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Based on Chapter 6 in K. Stamnes, G. E. Thomas, and J. J. Stamnes, Radiative Transfer in the
Atmosphere and Ocean, Cambridge University Press, 2017.
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Photo: Svein M. Fikke

Figure 3. Collage showing details of mother-of-pearl clouds together with The Scream (1910 version).
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(b)

Mother-of-Pearl clouds after sunsct on February 16, 1946, viewed from Vackero neae Oslo, Mother-of-Pearl cloud after sunsct on January 30, 1944, viewed from the Meteorological
Height about 22 km. Institute of Norway near Oslo.  Height 28 to 29 km.

Iktograph by) | Ellen Starmer Photograph by) [Anders Nygaard

() (d)

Mother-of-Tearl clouds hefore sunrise on Januare 30, 1934, viewed from a window in Pro- The same cloud, later in the evening.

fessor Stormer's honw near Oslo.  Height not measured. Su "
Ihotogragh by) (Carl Stormer Photograph by) [Cart Ste

Figure 6. Pictures of mother-of-pearl clouds presented in Carl Stérmer (1948): ‘Mother-of-pearl clouds. (a) 16 February 1946 (Source: Ellen Stérmer).
(b) 30 January 1944 (Source: Anders Nygaard). (c) 30 January 1944 (Source: Carl Stérmer). (d) Same cloud as the one above (i.e. (b)) (Source: Carl
Stérmer). Stérmer wrote: [...] photographs in natural colours are given for the first time [...]
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Figure 7. (a) Edvard Munch ‘Sick mood by sunset. Despair, 1892. (b) ‘The Scream; 1893.
Blaafarveverket (2013).
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Theory of Vector (Polarized) Radiative Transfer (1)

Basic Equations and Definitions

van de Hulst (1957): Let us consider a beam of light with a certain frequency
and traveling in one direction. We choose a plane of reference through the direction
of propagation. By r we shall denote the unit vector along the normal of this
plane (sense arbitrary) and by 1 the unit vector in this plane and perpendicular
to the direction of propagation. The sense is such that r x 1 is in the direction of
propagation. The two letters stand for the last letters of the words perpendicular and parallel.

We may use the Stokes vector representation (superscript I denotes transpose):

I= [[Ea [Ta U7 V]T — [IHa ]La U7 V]T

In terms of the complex transverse electric field components of the radiation field
Ey = |Ele™" and E, = |E,|e”", these Stokes vector components are (§ = €;—e¢s):

I, = E/E;

I, = EE

U = 2|E||E,| cosd

V' = 2|E/||E,|sino. (1)



Theory of Vector (Polarized) Radiative Transfer (2)
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Figure 1: Illustration of the two transverse components of Rayleigh-scattered light. () and O are
the incident and scattered propagation vectors, respectively. II' and Hm are the induced dipole
moments for incident electric fields that are linearly polarized in the directions perpendicular to,

and parallel with, the scattering plane (shown as the white rectangle), respectively. I, and I are
the corresponding scattered radiances in direction () associated with the induced dipoles. The
plane defined by II' and Hm as well as by I, and I| (both shown as shaded) are normal to the
scattering plane.



Theory of Vector (Polarized) Radiative Transfer (3)

The connection between this Stokes vector representation,

I=[I, 1., U, V], and the more commonly used representation
Is = [1,Q, U, V]! is simply given by:

I = DI (2)
1 1 00

1 =100

D= 0 0 10 (3)
00 01

The scattered transverse electric field [Ey, E,]! can be obtained in terms of the
incident field [Ey, E,o]! by a linear transformation:

() -a(5)

where A is a 2 X 2 matrix — the amplitude scattering matrix.
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Theory of Vector (Polarized) Radiative Transfer (4)

The corresponding linear transformation connecting:

e the incident and scattered Stokes vectors in the scattering plane is called the
Mueller matriz (for a single scattering event).

For scattering by a small volume containing an ensemble of particles:

e the ensemble-averaged Mueller matriz is referred to as the Stokes scattering
matriz Fg(©). Here O is the scattering angle given by (u = cos 6):

cos© = cosfcos b +sinfsind cos(d — @) = ur' + /1 — u2\/1 — u? cos(¢) — @)

where (0, ¢’) are the polar and azimuthal angles prior to scattering, and (6, ¢)
those after scattering. Finally, when transforming from the scattering plane to
local meridian planes of reference:

e the corresponding matrix is referred to as the scattering phase matriz
Ms(u', @', u, @), related to Fg(©) through:

Ms(u/, ¢, u, 6) = Lir — i) Fs(O)L(—iy) (4)

where L is a rotation matrix used to rotate the reference planes.
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Theory of Vector (Polarized) Radiative Transfer (5)

>~y

Coordinate system for scattering by a volume element at O. The points C, A,
and B are located on the unit sphere. The incident light beam with Stokes vector
I¥¢ is in direction AO(6, ¢) with unit vector €', and the scattered Stokes vector

I&* is in direction OB(6, ¢) with unit vector €2.
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Theory of Vector (Polarized) Radiative Transfer (6)

Stokes scattering matrix — spherical particles

For homogeneous spherical particles the amplitude scattering matrix A is diag-
onal, and the Stokes scattering matrix in the Stokes vector representation (Eq. 2)
is of the following form:

ay bl 0 0
o b1 ai 0 0

FS(G) B 0 0 as b2 (5)
0 O —bg as

where each of the four independent components a1(0), a3(©),b1(0),by(O) is a
function of the scattering angle ©, given by:

cos © = cos f cos 6’ + sin 6 sin ' cos Ag. (6)

A¢p = ¢ — ¢’ is the difference in azimuth between the direction of incidence (6', ¢')
and scattering (6, ¢).
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Theory of Vector (Polarized) Radiative Transfer (7)

Generalization to nonspherical particles

To include scattering by nonspherical particles, we may adopt a Stokes scattering
matrix of the form:

ai b1 0 0
o bl a9 0 0

FS(G) B 0 0 as bQ . <7)
0 0 —bQ a4

This scattering matrix with six independent elements is valid if any of the fol-
lowing assumptions is satisfied:

1. each particle in the ensemble has a plane of symmetry (e.g. homogeneous spheroids, which include homo-

geneous spheres), and the particles are randomly oriented; or
2. the ensemble contains particles and their mirror particles in equal number and in random orientation; or

3. the particles are much smaller than the wavelength of light (Rayleigh limit).

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP -* April 2017

11



Theory of Vector (Polarized) Radiative Transfer (8)

The a1 = a1(©) component of the Stokes scattering matrix satisfies:

1 [l
5/ a1(0)d(cos ) = 1 — normalization. (8)
~1

In the scalar case this component is called:
e the scattering phase function:
p(©) = p(cosB) = a1(O)
and it is the only one that matters if polarization effects are ignored.

The scattering phase matrix Mg(©) derived from Fg(©) pertains to the Stokes
vector representation Is = [I,Q,U, V]’ which is related to I = [I,, I, U, V]!
through Ig = DI, where D is given by Eq. (3). The corresponding scattering phase
matrix is related to Mg by:

M = D 'MD

as explained in some detail below.
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Expansion in Generalized Spherical Functions (1)

The elements of Fg(©) in Eq. 7 can be expanded in generalized spherical functions
(GSFs). To obtain the Fourier components of the scattering phase matrix from
the expansion coefficients of the Stokes scattering matrix, we may use an eflicient

method developed by Siewert (1981, 1982), in which

e the expansion coeflicients of the Stokes scattering matrix in the basis of GSF's
are directly transformed into the Fourier components of the scattering phase
matrix.

An advantage of this method is that

e the expressions for the Fourier components in terms of the GSF's are purely
analytical.

We start by expanding the scattering phase matrix in a Fourier series as follows:

2M—1

Mo ') = Y Ml wcosm(d' - 0

m=0

+ M (7,1, u) sinm(¢’ — @) } (9)
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Expansion in Generalized Spherical Functions (2)

Now use addition theorem for GSF's to express the Fourier expansion coeflicients
directly in terms of the expansion coefficients of the Stokes scattering matrix:

M (7, o' u) = A™ (1,4, u) + DA™ (1, ,u)D (10)

M (7 4 u) = A™(7, o/, u)D — DA™(7, v/, u) (11)
where D = diag{1,1,—1, —1}. The matrix A™ (7, , u) is given by:

2N-1

!, w) Z P! (u P! (W), (12)

The elements of A*(7) can be expressed in terms of so-called “Greek” constants:

oé 5§ 0 0
Ay = | o2 00 (13)

0 0 a3 Dy
0 0 —p5 aj
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Expansion in Generalized Spherical Functions (3)

The elements of A*(7) are the expansion coefficients of the elements of the Stokes
scattering matrix in generalized functions. Thus (supressing the T-dependence):

2N-1

a1(©) = Za{PéO(cos@) (14)

=0
2N-1

a2(0) +a3(0) = Y (ah+ af)Pyy(cos O) (15)

(=2
2N—-1

a3(0) —a3(0) = Y (a5 —a5)P, _,(cos©) (16)
(=2

a1(©) = ) ajPj,(cosO) (17)
(=0
2N—1

bi(0) = ) BiPys(cos©) (18)
(=2

(@) = 3 BiPLy(cos®) (19)

(=2

The matrix P! (u) in Eq. (12): Am(r, o/ u) = S22 PL (u)Al(r)P!, (/) is defined as:
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Expansion in Generalized Spherical Functions (4)

Pl ou) 0 0 0
0 P! (u) PL_(u) O
14 _ m,+ m,
Pl =0 P ) L) o (20)
0 0 0 Plolu)
where
1
Py +(u) = 5 [Py o) & P, o(u)] (21)

The functions P!, o(u) and P}, ,5(u) are the generalized spherical functions,
Again, in the scalar case we need only the a;(©) component of the Stokes scattering
matrix Fg(©), and in accordance with Eq. 8, we have:

a1(0) = z—: ozf(r)PO{O(cos ©) = p(1,c0s0) = z—:(% + 1)ge(7) Py(cos ©). (22)
(=0 (=0

Thus, we have Py (cos ©) = Py(cos ©), where Py(cos ©) is the Legendre polynomial
of degree ¢, and (1) = (20 + 1)gy(7).
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Expansion in Generalized Spherical Functions (5)

For completeness we should note that:

e the expansion coefficients given above are for the scattering phase matrix Mg
that relates the incident and scattered Stokes vectors in the representation Ig =
[1,Q,U, V]!, while it is sometimes convenient

e to use the representation I = [I,, I, U, V]!,
The connection between these two representations is simply
Is = DI
where D is given by Eq. (3), which implies that:

e the matrix M in the Stokes vector representation I = [I, I,., U, V]! is related to
the matrix Mg in the Stokes vector representation Is = [I, Q, U, V]! as follows:

M = D 'M¢D.

Note that the rotations of the reference plane (see Eq. 4) are implicitly accounted
for in the expansion method.
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Examples of Scattering Phase Functions

The action of scattering particles (including molecules) on the radiance and the
state of polarization of an incident radiation field can be represented as a linear
operator, called

e The scattering phase matrix.

e The scattering phase matrix is a 4 X 4 matrix that connects the Stokes vector
of the incident radiation to the scattered radiation.

e The elements of the scattering phase matrix depend upon the optical properties
of the particles.

e The radiance of light, i.e. the first component I of the Stokes vector Ig =
[1,Q,U, V]!, conveys information about the energy carried by the light field.

e For this purpose we need only the a; element of the Stokes scattering matrix,
which is usually referred to as the scattering phase function.
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Examples of Scattering Phase Functions

In many applications like:

e Heating/cooling of the medium, photodissociation of molecules, and biological
dose rates

it is often permissible to ignore polarization effects. The reason is that:

e The error incurred by doing so is very small compared to errors caused by
uncertainties in the input parameters to the computation, which determine the
inherent optical properties of the medium.

We may therefore limit our attention to the scattering phase function if our
interest lies primarily in energy transfer, although:

e In certain remote sensing applications, the state of polarization
carries additional information that may be absolutely necessary.
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Rayleigh Scattering Phase Function (1)

The elastic scattering of light by small particles or molecules, called Rayleigh
scattering, closely follows that of an induced dipolar oscillator:

e The incident wave induces a motion of the bound electrons, which is in phase
with the wave.

e The much more massive positively charged nucleus provides a ‘restoring force’
for the electronic motion.

e For a particle or molecule much smaller than the wavelength of light, all parts
of the particle are subjected to the same value of the electric field.

e The oscillating charge radiates secondary waves. Thus: the particle extracts
energy from the wave and re-radiates it in all directions.

[f we assume that the incident radiation is unpolarized, then the normalized scat-
tering phase function is given by (see §3.4.1)

o, L f(l + f cos? O), (23)

and p is the depolarization factor attributed to the

PRay(COSO) =

where the parameter f = 1 +p,
anisotropy of the scatterer.
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Rayleigh Scattering Phase Function (2)

o [ixpanding pray(cos©) in terms of the incident and scattered polar and az-

imuthal angles, we find [cos © = ¢os (9,.0089,+ sin g QV_,' cos(¢' — ¢)):
(1—u )1/2( /2)1/2

3
pRay(uly ¢/7 u, ¢>

T 1 fu? o+ (1= u?)(1 - w?) cos(¢ — )
+2 fu (1 — Y21 — i) Y2 cos(¢ — ¢)} | (24)

e The azimuthally averaged scattering phase function is found to be:

1 21
pRay<u/7 u) — % / d¢,pRay<u,7 ¢/; u, ¢)
0

= 5 : T 7 [1 + fuu? §<1 — 4?1 —u2)] (25)

where we have used: f027T dx cos® x = 1/2; fOQW dz cosz = 0.
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Moments of Phase Functions (1)

e We have (see Eq. 6.21):
2N—1

p(T,c0s0) == Z (20 + 1) xo(7) Py(cos ©) (26)
(=0
where Py is the £'" Legendre polynomial, and x,(7) is given by:

Xe(T) = %/1 d(cos ©) Py(cos ©)p(T, cos O). (27)

e Further, we have (see Eq. 6.24):

1! 1
5/1 duPy(u)Py(u) = ST 15gk < orthogonality (28)

l
Py(cos ©) = Py(u)Py(u) +2 ) A (')A} (1) cosm(¢ — o) (29)

m=1

AP (u) = \/ L= m) pny

(04 m)!
where Eq. 29 = Addition theorem, and P;"(u) = associated Legendre polynomial.
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Moments of Phase Functions (2)

Application of azimuthal averaging, i.e. % 027 d¢ - - -, to both sides of (26) gives

1 o 2N—-1
p(r,u',u) = %/ dg p(r,cos0) & Y (20 + 1)xe(T)P(u)P(u')  (30)
0 [=0
where we have made use of Eq. 29.
e From Eq. 30 it follows that:
1 1 2N—-1 1 1
5/ p(ru/ u) Po(u)du’ =~ ) (20 + 1)X€(T>P£(U>§/ Py(u') P(uw')du”  (31)
-1 (=0 -1
which by the use of Eq. 28 leads to
(1) = s s [ vl )P 32
= — T, u,u)Py(u)du'.
X\T Pg(U) 9 _1p y Uy 14

Thus:

e To calculate the moments we can use the azimuthally-averaged
phase function.
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Moments of Rayleigh Phase Function

e [ixpressing Eq. 25 in terms of Legendre polynomials, one may show that:
2f 2f
3+ 34 f

e Using Eqs. 32 and 33, we obtain:
- Py(u) 1 2f Pyu)

PRay(t/,u) =1+ Po(u)Po(u') = Py(u)Py(u') + Poy(u)Po(u').  (33)

T R ™ 55 f P
Thus, we get:
xo=1 x1=0,
and
nglx 2/ = 2/ — i:O.l if =1,
5 3+ f 53+ f) 10
and

x¢ =0 for £ > 2.

We note that the asymmetry factor for the Rayleigh scattering phase function is
g = x1 = 0 because of the orthogonality of the Legendre polynomials.”

-Using symmetry arguments, one can prove that g = 0 for any even function of cos ©, that is, for any term in
a scattering phase function that is symmetric around cos © = 90°.
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The Mie-Debye Scattering Phase Function (1)

Scattering in planetary media is caused by molecules and particulate matter:

e [f the size of the scatterer is small compared to the wavelength as is the case for
scattering of solar radiation by molecules, then the scattering phase function is
only mildly anisotropic.

e Such a scattering phase function poses no special problem when solving the
radiative transfer equation.

e On the other hand, scattering of solar radiation by larger particles is character-
ized by strong forward scattering with a so-called diffraction peak in the forward
direction.

To understand why these larger dielectric particles have a preference for scattering
in the forward direction, we may:

e consider a simplified model of a scattering particle which is not small compared
with the wavelength.
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The Mie-Debye Scattering Phase Function (2)

e Recall first that: a Rayleigh scatterer can be understood in terms of
the emission induced from a single excited dipole.

e [lven a very small particle might still be composed of many thousands of ele-
mentary dipoles, BUT:

—the emission from this array of dipoles all add together coherently if the
wavelength of the incoming radiation is large compared to the size of the
particle.

e WHY?" Because all the oscillators are in phase, since they are subjected to es-
sentially the same electric field. Thus: the radiated pattern is exactly
the same as that of a single dipole.

e [f the particle size is comparable to, or larger than, the wavelength, all parts of
the dipole are no longer in phase.
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The Mie-Debye Scattering Phase Function (3)

In this case one finds that:

e The scattered wavelets in the forward direction are always in
phase;

e those emitted in the backward direction usually suffer some mutual cancellation.
Wavelets emitted in other directions will also be partially interferring.

e This very simplified picture explains the predominance of the forward “diffrac-
tion” peak in large-particle scattering.

e The Mie-Debye theory has been refined and developed by hundreds of investi-
cators. Although the mathematical foundation is complete, its numerical imple-
mentation has proven to be very challenging.

e Progress in developing fast and accurate computer algorithms continues to the
present day.
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Figure 2. Illustration of phase functions occurring in planetary media. Shown are phase functions
for: molecular (Rayleigh) scattering, and aerosol particles (upper left); hydrosols (upper right);
cloud droplets (lower left); and ice crystals (lower right).
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The Henyey-Greenstein Scattering Phase Function (1)

A one-parameter phase function first proposed by the astronomers Henyey and
Greenstein in 1941 is

1 — ¢?
1+ g% —2gcos©)3/2
e This function has no physical basis, and should be considered as a one-parameter
analytic fit to an actual phase function.

puc(cosO) = ; (34)

e [t should not be used except when the fit is reasonably good. However:

e as far as the radiative transfer is concerned, the requirement of ‘reasonableness’
is not very strict, because the multiple scattering process tends to smooth out
irregularities present in the more accurate function.

e A remarkable feature of the HG function is the fact that the Legendre-
polynomial coefficients are simply:

xi=(9)"
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The Henyey-Greenstein Scattering Phase Function (2)

This feature explains its popularity: only the first moment of the phase function,
i.e., the asymmetry factor g must be specified. Thus, the Legendre polynomaial
expansion of the H-G phase function is given simply by:

prc(cos©) = 1+ 3gcos© + 5g*Pa(cos O) 4 - - - = 2(28 +1)¢" Py(cos ©).
(=0
Also, the Henyey-Greenstein phase function yields:
complete forward scattering for g = 1,
isotropic scattering for g = 0, and
complete backward scattering for g = —1.
The linear combination:

p(cos ©) = bpug(g, cos©) + (1 — b)pug(g’, cos O)

can be used to simulate a phase function with both a forward and a backward
scattering component (¢ > 0 and ¢’ < 0). Here, 0 < b < 1 and g and ¢ are
usually different.
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The Fournier—Forand Scattering Phase Function (1)

Measurements have shown that the particle size distribution (PSD) in oceanic
water can be accurately described by a power law (Junge distribution)

n(r) = C(&,r1,m9)/r* where
e n(7) is the number of particles per unit volume per unit bin width,

e 1 |um] is the radius of the assumed spherical particles, and r; and ry denote the
smallest and largest particle size, respectively.

e The normalization constant C(&,ry,75) [em™ - um®~! is called the Junge co-
efficient, and the PSD slope & typically varies between 3.0 and 5.0.

Fournier and Forand derived an analytic expression for the scattering phase function
of oceanic water (the FF scattering phase function) given by

pe(©) = g {1 = 8) = (1= 8 + 0001 = 8") = v(1 - 0}

1 — 1VSO 2
+ 3cos” © — 1], 35
1671'(5180 — 1>61VSO[ ] ( )

where v = 0.5(3 — £) and d1590 = 6(O = 180°) = 3(m4_1)2.
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The Fournier—Forand Scattering Phase Function (2)

The parameter

u*(©)
3(my — 1)%
e Note that in addition to the scattering angle, ©, the FF scattering phase func-

tion depends also on the real part of the refractive index of the particle relative
to water, m,, and the slope parameter, &, characterizing the PSD.

0 =6(0) = u(0O) = 2sin(0/2).

Setting © = — cos©, and integrating the FF scattering phase function over the
backward hemisphere, one obtains the backscattering ratio (Eq. 6.23)

1 [T 1!

brr = —/ prr(cos ©) sin ©dO = —/ prr(—x) dx
2 /2 2 0
1 — &6t —0.5(1 — &
_1_ 90 (V 90)’ (36)
(1 = d90)d50

where dgg = 0(O = 90°) = m sin?(45°) = m Equation 36 can be solved

for v in terms of bpp and dgg, implying that v and thus & can be determined if m,
and bpp are specified. Hence, ppp(©) can be evaluated from a measured value of
brp 1f m, 1s known.
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The Petzold Scattering Phase Function

Scattering phase functions measured by Petzold (1972) have been widely used by
ocean optics researchers. They are discussed by Mobley (1994), who tabulated
scattering phase functions for clear ocean, coastal ocean, and turbid harbor waters.

e An “average” Petzold scattering phase function, which has an asymmetry
factor g = 0.9223 and a backscattering ratio bpp = 0.019, is shown in Fig. 3
together with the Rayleigh scattering phase function and the FF scattering
phase function.

e For the FF scattering phase function, the power law slope was set to & = 3.38,
but results for two different values of the real part of the refractive index
are shown: m, = 1.06 and m, = 1.18. These values yield an asymmetry
factor ¢ = 0.9693 and a backscattering ratio bpr = 0.0067 for m, = 1.06 and
g = 0.9160 and bpp = 0.022 for m, = 1.18.

e Noting the similarity between the FF' scattering phase function for m, = 1.18
and the average Petzold scattering phase function, we conclude that

e the average Petzold scattering phase function is more suitable for
mineral-dominated waters than for pigment-dominated waters.
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Scaling Transformations Useful for Anisotropic
Scattering (1)

The solution of the radiative transfer equation for strongly forward-peaked scat-
tering is notoriously difficult:

e An accurate expansion of the scattering phase function may require several hun-
dred terms for a typical cloud or hydrosol scattering phase function.

As we shall see, most methods of solving the RTE start by approximating the
integral term by a finite sum:

e The number of terms in this sum is usually of the same order (2N) as the
number of terms necessary to get a good Legendre polynomial representation
of the scattering phase function.

e This approach may lead to such a large system of equations that the solution
becomes impractical even on modern computers.
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Scaling Transformations Useful for Anisotropic
Scattering (2)

To circumvent this difficulty with strongly forward-peaked scattering:

e So-called scaling transformations have been invented.

e The motivation is to transform a radiative transfer equation with a strongly
forward-peaked scattering phase function into a more tractable problem with a
scattering phase function that is much less anisotropic.

The pronounced forward scattering by cloud droplets becomes even more extreme
if we plot the scattering phase function as a function of the cosine of the scattering
angle (instead of the scattering angle):

e The forward scattering peak takes on the resemblance of a Dirac d-function when
plotted versus cosine of the scattering angle.

e This behavior suggests that it would be useful to treat photons scattered within
the sharp forward peak as unscattered, and truncate this peak from the scatter-
ing phase function.
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Scaling Transformations Useful for Anisotropic
Scattering (3)

e We start by assuming that the forward scattering peak can be represented by
a Dirac o-function, while the remainder of the scattering phase function is ex-
panded in Legendre polynomials as usual. Thus, we set:

M1
Ps_m(cos©O) = 2f0(1 — cosO) + (1 — f) Z(% + 1)x¢Py(cos O)
=0
= ps—m(v', ¢ u, @) = 4r fo(u' —u)d(¢" — @)
oM —1
+ (1= f) Z (20 + 1 {ZAE u) cosm(¢ — ¢)}
=0

(37)
e (1 —cosO) =2md(u — u)d(¢' — ¢), and

o f (0 < f < 1)is a dimensionless parameter to be determined by a fit to an
actual scattering phase function.
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Scaling Transformations Useful for Anisotropic
Scattering (4)

We shall refer to this transformation as the é —M method.
Note that:

o [f f = (0 we retain the usual Legendre polynomial expansion and x; = xy.

For simplicity we consider the azimuthally-averaged radiative transfer equation
below.

e We first find a general expression for the azimuthally-averaged scaled scattering

phase function [20(1 — cos ©) = 4wd(u' — u)d(¢" — @)):
1 27
ps—m(u',u) = 2—/ d¢o p(cos O)
T Jo
M—1

= 2f6(u — u) (20 + 1)xoPo(u')Py(u).  (38)
ezo
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The J-isotropic approximation (1)

Remove forward-scattering peak, and approximate remainder of the scattering
phase function (PF) by a constant, keeping only the ¢ = 0 term in Eq. 38 (isotropic
scattering). Then, the ¢-averaged PF becomes:

1 21
ol = o [ dopleos®) =26 ~w + (1= ). (39
0
Use of this scattering phase function in the ¢-averaged RTE (Eq. 6.33) yields:
dI !
U S; 4 _ I(T,u) —% _1du’p(u’,u)l(7, u')

= I(1,u) —wfI(r,u) — w(12— f) /_ du'I(T,u’) (40)

1

dI (7 o [
U (c; w _ I(7,u) — 5/16111,’](%,11,’) (41)
di = (1 —wf)dr, &= % - Q;ﬂ (42)
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The /-isotropic approximation (2)

For simplicity we have ignored the source term Q(7,u) = S*(7,u)+ (1 —w)B(7).
Because we have divided by 1 — wf this term simply becomes:

N

Finally, to complete the scaling, we ask:

e How do we specify f, the strength of the forward scattering peak?

e There is no unique choice, but it should depend in some simple way on the
asymmetry factor, g.

Since y1 = ¢ is the first-moment of the unscaled scattering phase function: equate
the first moment of paee (the accurate scattering phase function) to the first moment
of the scaled scattering phase function p:

11!

1 = — du'v'ps_iso(u', u) = f. 43
This result follows from substitution of Eq. 39 in Eq. 43 and carrying out the
integration. Our matching requirement then yields: f = x1 = g.

K. Stamnes, G. E. Thomas, and J. J. Stamnes * STS-RT_ATM_OCN-CUP - April 2017

40



The J-isotropic approximation (3)

Note that:

e The d-isotropic approximation is sometimes referred to as the transport ap-
proximation.

e Use of it in the RTE leads to a RTE with isotropic scattering, but with a scaled
optical depth
dr = (1 — wg)dr

and a scaled single-scattering albedo

w=(1—-g)w/(l—wg).

e Thus, the RTE with strongly anisotropic scattering is reduced to
a RTE with isotropic scattering which is much easier to handle
numerically.

e These particular scaling transformations of the optical depth and the single-
scattering albedo are sometimes referred to as similarity relations.
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The 0-TTA approximation

A better approximation results from representing the remainder of the PF by two
terms as follows (setting M = 1 in Eq. 38):

1
ﬁ&—TTA(U/; u) — 2f5(u’ — ’LL) + (1 — f) Z(2£ + 1)Xng(u’)Pg(u). (44)
(=0
Substitution of this PF into the azimuthally-averaged RTE yields:
N ~ 1 1
dl
u E; % _ I u) %;(zz + 1) Po(u) /_ PG (45)

where d7 and @ are defined in Eq. 42.
Again, by matching moments of the approximate and accurate scattering phase
functions we find:

xi—Jf 99—/
1—f

1_f7 f:XQ

X1=0=
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Remarks on low-order scaling approximations (1)

We may now ask:

e What (if anything) has been gained by the scaling?

e [irst, we note that the TTA makes the replacement x, = 0 for ¢ > 2. Thus,
all the higher order moments, which may contribute substantially to the
phase function if it is strongly anisotropic, have been set to zero.

e When we discuss the general case (arbitrary M) below, we will find that the
0—TTA approximation is equivalent to setting x, = x» for £ > 2.

e Thus, for strongly anisotropic phase functions, x3 = s, which demonstrates the
advantage of the TTA scaling transformation, i.e.,

—> the third moment and higher moments are set equal to the
second moment, which is generally expected to be better than
setting them to zero.
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Figure 4: Illustration of actual and /—M scaled scattering phase functions of aerosol particles, cloud
droplets, ice crystals, and hydrosols.
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Remarks on low-order scaling approximations (2)

The two-term approximation is commonly used in connection with the so-called
two-stream and Eddington approximations to be discussed in Chapter 7:

e In these approximations the RTE is replaced by two coupled, first order differ-
ential equations which are easily solved analytically.

e In the two-stream case, the two coupled equations are obtained by replacing the
integral (multiple-scattering term) by just two (quadrature) terms or “streams,”

ie., we set fl_l du I(t,u) = IT(1)+ 1 (7).

e [n the Eddington case, we expand the radiance in Legendre polynomials
keeping only the first two terms, i.e., we set I(7,u) = Iy(7) + uly(7). Insertion
into the RTE and use of the first two moments lead to two coupled equations.

e Note that, as a rule of thumb, it is customary to keep the number
of terms in the expansion of the scattering phase function equal
to the number of quadrature terms (or expansion terms for the
radiance).
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Remarks on low-order scaling approximations (3)

e Hence, a two-term expansion of the scattering phase function leads naturally to
the two-stream (or Eddington) approximation.

e However, it is possible to use the “exact” phase function even in the two-stream
approximation. The “rule of thumb” merely implies that there may not
be much to gain from using a very accurate representation of the scattering
phase function if the approximation for solving the RTE is much cruder.

e Finally, if we use the HG scattering phase function with the §-TTA, then f = ¢,
and therefore g = ¢g/(14+¢g): = 0< g < 0.5 when 0 < g < 1.

e Thus, the 6—TTA applies to a range of g (¢ < 0.5) for which the TTA has been
shown to be reasonably accurate.

e However, we must require g = x1 < 1/3 to guarantee that the scaled PF [i.e.
Ps—rralcos©) = (1 — f)(1 + 3g cos O)] is positive for all scattering angles:

e we may obtain unphysical results (e.g. negative reflectance) un-
less g < 1/3 or g < 1/2.
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The )—M approximation: Arbitrary M (1)

We generalize the method to include an arbitrary number of terms for the re-
mainder of the PF in Eq. 37. Substituting Eq. 38 into Eq. 40, we find
M—-1 1

ud]i;_’ 4 _ I(7,u) — % ;(2[ + 1)x1P(u) /_1 du'P(u)I(7,u')  (46)

where d7 and @ are defined in Eq. 42. As before:

e We set the expansion coefficients y, equal to the moments, xy, of the accurate
(unscaled) scattering phase function by equating moments:

1

1
Xo = 5/ d(cos O)pace(cos ©) Py(cos ©)
R
Xe = 5/ d(cos O)ps_ni(cos ©) Py(cos O)
~1
where p,.. denotes the accurate value for p. This procedure leads to:
. oXe—f

xe=f+0=fxe o X L
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The )—M approximation: Arbitrary M (2)

Note that:

o [f we set f =0, then d7 = dr, w = w, and xy = xs: the scaled equation
reduces to the unscaled one as it should.

e We determine f by setting f = xs (truncation), which is clearly a generalization
of the procedure used for M = 1.

e Setting y, = 0 for £ > M is equivalent to replacing y, with s for £ > M:
While the ordinary Legendre polynomial expansion of order M
sets vy = 0 for ¢/ > M, the 0—M method makes the replacement
x¢ = xum for £ > M.

e Finally we note that the error in the scattering phase function representation
incurred by using the 0—M method is:

o0

Pace(€08©) — Psni(cos©) = Y (20 + 1)(x¢ — xa1)Pilcos ©).

(=M+1
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Example: The o-Henyey-Greenstein approximation

(5—HG)

e [n this case we have p(cos©®) = 2fd(1 — cosO) + (1 — f)puc(cosO) where
prg(cos ©) = 372 (20 + 1)g" Py(cos ©).

e By matching the first two moments of this scattering phase function (x; and
X2) to the actual scattering phase function, we find:

xi=f+0=flg=x1

Xe=f+010—=1)g =x
Solving for g and f we find:

X1 T X2, f— X2 — X1°
1 —2x1+ X2
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Mathematical and Physical Meaning of the Scaling (1)

An essential feature of the scaling is:

e To turn the unscaled problem into one in which the optical depth is reduced
(d7 < dr), while the absorption is artificially increased (& < @).!

e [n addition, the scattering phase function appears considerably less anisotropic.

e BUT the new (scaled) RTE is of identical mathematical form to the old one:
whatever “tools” are available for solving the unscaled equation can be applied
to the scaled equation.

e The scaling simply makes the problem more tractable numerically because the
scattering phase function of the new RTE is much less anisotropic due to the
truncation of the forward scattering peak.

e Hence, we expect that many fewer terms are needed to obtain an adequate
Legendre polynomial expansion of the scattering phase function: the scaled
equation is easier to solve by numerical means.
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ilt should be noted that this decrease in the single-scattering albedo is due to a decrease in the scatter-
ing coefficient, which leads to an apparent increase in absorption, although the absorption coefficient is left
unchanged.
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Mathematical and Physical Meaning of the Scaling (2)

Thus:

e The 0—M method is not a method of solution, but it makes the RTE easier to
solve by available analytical and /or numerical techniques.

From the physical point of view 0—M relies on the following premise:

e Those beams that are scattered through the small angles con-
tained within the forward peak are not scattered at all. These
beams are in fact “added back” to the original radiation field, which explains
why the scaled optical depth 7 is smaller than the original 7.

e The effective asymmetry factor is also less than the original (unscaled) value,
since the angular distribution of those beams scattered outside the forward peak
is (by definition) less extreme.
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What about Energy Conservation?

Consider the transmitted irradiance in the scaled problem:
F(7%) = F(7*) + po e /0
where the ‘d’ subscript denotes the diffuse irradiance.

e Since 7 < 77, this means that the scaled directly-transmitted solar irradiance
is greater than it is in the unscaled problem.

Because of the truncation of the scattering phase function:

e The “direct” irradiance actually contains some scattered beams of radiation
travelling in very nearly the same direction as the incident beam. For example:

e the Sun’s rays shining through a hazy or dusty atmosphere are spread out into
a very bright blurry disk, somewhat greater than the Sun’s disk itself.

e This bright blurry disk is called the Sun’s aureole, and in fact has been used
as a means of inferring the mean particle size in tropospheric haze.
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What about Energy Conservation?

e A substantial fraction of the solar aureole would be included in the 6 —M direct
irradiance.

e The scattered irradiance in this approximation would apply to those beams
scattered largely outside the aureole.

Finally, we note that since the total downward irradiance must be the same
whether we use scaling or not, i.e., Fi (7) = Fi.(7), or

Fy(7) 4 poFoe™ ™10 = Fr (1) + poFoe /Mo

we can always ‘recover” the unscaled downward diffuse irradiance by solving for
Fq (7): A

Fy (7) = Fy (7) — poF(e "/ — ¢~/ (47)
where all the quantities on the right are known.

e No such “correction” for the upward irradiance is necessary:.
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The /-fit Method: Weighted SVD LS fitting (1)

The ordinary Legendre polynomial expansion of the scattering phase function is:

M-1
p(cosO) ~ 2(26 + 1)x¢Py(cos ©) Z £ Py(cos O) &= (204 1)xy
(=0
9 |
§r =

20+ 1
and pacc(cos O) is the actual scattering phase function. To remove the forward peak

0—M replaces & by (& — f)/(1 = f):

M-1
(& — f)
ps_m(cos©) =
2 (1=
The purpose of the 0—fit Method is to compute new expansion coefficients ¢, which
replace the &, and which are constructed to minimize the error:

Py(cos O)pace(cos ©)d(cos O)
-1

Pi(cos©),  f =X

N

__ Z wi( p'(cos @@>> B 1)2 P(cos ©;) Z cePy(cos ©;)

cos O,
i pCLC( (] /—0

where N is the number of terms required to achieve a desired accuracy.
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The /-fit Method: Weighted SVD LS fitting (2)

Here ©; is the scattering angle, w; is the weight associated with angle ©;, and
Py(cos ©;) the corresponding Legendre polynomial. The expansion coefficients ¢,
are determined by solving the least-squares fitting problem

88/8@;:0, (k:O,...,N):

Pi(cos ©;) N coPy(cos ©;)
w; — 1 = 0.
p pacc<COS ®z> '—0 pacc<COS @z>

Truncate the PF by setting the weights for the forward-scattering angles (e.g.,
© < 3°) to zero, set truncation factor to f = 1 — ¢y, and compute normalized
scattering phase tunction:

1

ﬁp’(cos O,).

Ps—fit(cos ©;) =

Advantages of 0—fit method:
e better estimation of PF at large scattering angles (where PF is small)

e forward-peak removed by setting w; =~ 0 at small angles ©,.
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The /-fit Method: Weighted SVD LS fitting (3)

Implementation

L.

evaluate p,..(cos©) at 361 scattering angles ©; (each half degree; use interpola-
tion as need be);

. select forward peak removal angle ©. and set w; = 0 for ©; < ©,;

-select an initial number of terms N, and compute all required Legendre polyno-

mials Py(cos©) for £ < N;

. derive coefficients ¢y by solving set of linear equations de/dc, = 0 (using SVD);

5. if € larger than desired, increase N and repeat previous step until € is sufficiently

small;

6. determine scaling factor f = 1 — ¢g and renormalize PF (divide all ¢; by ¢);

. remove forward peak of PF by adjusting optical depth:

dr = (1 — wf)dr
and single-scattering albedo:

w=(1-flw/(1-wf)
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