′I−(0, µ′, φ′)e−τ
∗/µ′ + εsB(Ts). (46)

B(Ts) denotes the Planck function at the appropriate frequency, and F−d (τ ∗) is the
downward diffuse irradiance at the lower boundary. The upper and lower boundary
conditions for the three prototype problems can now be written down immediately:

Prototype Problem 1

I−(0, µ) = I; I+(τ ∗, µ) = ρL[F−d (τ ∗) + 2πIE3(τ ∗)] + εsB(Ts) (47)

Prototype Problem 2

I−(0, µ) = 0; I+(τ ∗, µ) = ρLF
−
d (τ ∗) (48)

Prototype Problem 3

I−(0, µ, φ) = F sδ(µ− µ0)δ(φ− φ0); I+(τ ∗, µ, φ) = ρL[F−d (τ ∗) + µ0F
se−τ

∗/µ0].
(49)

The three equations above are expressed in terms of the unknown quantity F−d (τ ∗),
which is not a difficulty for the methods of solution described in this book (Chap-
ters 7 and 9).
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Prototype Radiative Transfer Problems (6)

For Prototype Problem 3, we may encounter situations where the surface is de-
scribed by a more general reflectance condition, given by:

I+(τ ∗, µ, φ) =
∫ 2π
0 dφ′

∫ 1
0 dµ

′µ′ρd(−µ′, φ′;µ, φ)I−(τ ∗,+µ′, φ′)

+µ0F
se−τ

∗/µ0ρd(−µ0, φ0; +µ, φ) + ε(µ)B(Ts), (50)

where we have assumed no φ-dependence of the thermal emission, and ρd is the
BRDF due to diffuse reflection.

Assuming that the BRDF depends only on the difference between the azimuthal
angles of the incident and the reflected radiation, we may expand it as follows:

ρd(−µ′, φ′;µ, φ) = ρd(−µ′, µ;φ− φ′)

=
2N−1∑
m=0

ρmd (−µ′, µ) cosm(φ− φ′), (51)

where the expansion coefficients are computed from

ρmd (−µ′, µ) ≡ 1

π

∫ π
−π d(φ− φ′)ρd(−µ′, µ;φ− φ′) cosm(φ− φ′). (52)
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Prototype Radiative Transfer Problems (7)

Substituting Eq. 51 into Eq. 50 and using Eq. 35:

I(τ, u, φ) =
2N−1∑
m=0

Im(τ, u) cosm(φ0 − φ)

we find that each Fourier component must satisfy the bottom boundary condition
(see Appendix O for a derivation):

Im+(τ ∗, µ) = δm0ε(µ)B(Ts) + (1 + δm0)
∫ 1
0 dµ

′µ′ρmd (−µ′, µ)Im−(τ ∗, µ′)

+
µ0

π
F sρmd (−µ0, µ)e−τ

∗/µ0 m = 0, 1, · · · , 2N − 1. (53)

Finally, for an atmosphere overlying a body of calm water, we must

• use the interface conditions provided in §6.4 (Eqs. 41–43) to account for the
reflection and transmission taking place at the interface between the two strata
with different refractive indices.

• Then a coupled atmosphere–water system should be considered as described in
§6.4.
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Reciprocity, Duality, and Inhomogeneous Media (1)

As noted previously (see Appendices J and Q and Eq. 5.27) any satisfactory re-
flectance model must satisfy the Reciprocity Principle:

ρ(θ′, φ′; θ, φ) = ρ(θ, φ; θ′, φ′).

Thus, the reciprocity relationships satisfied by the BRDF and the diffuse reflectance
are:

ρ(−Ω̂′, Ω̂) = ρ(−Ω̂, Ω̂′); ρ(−Ω̂′, 2π) = ρ(−2π, Ω̂′) (54)

where we have suppressed the ν-argument.
The Reciprocity Principle states that in any linear system:

• the pathways leading from a cause (or action) at one point to an effect (or
response) at another point can be traversed in the opposite direction.

• the BRDF (Eq. 54) is unchanged upon direction reversal of the light rays ⇒
• the reflected radiance of Prototype Problem 1 is related to the diffuse reflectance

of Prototype Problem 3 (see §6.7).

A relationship similar to Eq. (54) exists for the transmittance.
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Reciprocity, Duality, and Inhomogeneous Media (2)

Our discussion above applies only to homogeneous media:

• the optical properties, such as $ and p, are uniform with optical depth.

When $ and p are NOT uniform with optical depth:

• the reflectance and transmittance for a slab illuminated from the top are in
general different from those of the same slab illuminated from the bottom.

The reciprocity relationships for directional transmittance and hemispherical
transmittance are:

T (−Ω̂′,−Ω̂) = T̃ (+Ω̂,+Ω̂′); T (−2π,−Ω̂) = T̃ (+Ω̂,+2π). (55)

where we have denoted properties for illumination from below with the symbol .̃

• The principle of duality connects the transmittances of Prototype Problems 1
and 3, in a similar way as for reflectances.

The remaining relationships are:

ρ̃(+Ω̂′,−Ω̂) = ρ̃(+Ω̂,−Ω̂′); ρ̃(+Ω̂′,−2π) = ρ̃(+2π,−Ω̂′). (56)
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Reciprocity, Duality, and Inhomogeneous Media (3)

Practical implication: Suppose we are interested in:

• hemispherical reflectance and transmittance, and we want to solve a problem
involving collimated radiation for many values of the incoming solar direction.

Then it is much more efficient to consider:

• the problem of uniform illumination and solve for the reflected radiance:

I+(0, Ω̂) =
∫
+ dω

′ cos θ′ρ(−Ω̂′,+Ω̂)I = Iρ(−2π,+Ω̂) = Iρ(−Ω̂,+2π). (57)

The last result follows from Eq. 54. Thus:

•We can find ρ(−Ω̂,+2π) for every value of −Ω̂ of interest, by applying uniform
illumination with I = 1 and solving for the radiance I+(0, Ω̂).

Moreover, by integrating Eq. 57, we find:

F+ = 2π
∫ 1
0 dµµI

+(0, µ) = 2πI
∫ 1
0 dµµρ(−µ,+2π) = πIρ̄. (58)

Hence, we can obtain the spherical albedo, ρ̄, by computing the diffuse reflectance,
F+/πI, resulting from uniform illumination.
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Effects of Surface Reflection on the Radiation Field (1)

What are the effects of a reflecting lower boundary on the reflectance and transmit-
tance of a homogeneous plane-parallel slab overlying a partially reflecting surface?

For Lambert surface we can:

• express the solutions for the emergent radiances, the planetary problem,
algebraically in terms of the solutions for the standard problem, i.e., a com-
pletely black or non-reflecting lower boundary.

From Fig. 4, the total reflected irradiance from the combined slab plus lower
boundary is the sum of the following components:

1. the reflection from the slab itself;

2. the irradiance that reaches the surface, is reflected, and then transmitted;

3. that part of (2) which is reflected back to the surface, and is then reflected a
second time and transmitted;

4. all higher order terms, reflected three, four, or more times from the surface before
being transmitted.
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Figure 4: Addition of a reflecting surface leads to a geometric (binomial) series.
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Effects of Surface Reflection on the Radiation Field (3)

• The first term is just the ordinary hemispherical reflectance ρ(−Ω̂,+2π).

• The second term is proportional to the hemispherical transmittance (including
both the direct and diffuse components) T (−Ω̂,−2π). After reflection, it is
proportional to T (−Ω̂,−2π)ρL, and upon transmission through the slab, it is
multiplied by the spherical transmittance T̄ . Thus:

• the second term is T (−Ω̂,−2π)ρLT̄ .

• The third term takes the part of term (2) that was reflected from the surface,
but instead of multiplying by the hemispherical transmittance, we multiply by
the spherical reflectance ρ̄, which “brings it back” for a second surface reflection.
It is then multiplied by ρL, and finally gets transmitted, bringing in the term T̄ .
Thus:

• the third term is T (−Ω̂,−2π)ρLρ̄ρLT̄ .

Proceeding in a similar way with the higher-order components, we find that the
sum can be written as (see Fig. 4):
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Effects of Surface Reflection on the Radiation Field (4)

ρ(−Ω̂,+2π) + T (−Ω̂,−2π)ρLT̄
[
1 + ρ̄ρL + (ρ̄ρL)2 + (ρ̄ρL)3 + · · ·

]

= ρ(−Ω̂,+2π) +
T (−Ω̂,−2π)ρLT̄

1− ρ̄ρL

where we have used the fact that the infinite sum is the binomial expansion of
(1− ρ̄ρL)−1. Thus:

ρtot(−Ω̂,+2π, ρL) = ρ(−Ω̂,+2π) +
T (−Ω̂,−2π)ρLT̄

1− ρ̄ρL
(59)

where the quantities on the right hand side (ρ, ρ̄, T , and T̄ ) are evaluated for a
black surface, ρL = 0.

To include the possibility of inhomogeneity we replace ρ̄ with ˜̄ρ, and T̄ with
˜̄T . Thus the total hemispherical reflectance is written:

ρtot(−Ω̂,+2π, ρL) = ρ(−Ω̂,+2π) +
T (−Ω̂,−2π)ρL

˜̄T
1− ˜̄ρρL

. (60)
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Effects of Surface Reflection on the Radiation Field (5)

The total hemispherical transmittance can be determined in a similar fashion:

Ttot(−Ω̂,−2π, ρL) = T (−Ω̂,−2π) +
T (−Ω̂,−2π)ρL˜̄ρ

1− ˜̄ρρL
=
T (−Ω̂,−2π)

1− ˜̄ρρL
. (61)

These results also follow from energy conservation.

We can derive similar relationships for the directional transmittance and re-
flectance (see Appendix Q for details):

ρtot(−Ω̂0, Ω̂, ρL) = ρ(−Ω̂0, Ω̂) +
ρLT (−Ω̂0,−2π)T̃ (Ω̂,+2π)

π[1− ˜̄ρρL]
(62)

Ttot(−Ω̂0,−Ω̂, ρL) = T (−Ω̂0,−Ω̂) +
ρLT (−Ω̂0,−2π)ρ̃(Ω̂,+2π)

π[1− ˜̄ρρL]
. (63)

We have shown that:

• the bidirectional reflectance and transmittance of a slab overlying a reflecting
surface with a Lambertian reflectance is given by the sums and products of
quantities evaluated for a black surface.
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Effects of Surface Reflection on the Radiation Field (6)

The implications are that:

• we need to solve only one radiative transfer problem involving a non-reflecting
lower boundary.

BUT if the slab is inhomogeneous we should:

• apply uniform illumination from both the top and the bottom to allow for rapid

computation of T̃ (−Ω̂,−2π), ρ̃(−Ω̂,+2π), ˜̄ρ and ˜̄T as discussed above.

Thus:

• as long as we are interested in only the transmitted and reflected
radiances an analytic correction allows us to find the solutions pertaining to
reflecting (Lambert) surfaces.
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