
Appendix E

A Primer on Absorption and Scattering Opacity

One of the two fundamental properties of light-matter interaction is ab-
sorption, wherein light energy disappears, and a like amount of energy is
converted to heat. The other property is scattering, in which the path of the
light ray is merely deflected by the matter. We might think that specular
reflection from a polished surface is a third type, but this phenomenon can
be shown to be a consequence of scattering. Thus two (and only two fates)
await a photon when it su↵ers an encounter with matter. This is true re-
gardless of the form the matter takes: whether in a solid (land surfaces), in
condensed form (the ocean) or whether it is composed of gaseous molecules
or suspended particles (atmospheres). This book concerns itself with the
dual influences of absorption and scattering on radiation fields in planetary
media.

Consider first the property of absorption, and imagine a medium1 in which
only absorption is important for the light field. Although it is inherently
easier to understand than scattering, it is di�cult to find many commonplace
examples in which only absorption is present. Carbon soot is perhaps the
best example. An object covered with soot approaches the ideal blackbody
behavior, described in elementary thermodynamic textbooks. However, since
we are interested in atmospheres and oceans in this book, let us first consider
a medium consisting of finely-dispersed soot particles.

Imagine sunlight to fall on such a medium, and consider the attenuation
of the light as it passes through this soot cloud. The ability of the medium
to attenuate the light will depend upon three quantities: (1) the number
per unit volume n of the soot particles; (2) the particle sizes, r; and (3) the
distance along the light ray, s. For simplicity we assume the particles are all

1 We define a ‘medium’ in this context as the transparent matter in which the particles are
imbedded. However, in the book we often use the term in a more general sense, as for
example when we refer to a liquid body as an “aqueous medium”.
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the same size, and the cloud has uniform spatial density. The relevant atten-
uation quantity depends upon the projected cross-sectional area of the soot
cloud in the direction of the light ray, n⇡r2s. This quantity is a pure number,
and is the absorption opacity, or optical depth, ⌧a. (Here we have assumed
that the particles act as simple geometric light obstacles, which applies for
sizes much larger than the sensing wavelength.) Another way to think of ⌧a
is the projected shadow area, per unit area, of all the particles along a ray
path. If we ignore mutual shadowing e↵ects (which is usually permissible)
a moments thought reveals that the actual distribution of particles along
the light ray is unimportant, only the product ns. Thus the relevant quan-
tity is the total column number per unit area N , and ⌧ = ⇡r2N . A high
opacity at a particular visible-light frequency ⌫ means that sunlight will be
absorbed high up in the atmosphere, and a small opacity means that it will
penetrate deeply. If ⌧(⌫) << 1, the atmosphere is said to be optically-thin,
or transparent at that frequency, and if ⌧(⌫) >> 1, it is said to be opaque.

It remains to determine the degree to which the light is transmitted,
and this involves a function of ⌧ . It is shown in Chapter 2 that for su�-
ciently small frequency intervals �⌫, this function is the exponential func-
tion exp [�⌧(⌫)]. This familiar relationship is known popularly as Beer’s
Law, but for our own reasons, we call it the Extinction Law. Since absorp-
tion and transmission are opposite sides of the coin, the absorption varies as
1� exp [�⌧(⌫)]. The absorption process leads to a heating of the medium (if
the absorption is molecular excitation, and then quenching, the surrounding
air is heated), in contrast to the scattering process.

Atmospheres also emit their own radiation, as do all bodies whose tem-
peratures are above absolute zero. The solar atmosphere, due to its high
temperature, emits copiously in the visible spectrum, whereas the cooler at-
mospheres of the earth and planets emit most of their energy in the thermal
infrared. The opacity also plays a key role in the ability of media to emit
radiation. This is one of many examples of the principle of detailed balance
which are considered in this book, and is more familiar as Kircho↵ ’s Law,
which says in brief, that an e�cient absorber is an e�cient emitter. To be
more precise, the ability of an atmosphere to emit also depends upon its
opacity per unit length, or per unit volume, and depends upon the local
absorptive properties of the medium.

Scattering processes add complexity to the above situation, in redirecting
and modifying the radiation field without destroying it. Even soot particles
are not “mini-black holes”, but scatter a small amount of light. Otherwise we
would not be able to distinguish soot particle texture or color. If the particles
were non-scattering, the soot cloud would be invisible, except when viewing
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the light beam directly — it would behave like a neutral density filter which
progressively dims the light as we move farther away from the light source.

Now consider the opposite extreme of finely-dispersed water droplets (fog),
which are e�cient scatterers of visible radiation. “Reflection” from a cloud
of these particles causes an incident light beam to be attenuated in a very
similar way to the soot cloud, according to the scattering opacity ⌧s. How-
ever, the light is not destroyed (or at least only a small fraction) but only
deflected from its original path. For example around a fog-enshrouded lam-
post we witness this process as a host of twinkling starlike points of light.
In the original direction of the light, the e↵ect is the same as absorption,
that is, a dimming of the light in proportion to the number of scattering
particles along the path. The opacity is calculated in exactly the same way,
except that the physical process is not a heating of the medium, as in ab-
sorption2. In fact a measurement of the attenuation with an ideal detector
of small acceptance angle in the two cases of an absorbing soot cloud and a
totally-scattering water fog would be exactly the same. This assumes that
they have the same opacity. Furthermore if we were to measure the radiation
in directions away from the light source, the scattering fog would be a source
of secondary ‘emission’. The same measurement for a totally-absorbing soot
cloud would register zero radiation. This secondary light source is due to
scattering of the light into our line of vision, and is the reason why we can
“see” the cloud itself – for that matter, it explains why we are able to view
the world around us. A major complexity in a quantitative description of
the scattered light is the fact that every particle “sees” not only the original
light source, but also the light scattered from its neighbors. This situation
gives rise to higher orders of scattering, referred to as multiple scattering,
and this “di↵usion” of the light tends to produce a more uniform spatial dis-
tribution of brightness. Multiple scattering is one of the important subjects
of this book.

Consider some implications of the scattering and absorption/emission
processes on the earth’s atmosphere and ocean. First, because of the at-
mosphere’s high transparency in the visible spectrum (0.4 � 0.7µm), the
earth’s land and ocean surfaces are subjected to mostly direct solar heating
on cloud-free days. On cloudy, overcast days the light field consists of di↵use
(multiply-scattered) photons. In general, both e↵ects provide the so-called
short-wave radiative forcing of the climate system. At the same time, the

2 Actually, the process of scattering does alter the velocity of the particles through a
momentum exchange with the incident photons, and strictly speaking, this could cause a
heating of the gas. However, these radiation pressure e↵ects are negligible for radiation
energies of concern in this book.
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land and ocean radiate infrared radiation to the atmosphere, and to space
(depending upon the infrared opacity as a function of wavelength). This
gives rise to radiative cooling, i.e. long-wave radiative forcing. The combined
radiative e↵ects, when averaged over the diurnal cycle, lead to a net radia-
tive forcing, which is variable over the earth’s surface. Spatial and temporal
variations in this forcing give rise to weather and climate, which themselves
alter the radiative forcing, in a non-linear interactive system (called feed-
back). Long-term changes in the long-wave forcing, such as carbon dioxide
increases, will alter the atmosphere and ocean in ways which we do not yet
fully understand.

We have used as specific examples, absorption by soot particles and scat-
tering by water droplets, but these same concepts apply to any finely-
dispersed substance (air molecules, air bubbles in the ocean, etc.) which
alters the flow of radiation.

In conclusion, absorption and scattering give rise to attenuation according
to the same basic formula, exp(�⌧). If both processes are present, and this
is always the case in the real world, the net opacity is found to be the sum
of the absorption and scattering opacities, ⌧ = ⌧a + ⌧s. Absorption tends
to destroy the radiation field, and heat the medium. Because of their finite
temperature, the particles also radiate light into all directions, in proportion
to their absorptive properties as a function of frequency. Scattering redirects
an original beam of light into generally all 4⇡ sterradians. Multiple scatter-
ing causes the radiation field to become more uniform (di↵use). These two
processes give rise to shortwave and longwave radiative forcing of climate,
as well as many other atmospheric phenomena. In this book, we will deal
with the “up-front” radiative processes, essential to understanding climate
and climate change.



Appendix F

Elementary Concepts

F.1 Coordinate Systems

Figure 3.2 shows the relationship between the rectangular or Cartesian co-
ordinate system and the spherical-polar coordinate system. Specifically, we
are interested in specifying the coordinates of the unit propagation vector
⌦̂ in both coordinate systems. The spherical-polar system defines ⌦̂ simply
in terms of the two angles, ✓ and �. The rectangular system defines ⌦̂ in
terms of its three projections in the (x, y, z) directions, ⌦x, ⌦y, and ⌦z. The
relationships between these two sets of coordinates are

⌦x = sin ✓ cos�; ⌦y = sin ✓ sin�; ⌦z = cos ✓ (F.1)

where 0  �  2⇡, and 0  ✓  ⇡.

F.2 The Dirac Delta-function

A concept which is useful in the mathematical representation of unidirec-
tional or collimated light is the Dirac �-function. This ‘function’ has the
peculiar property that it is zero for finite values of its argument, and un-
bounded (infinite) when the argument of the �-function is zero, that is

�(x) = 0 (x 6= 0) and �(x) ! 1 (x ! 0). (F.2)

Furthermore, the ‘area’ under the function is unity, that is, it is normalized
Z b

a
dx�(x) = 1 if a and b are of di↵erent sign.

= 0 if a and b are of the same sign. (F.3)

It is possible to define the �-function for a vector argument. If we want to
represent the electric field from a concentrated ‘source’ of unit strength (for
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example, an electron) at the point ~r = ~r0, we write �(~r �~r0). In rectangular
coordinates �(~r � ~r0) can be defined as a product of one-dimensional �-
functions, that is

�(~r � ~r0) = �(x � x0)�(y � y0)�(z � z0). (F.4)

The integral properties analogous to those in Eqs. F.3 are
Z Z Z

d3~r �(~r�~r0) =

Z

dx

Z

dy

Z

dz �(x�x0)�(y�y0)�(z�z0) = 1 (F.5)

when the integration domain includes ~r0. The integral in Eq. F.5 is zero if
the integration domain does not include ~r0.

In spherical polar coordinates we represent a point source as

�(~r � ~r0) = �(cos ✓ � cos ✓0)�(�� �0)�(r � r0). (F.6)

The volume element in spherical coordinates is dV = dAdr = r2dr sin ✓d✓d� =
�r2drd(cos ✓)d�. dA is the element of area normal to ~r. The normalization
property is

Z

dV �(~r � ~r0) =

Z 2⇡

0
d�

Z ⇡

0
d✓ sin ✓

Z r
m

0
r2�(~r � ~r0)dr = 1 (rm > r0)

= 0 (rm < r0). (F.7)

rm is the (arbitrary) radius of a spherical volume centered at the origin.
A very important property applies to the integral of the product of the

�-function with an arbitrary function, say f . For example, if f = f(x, y),
then

Z

dx

Z

dyf(x, y) �(x � x0)�(y � y0) = f(x0, y0). (F.8)

It must be kept in mind that the volume of integration must include the
‘source point’ (x0, yo) of the �-function for Eq. F.8 to apply (otherwise the
result is zero).

The one-dimensional �-function has the units of (length)�1, while �(~r�~r0)
has the units of (length)�3. Other mathematical forms of the �-function in
terms of the solid angle are given in the next section.

F.3 The Solid Angle

The solid angle ! is defined as the ratio of the area A cut out of a spherical
surface (see Fig. F.1) to the square of the radius of the sphere, i.e. ! = A/r2.
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Figure F.1 Definition of the solid angle element d! = sin ✓d✓d�.

The units of ! are steradians [sr]. There are 2⇡ sr in a hemisphere, and 4⇡ sr
in a full sphere. We are usually interested in a small (di↵erential) element
of solid angle, d!. As shown in Fig. F.1. d! is expressed in spherical polar
coordinates as d! = dA/r2. Since dA = r2 sin ✓d✓d�

d! = sin ✓ d✓ d�. (F.9)

The integral of Eq. F.9 over the sphere, that is over 4⇡ steradians, is

Z

4⇡
d! ⌘

Z 2⇡

0
d�

Z ⇡

0
d✓ sin ✓ = 4⇡.

Often we consider a solar beam (§2.2) of light traveling in a particular
direction. This direction is called the propagation direction and is specified
by a unit vector ⌦̂0, which points in the direction (✓0,�0). If we consider a
general direction, described by the unit vector ⌦̂(✓,�), a beam is a radiative
energy flow which is zero for all directions except ⌦̂0. Thus, we can use a
two-dimensional �-function �(⌦̂ � ⌦̂0) to specify the direction of this energy
flow. In spherical polar coordinates we have

�(⌦̂ � ⌦̂0) = �(cos ✓ � cos ✓0)�(�� �0) (F.10)

where ⌦̂0 is specified by the angles (✓0,�0). The normalization property of
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the �-function in Eq. F.10 is
Z

4⇡
d!�(⌦̂ � ⌦̂0) = 1. (F.11)

While �(⌦̂ � ⌦̂0) is non-dimensional, it will be convenient to think of it as
having the ‘unit’ of inverse steradians [sr�1].
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Derivation of the Planck Radiation Law

The derivation consists of two parts, the first being a determination of the
average energy per photon state, the second finding the density of states
within the hohlraum. We begin with a general statistical law describing the
distribution of states in a system in thermodynamic equilibrium. If there are
N total states, with individual discrete energies Ei (i = 1, 2, · · · , N), each
having a degeneracy gi, the canonical, or Gibbs distribution describes the
probability of a particular energy state occurring for a system in contact
with a heat reservoir at temperature T . It is proven in statistical mechanics
treatises that

p(Ei) / gie
�E

i

/kBT . (G.1)

Since the probability summed over all states is unity, this distribution may
be written as

p(Ei) =
gie�E

i

/kBT

PN
j=0 gje�E

j

/kBT
⌘ gie�E

i

/kBT

Qp(T )
. (G.2)

Qp is called the photon partition function (see §S.1.4 for more detailed ex-
amples of partition functions).

Equation G.2 describes the Boltzmann distribution of discrete energy
states in thermodynamic equilibrium (see §4.3.4 and Eq. 4.18). It may also
be transformed to yield the equilibrium distribution of molecular velocities
in a gas. It is necessary to allow the range of energies to be continuous, and
to convert the sums to integrals (see Eq. 4.10). Here we are interested in
deriving the equilibrium distribution of photon energies, B⌫ .

We next ask what is the mean energy of the quantum states having the
frequency ⌫? If each state contains n photons of energy h⌫, then the energy of
the nth state is En = nh⌫. The mean energy is thus the sum of En weighted
by the probability of that energy occurring, p(En) = gne��E

n/Qp(T ), where
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� ⌘ (kBT )�1. Thus

hE(⌫)i =

P1
n=0 (nh⌫) e��nh⌫

P1
n=0 e��nh⌫

.

We have factored out the common factor gn which is the same for all states.
To evaluate this expression explicitly, we note that

hE(⌫)i = �
X @

@�

h

e��nh⌫
i.

X

e��nh⌫ = � d

d�
ln
h

X

e��nh⌫
i

where we have interchanged di↵erentiation and summation. The sum can be
evaluated as a geometric series

P

xn = (1 � x)�1 where x ⌘ e��h⌫ . Thus

hE(⌫)i = � d

d�
ln

1

(1 � e��h⌫)
=

d

d�
ln(1 � e��h⌫) =

h⌫

eh⌫/kBT � 1
.

For vanishing temperature, hE(⌫)i ⇡ h⌫ exp(�h⌫/kBT ) ! 0. For high
temperature, hE(⌫)i ⇡ kBT . The latter result tells us that the energy per
photon is that predicted by the classical Equipartition Theorem, which states
that the particle has kBT/2 of energy for every degree of freedom. A photon
has two degrees of freedom, corresponding to the two polarization states. In
quantum terminology, it has two spin directions (‘up’ and ‘down’).

We now make the correspondence of an oscillator with a standing elec-
tromagnetic wave in a cubical cavity (see Appendix K). For a given fre-
quency ⌫ a standing wave can have a host of discrete energies, given by
Ep = (h/2⇡)c|k| = h⌫. Here k is the quantized wave number vector, hav-
ing components kx = nx(⇡/L), ky = ny(⇡/L), and kz = nz(⇡/L). L is the
length of one side of the cubical cavity. We first need to know the number
of standing waves �(k)dk having wavenumber lying between k and k + dk.
Multiplying this number by the mean energy hE(⌫)i we obtain the expres-
sion for the energy density per unit volume. We can find �(k) by appealing
to a simple geometrical construction, where the vector k is drawn in the
pseudo-space of kx, ky, and kz. Not all values of kx, etc. are allowed – only
those satisfying kx = ⇡/L, 2⇡/L, 3⇡/L, · · · . We now visualize a volume el-
ement in this space, which is defined by incrementing each of the values of
the k-components by one. Then for k large, the element is approximately
a cube of side ⇡/L whose volume is (⇡/L)3. A given energy state defined
by the coordinates (kx, ky, kz) ‘fills’ the above volume element. A one-to-
one correspondence exists between the volume (⇡/L)3 and a specific energy
state. Thus to count the total number of states out to some radial distance
k in this pseudo-space, all we need to do is to evaluate the total volume and
divide by (⇡/L)3. There is some book-keeping we must do before we get the
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correct answer. Since k is positive, we should evaluate only one quadrant of
the total sphere in k-space, that is, the volume should be 4⇡k3/3 divided
by 8. As mentioned earlier, for every specific value of k, there are two inde-
pendent states, corresponding to the two polarization states. Therefore the
total number of states N(k) for which the k-values are less than or equal to
k is

N(k) =
2 ⇥ (4⇡k3/3)

8(⇡/L)3
=

V k3

3⇡2

where V = L3 is the cavity volume. The density of states (number per unit
volume) is therefore

�(k) =
d

dk

N(k)

V
=

d

dk

⇣ k3

3⇡2

⌘

=
k2

⇡2
.

We now return to frequency space, and find the number of states between
⌫ and ⌫ + d⌫. Since k = (2⇡⌫/c), then k2 = 4⇡2⌫2/c2 and dk = 2⇡d⌫/c.
Therefore

�(⌫)d⌫ =
4⌫2

c2

⇣2⇡d⌫

c

⌘

=
8⇡⌫2d⌫

c3
.

Finally, the energy density is the number of oscillators per unit volume
multiplied by the average energy

U⌫ =
8⇡⌫2hE(⌫)i

c3
=

8⇡⌫2h⌫

c3
�

eh⌫/kBT � 1
� .

Since the radiation is isotropic, U⌫ = 4⇡Ī⌫/c = 4⇡I⌫/c (see Eq. 2.13), we
find the blackbody radiance formula

IBB
⌫ = B⌫(T ) =

c

4⇡
U⌫ =

2h⌫3

c2

1

eh⌫/kBT � 1
.
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The Two-Level Atom

We consider the more realistic situation in which all the radiative and col-
lisional processes act together. We will assume that the values of the rate
processes are given, and derive equations describing the transfer of radiation
through the system. Many of the properties of a complex system are embod-
ied in the two-level atom concept, which envisions an atom with only two
discrete energy levels. Altogether, we must consider five separate processes
(see Fig. 4.7) connecting the two energy levels of the atom. We begin by
considering the radiative processes.

H.1 Microscopic Radiative Transfer Equation

The radiation field is assumed to be a result of transitions from the sin-
gle excited level (state 2) to the ground level (state 1) of a radiatively-
significant species. The gas will be a two-component mixture consisting of
the radiatively-significant species, and a radiatively inert ‘bu↵er’ gas. The
latter plays the role of collisionally transforming the excited level to the
ground state and vice versa. The populations in the two levels are denoted
n1 and n2. The sum of the two populations is a constant, equal to the
density of the radiatively-significant species, n. The average energy di↵er-
ence between the states is E21 = h⌫0, but there is assumed to be a small
spread in frequencies, due to spectral broadening. The radiative processes
(see Fig. 4.7) are:

(1) Absorption: h⌫ + n1 ! n2

(2) Spontaneous emission: n2 ! n1 + h⌫
(3) Stimulated emission: n2 + h⌫ ! n1 + h⌫ + h⌫.
Process (3) is one in which the emitted radiation is exactly coherent with

the incident radiation, in both direction and phase. Processes (1) and (3)
may be understood from classical physics, but (2) requires quantum theory
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for a fundamental description. In the semi-classical theory, we assign a rate
to this process which is independent of the surroundings of the atom.1

The rates at which the three radiative processes occur were first derived
by A. Einstein in 1916.2 The rate e�ciencies are described by the Einstein
coe�cients B12, A21, and B21. We now consider the rate equations for each
individual process: Process (1) describes the rate at which absorption de-
pletes the lower state, and is proportional to the number of atoms in the
ground state n1, to the absorption cross section ↵n(⌫), and to the number of
photons in solid angle d!, (I⌫/h⌫)d!. Integrating over all frequencies3 and
photon directions, we find

(dn2/dt)abs = n1

Z 1

0
d⌫

Z

4⇡
d!↵n(⌫)(I⌫/h⌫) = 4⇡n1

Z 1

0
d⌫↵n(⌫)(Ī⌫/h⌫).

(H.1)
Process (2) is the rate at which photons depopulate the upper state. Ein-

stein asserted that its rate may be written

(dn2/dt)spon = �A21n2. (H.2)

The above equation shows that the excited states decay via this process
independently of its surroundings. Stimulated emission, Process (3), is given
by an expression similar to Eq. H.1, since the rate is also proportional to
the number of photons available

(dn2/dt)stim = �n2

Z 1

0
d⌫

Z

4⇡
d!↵n(stim; ⌫)(I⌫/h⌫)

= �4⇡n2

Z 1

0
d⌫↵n(stim; ⌫)(Ī⌫/h⌫) (H.3)

where ↵n(stim; ⌫) is the absorption cross section for stimulated emission.
We now write the above absorption cross sections in terms of the Einstein

coe�cients, ↵n(⌫) ⌘ h⌫B12�(⌫)/4⇡, and ↵n(stim; ⌫) ⌘ h⌫B21�(⌫)/4⇡. The
line-profile function �(⌫), assumed to be the same for the two processes, is
normalized so that

Z 1

0
d⌫�(⌫) = 1. (H.4)

There is no a priori reason why the line profiles for stimulated emission and
absorption should generally be the same. We made the assumption because

1 Spontaneous emission may be thought of as being stimulated by fluctuations in the vacuum
state of the electromagnetic field.

2 Einstein, A. (1916). ”Strahlungs-Emission und -Absorption nach der Quantentheorie”.
Verhandlungen der Deutschen Physikalischen Gesellschaft. 18: 318–323.

3 Since there is only one spectral line, the limits of integration can be safely extended over the
entire spectrum.



H.1 Microscopic Radiative Transfer Equation 527

in many situations it is an excellent approximation.4 The properties of the
atom (molecule) and its surroundings determine the line shape. We assume
for now that �(⌫) is known, and independent of position.

As we might suspect, the rates of the above three processes are related.
In fact, we will show that it is su�cient to know the value of one Einstein
coe�cient to determine the other two. For this purpose we use the common
approach of assuming a special case (that of TE), and then arguing that
the result so obtained has more general validity. In TE, I⌫ = B⌫ , and the
populations n1 and n2 are related through the Boltzmann equation, Eq. 4.18.
We denote the ratio of the two populations in TE as n⇤

2/n⇤
1 to distinguish it

from the more general ratio n2/n1. Hence, from Eq. 4.18, we have

n⇤
2/n⇤

1 = (g2/g1) exp(�h⌫0/kBT ) (H.5)

where the gi are the statistical weights. (Note that we have used the aver-
age energy di↵erence between the two states E21 = h⌫0.) Assuming time-
independent conditions, we have dn⇤

1/dt = �dn⇤
2/dt = 0. The radiative rates

must all balance5 so that

dn⇤
1/dt = 0 = n⇤

2A21 + n⇤
2B21

Z 1

0
d⌫B⌫�(⌫) � n⇤

1B12

Z 1

0
d⌫B⌫�(⌫). (H.6)

Since the Planck function B⌫ varies slowly over the line profile, we may
simplify the above expression. Thus, setting B⌫ ⇡ B⌫0 , and using the nor-
malization property of �(⌫), Eq. 4.23, we find

n⇤
2A21 + n⇤

2B21B⌫0 = n⇤
1B12B⌫0 .

Solving for B⌫0 we find

B⌫0 =
(A21/B21)

(g1B12/g2B21) eh⌫0/kBT � 1
. (H.7)

But we already know the functional form of the Planck function

B⌫0 =
2h⌫3

0/c2

eh⌫0/kBT � 1
. (H.8)

Making the correspondence of the above two equations, we obtain the fol-
lowing two expressions:

The Einstein Relations
4 The justification for why the line profiles for absorption and emission should be the same is

given by Cooper et al. (1983).
5 It might appear that we have cheated a bit by ignoring collisional processes. In fact, when we

balance the radiative processes separately from the collisional processes, we are invoking the
principle of detailed balance.
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A21 = (2h⌫3
0/c2)B21 (a); g1B12 = g2B21 (b). (H.9)

These relationships are independent of the state of the gas, in particular
of the temperature or density, and therefore must involve only the basic
properties of the atom itself. We therefore assert that the Einstein relations
are quite general, and are independent of the situation assumed in their
derivation. Thus, they should apply to the more general situation of NLTE.

We now use the above relationships to write down the continuity equation
for photons, which is just our familiar radiative transfer equation. We first
note that dI⌫/ds is the rate at which radiative energy is lost, or gained,
along a beam. Then we can write this quantity as being equal to the gains
less the losses due to the three radiative processes. The result is:

The Microscopic Radiative Transfer Equation

dI⌫
ds

= �h⌫0

4⇡
n1B12I⌫�(⌫) +

h⌫0

4⇡
n2B21I⌫�(⌫) +

h⌫0

4⇡
n2A21�(⌫). (H.10)

We have introduced the additional assumption that the line profile for
spontaneous emission is also given by �(⌫). Equation H.10 may now be
related to our conventional radiative transfer equation, Eq. 2.28 which we
may now call the macroscopic radiative transfer equation

dI⌫
ds

= �k(⌫) (I⌫ � S⌫) . (H.11)

Equating the factors multiplying I⌫ in Eqs. H.10 and H.11, we find

k(⌫) =
h⌫0

4⇡
�(⌫) (n1B12 � n2B21) . (H.12)

This relationship allows us to relate microscopic quantities to macroscopic
quantities. Consider the above equation in the case of LTE. Replacing the
quantities n1 and n2 by n⇤

1 and n⇤
2, we have

k⇤(⌫) =
h⌫0

4⇡
�(⌫)n⇤

1B12

✓

1 � n⇤
2B21

n⇤
1B12

◆

(H.13)

where we denote by k⇤(⌫) the LTE value of the e↵ective extinction coe�-
cient. From the Boltzmann relation for the ratio n⇤

2/n⇤
1 (Eq. H.5), and the

Einstein relation g2B21 = g1B12, we find

k⇤(⌫) =
h⌫0

4⇡
�(⌫)n⇤

1B12

⇣

1 � e�h⌫0/kBT
⌘

. (H.14)
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The above equation is the extinction coe�cient in LTE, corrected for stim-
ulated emission. It is clear that stimulated emission is simply negative ab-
sorption, since the emitted photon is coherent with, and in the same direc-
tion as the incident photon. Thus, our macroscopic equation needs a slight
adjustment for the LTE situation, such that

dI⌫
ds

= �k⇤(⌫) (I⌫ � S⌫) (H.15)

where k⇤(⌫) is given by Eq. H.14. In the more general NLTE situation we
would use the Eq. H.12 for k(⌫). In many atmospheric problems, the factor
e�h⌫0/kBT << 1 implying that the e↵ect of stimulated emission is negligible.

We now equate the source terms in Eqs. H.10 and H.11. Using Eq. H.12
for k(⌫), we find

S⌫ = S⌫0 =
n2A21

n1B12 � n2B21
=

2h⌫3
0/c2

(n1g2/n2g1) � 1
(H.16)

where we used the Einstein relationships, Eq. H.9. An important aspect
of Eq. H.16 is that the frequency-dependence of the source function has
vanished, because we assumed that the line profiles for stimulated emis-
sion, spontaneous emission, and absorption are identical. This approxima-
tion is called complete frequency redistribution. Note that if we assume that
n2/n1 = n⇤

2/n⇤
1, that is, make the LTE assumption, then the source function

becomes the Planck function Eq. H.8, as can be seen from Eq. H.5. There-
fore, Eq. H.16 is the expression for the NLTE source function. However, it
is not very useful to express it in terms of another unknown, the ratio of the
two populations. The equation for determining this unknown ratio comes
from considering inelastic collisions.

H.2 E↵ects of Collisions on State Populations

So far we have considered only the e↵ects of radiation on the excited states.
We now take into account the additional e↵ects of collisional excitation
and quenching. We previously defined these rates in terms of the product
of reactant concentrations and a reaction rate coe�cient. For purposes of
simplifying the notation, we define the collisional excitation rate per atom as
kin[M ] ⌘ C12 and the collisional quenching rate per atom as k0

in[M ] ⌘ C21.
We may now write down the rate at which both collisions and radiation
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populate the excited state. In a steady state we set this rate equal to zero

dn1

dt
= �n1C12 � n1B12

Z 1

0
d⌫�(⌫)Ī⌫

+ n2C21 + n2B21

Z 1

0
d⌫�(⌫)Ī⌫ + n2A21 = 0. (H.17)

This equation is called the statistical equilibrium equation. It provides a
second equation which, in addition to Eq. H.16, allows us to solve for both
unknowns, n2/n1 and the source function. But first we will consider some re-
lationships between the collisional rates by once again invoking the principle
of detailed balance.

In deriving the Einstein relationships, we considered the state of TE,
in which the radiative processes are in balance with one another, without
regard to collisional processes. We use the same idea with collisions, and
ignore radiative processes. Assuming TE, we set the two rates equal

n⇤
2C21 = n⇤

1C12. (H.18)

Using the definitions of the coe�cients, and invoking the Boltzmann distri-
bution of excited states, Eq. 4.18, we find

C21 = C12
g1

g2
eh⌫0/kBT . (H.19)

As in the case of the Einstein relationships we will argue that the above
relationship is more general than the assumption used in deriving it. We
cannot argue that Eq. H.19 describes an inherent atomic property, because of
its dependence on the temperature. However, we observe that the collisional
excitation rate (Eq. 4.9) is determined by an integration over the product
of the Maxwell-Boltzmann velocity distributions of the reactants. We also
recall that these distributions are maintained by elastic collisions, which
are millions of times more e�cient than inelastic collisions. Thus, we would
expect that Eq. H.19 would be valid in non-equilibrium situations, as long
as the velocity distribution is Maxwellian. To emphasize that there may be
several di↵erent temperatures in a NLTE situation, the quantity entering
the Maxwell-Boltzmann distribution is often referred to as the kinetic or
translational temperature.

We now return to the statistical equilibrium equation. Solving for n1/n2

from Eq. H.17 we obtain

n1

n2
=

C21 + B21J + A21

C12 + B12J
where J ⌘

Z 1

0
d⌫�(⌫)Ī⌫ . (H.20)

Equation H.20 is in the form of the ratio of the net rate of excitation to
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the net rate of quenching, or the ‘source’ divided by the ‘sink’ of excited
states.

We consider Eqs. H.16 and H.20 to be two equations in the two unknowns,
n1/n2 and S⌫ . The quantity J depends upon the radiation field Ī⌫ which
can be determined from the source function equation for isotropic scattering,
in the usual way. Using Eq. H.19 to eliminate the collisional rate C12, and
Eq. H.9 to eliminate the Einstein coe�cient B12 in Eq. H.20, we find

n1

n2
=

A21 + B21J + C21

(g2/g1)C21e�h⌫0/k
B

T + (g2/g1)B21J
. (H.21)

Note carefully that T is understood to be the kinetic temperature of the
gas. Thus the velocity distribution of the atoms in the gas is in LTE, while
the populations of the energy states may be far from an LTE distribution.
We rewrite the above equation as

n1g2

n2g1
=

A21 + B21J + C21

B21J + C21e�h⌫0/k
B

T
. (H.22)

We now have the combination that appears in the denominator of Eq. H.16.
Substitution of Eq. H.22 into Eq. H.16 yields

S⌫0 =
2h⌫3

0

c2



A21 + B21J + C21

B21J + C21e�h⌫0/k
B

T
� 1

��1

which may be rewritten as

S⌫0 =
(2h⌫3

0/c2)(B21J + C21e�h⌫0/k
B

T )

A21 + C21 � C21e�h⌫0/k
B

T
.

Using the first of the Einstein relations, Eq. H.9, we obtain

S⌫0 =
J + (2h⌫3

0/c2)(C21/A21)e�h⌫0/k
B

T

1 + (C21/A21)(1 � e�h⌫0/k
B

T )
.

Defining a new parameter, ✏v,

✏v ⌘ C21

C21 + A21(1 � e�h⌫0/k
B

T )�1
(H.23)

we find with some additional manipulation and using Eq. H.8

The NLTE source function

S⌫0 = ✏vB⌫0 + (1 � ✏v)J. (H.24)

We have shown that the NLTE source function is the sum of two terms:
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a thermal emission term, plus a term which represents the scattering con-
tribution to the source function. ✏vB⌫0 is interpreted as the emittance per
unit volume, that is, its e�ciency as a blackbody emitter as a function of
frequency within the spectral line. In terms of the macroscopic absorption
(↵(⌫)) and extinction (k(⌫)) coe�cients, ✏v = ↵(⌫)/k(⌫) (note that the fre-
quency dependence cancels in the ratio). The emission coe�cient is obtained
from its definition (j⌫ = S⌫/k(⌫)), yielding

j⌫ = ↵(⌫)B⌫(T ) +

Z 1

0
d⌫�(⌫)Ī⌫ (H.25)

where we used the relationship �(⌫) = k(⌫) � ↵(⌫). The first term in the
above equation is the expression of Kircho↵ ’s Law for a volume element,
which states that the thermal emission is the product of the absorption
coe�cient and the Planck function (§5.3.1). The second term is the con-
tribution to the volume emission from scattering within the volume (see
§5.3.2).

The quantity ✏v is a measure of the coupling between the gas and the
radiation field. When it is large (✏v ! 1), the coupling is strong, and there
is a rapid exchange between kinetic and internal energy. In this limit, S⌫0 !
B⌫0 , which is just the LTE limit. In the opposite case of weak coupling,
(✏v ! 0), the source function approaches the pure-scattering limit

S⌫0 ! J =

Z 1

0
d⌫�(⌫)Ī⌫ (H.26)

which might be called an extreme condition of NLTE, in which the excited
states are populated exclusively by radiation and collisions no longer play a
role. In a planetary or stellar atmosphere, as one moves upward into lower
densities and pressures, there will be a transition from LTE to NLTE as the
coupling between the gas and the radiation field disappears.



Appendix I

Non-Gray Inhomogeneous Media

I.1 Transmission in Non-Gray Inhomogeneous Media

Up to now we have dealt with homogeneous paths, for which the pressure
and temperature are assumed to be constant along the beam. However,
unless the beam direction is horizontal, this assumption is invalid, and we
must deal with the inhomogeneous nature of the medium. In general, the
mean beam transmittance in a slab medium over an inhomogeneous path of
a beam making an angle ✓ with the vertical is given by

hTb(u, ✓)i =
1

�⌫̃

Z

�⌫̃
d⌫̃

⇢

exp



�
Z u

0
du0S(u0)�(u0, ⌫̃) sec ✓

��

. (I.1)

To understand better the structure of Eq. I.1, let us reconsider the simple
case of an isolated Lorentz line, but now let the line of sight be taken over an
inhomogeneous optical path. This situation leads to an analytic result only
in the special case of a well-mixed gas and a pure-Lorentzian line profile.
Although it is not necessary, we will assume a vertical path (✓ = 0). The
volume density of the absorber is given by wm⇢(z). Here wm is its mass
mixing ratio (assumed constant) and ⇢(z) is the total atmospheric mass
density. The optical path between the heights z and z0 may be transformed
from the mass path variable to the geometric height variable dz00, so that
du00 = �wm⇢(z00)dz00. Then

⌧(z, z0) =

Z z0

z
dz00wm⇢(z00)

S↵L(z00)
⇡[(⌫̃ � ⌫̃0)2 + ↵L(z00)2]

=

 Spwm

2⇡↵L(z)g

�

ln



(⌫̃ � ⌫̃0)2 + ↵L(z)2

(⌫̃ � ⌫̃0)2 + ↵L(z0)2

�

(I.2)

where the hydrostatic equation, dp = �⇢(z)gdz, was used. To obtain the sec-
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ond form we changed integration variables from dz00 to d↵L, and integrated
analytically. It is easily checked that the second result is dimensionless, as it
must be. It is also a constant, since ↵L(z) is proportional to p(z), the total
gas pressure (see Eq. 3.11).

To simplify the algebra we consider a situation in which the path is from z
to z0 ! 1. Now the vertical mass path is simply u = wmp/g (assuming g is
constant with height). Assuming ↵L(z0) approaches ↵D, the Doppler width,
we find for a well-mixed gas

The absorption coe�cient for an inhomogeneous vertical path:

k⇤
L(⌫̃)u ⌘ Su

2⇡↵L
ln



(⌫̃ � ⌫̃0)2 + ↵L(z)2

(⌫̃ � ⌫̃0)2 + ↵2
D

�

. (I.3)

To be more accurate, a Voigt line shape should be used in the limit z0 ! 1.
Equation I.3 describes the behavior of the absorption profile of a spectral

line for very high resolution. With modern spectroscopic techniques, the re-
solving power is now su�cient to test such predictions. An example is shown
in Fig. 4.5 of an individual CO2 line profile measured for absorption of near-
IR sunlight. The observed shape closely resembles the theoretical prediction,
showing that the Lorentz profile (applicable to a homogeneous, horizontal
path, Eq. 3.6) does not apply to a column-integrated inhomogeneous path.

I.1.1 The H-C-G Scaling Approximation

One might hope that the simple expressions derived for the homogeneous
case, say for absorptance, h↵b(u)ihom could somehow be used for the inho-
mogeneous case, if only we could define equivalent values for the e↵ective
pressure, hpi, e↵ective temperature, hT i, and e↵ective path length, hui, such
that

h↵b(u)iinhom = h↵b(hui, hpi, hT i)ihom. (I.4)

If we compare Eq. I.2 or Eq. I.3 for an inhomogeneous medium with that
for the absorption coe�cient in a homogeneous medium, Eq. 4.68, it is clear
that there are significant di↵erences in the wavenumber dependence. Hence,
so-called scaling relations can at best be approximations, except under cer-
tain circumstances. Perhaps the most accurate such scaling relation is that
due to Van de Hulst, Curtis and Godson, the H-C-G approximation. For a
constant mixing ratio and temperature along the path, this approximation
yields the following: hui = u, hpi = 1

2(p+p0), where p and p0 are the pressures
of the beginning and end points. It can be shown (Exercise 4.11) that this
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H-C-G scaling yields accurate values of both (1) the absorption coe�cient in
the wings of the line (⌫̃ >> ↵L) and (2) the integrated line absorption (i.e.
the area under the line). The H-C-G approximation is probably the best
scaling approximation available, particularly for well-mixed species. How-
ever for species, such as water vapor and ozone whose mixing ratio varies
appreciably with height, this scaling can produce errors in the heating rate
as large as 10%.

I.2 LBL Transmission Computation: Inhomogeneous Paths

Whereas absorption lines are pressure-broadened at low altitudes (for
which a Lorentz profile is adequate), they become Doppler-broadened at
high altitudes. Spectral sampling strategies allowing for e�cient yet accu-
rate integration of the Voigt profile for a given temperature and pressure
(i.e. a homogeneous path) were briefly discussed in §4.7.6. The extension to
non-uniform atmospheric paths with varying temperature, pressure and ab-
sorber concentration is usually done by approximating the real atmosphere
by a series of homogeneous layers in which the parameters are taken to be
constant in each layer, but are allowed to vary from layer to layer.

The LBLRTM (Clough et al., 2005) computer code1 uses a sampling in-
terval that is a suitable fraction of the average half-width of the line. Since
the pressure decreases exponentially with altitude, the average half-width
and therefore the sampling interval becomes smaller at higher than at lower
levels in the atmosphere. The absorption coe�cient for each layer may then
be merged with those from neighboring layers in such a way that the absorp-
tance for a path through two adjacent layers has the resolution of the higher
layer. This merging is accomplished by interpolating the coarser-resolution
results for the lower layer into the finer resolution of the higher layer. In
LBLRTM (derived from FASCODE (Clough et al., 1981)) this procedure
is executed in a systematic manner so that the spectral absorptance for a
given atmospheric slant path is obtained with the finest spectral resolution
at all atmospheric levels. The transmittance between any two boundaries
may then be computed, and used to obtain the radiance along a given path
(assuming LTE so that the emission is given by the Planck function) de-
pending exclusively on wavenumber and temperature.

The need to speed up the computation by using bigger wavenumber steps
in the line wings and a fine grid across the line center is recognized in most
algorithms designed to perform line-by-line computations. For example, in

1 LBLRTM is an accurate and e�cient line-by-line radiative transfer model derived from the
Fast Atmospheric Signature Code (FASCODE) (Clough et al., 1981, 1992).
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another generally-available LBL code, A General Line-by-Line Atmospheric
Transmittance and Radiance Code (GENLN2), described in Edwards (1992),
the user-specified spectral range is first divided into a number of wide mesh
intervals, which may be of constant or variable spacing. In GENLN2, the
line-by-line computation proceeds in two stages: a ‘wide-pass’ stage followed
by a ‘fine-pass’ computation. The ‘wide-pass’ stage computes absorption due
to line wings of lines whose centers fall into a fixed range from the wide mesh
boundaries. This step also considers absorption due to pre-computed con-
tinua accounting for the absorption of the line wings at separations greater
than 25 cm�1 from the line center. In addition, high-resolution cross section
data are used to account for absorption by molecules for which line data are
lacking. The ‘fine-pass’ stage uses a fine spectral grid which is determined
by the width of the narrowest line encountered over a particular path. For
applications to the Earth’s atmosphere, this approach implies that the width
of the lines in the uppermost atmospheric layer of the path (where the lines
are narrowest) determines the resolution. All lines within the wide mesh
boundaries are included in the ‘fine-pass’ stage, and line wings up to 25
cm�1 from the line center are taken into account.

Finally, the wide-pass absorptions, interpolated to the fine spectral grid
points, are added to the fine-pass absorptions at these same points to yield
the monochromatic absorption coe�cient. For a vertical path the optical
depth is obtained as the product of the absorption coe�cient and the ab-
sorber amount. For several absorbing gases the total optical depth is ob-
tained by adding the contributions from the individual gases. Thus, the
total monochromatic absorption optical depth may be written as

⌧a(⌫̃) =
X

j

⌧(⌫̃)near lines
j + ⌧(⌫̃)line wings

j + ⌧(⌫̃)broadband
j (I.5)

where the broadband absorption includes the contribution from continua
and molecular cross sections. The sum extends over all absorbing species.

Comparing the line-by-line computation in LBLRTM and GENLN2, we
see that, despite di↵erences in detailed approach, they both compute ab-
sorption at a fine spectral grid spacing, and both codes employ a variable
computational grid to produce the final result: an overall absorption coef-
ficient or optical depth (summed over absorbing species in the path) at a
fine spectral resolution that may be considered monochromatic. The main
di↵erence between the two codes lies in the subsequent computation of trans-
mittance and radiance. Whereas GENLN2 proceeds with the transmittance
and radiance computation based on the fine grid spectral resolution, which
is the same in every atmospheric layer, LBLRTM attempts to speed up
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this part of the computation by computing transmittance with a spectral
resolution that varies from layer to layer as mentioned above.

I.2.1 Inclusion of Multiple Scattering in LBL Computations

In principle, it is almost trivial to include multiple scattering in LBL
computations. The reason is that LBL computations are monochromatic
and therefore automatically consistent with multiple scattering algorithms.
Thus, if a LBL code can be used to compute gaseous optical depths layer-by-
layer throughout the medium, this information can be combined with data
on scattering and absorption coe�cients (Eqs. 3.9–3.10) of other scatter-
ing and absorbing species to obtain the layer-by-layer optical depth, single-
scattering albedo $ (defined in §5.3.2, Eq. 5.44) and scattering phase func-
tion p (see §3.4). These are the data required to perform monochromatic
radiative transfer computations including multiple scattering. The gaseous
absorption contribution to the optical depth is given by Eq. I.5.

In view of the discussion above, it may appear surprising to learn that,
in practice, the inclusion of multiple scattering in LBL codes has not been
done in a satisfactory manner. In an e↵ort to explain this situation we now
briefly consider the design of the LBLRTM and GENLN2 codes discussed
previously. The main problem is that these codes (and most available LBL
codes) do not employ radiative transfer schemes that are well suited to per-
form multiple scattering computations. The radiative transfer schemes were
designed to work in the thermal IR, where scattering can be safely ignored
unless aerosols and clouds are present. Thus, the radiative transfer scheme
was not designed for the computation of multiple scattering e↵ects. As a
consequence, the radiative transfer schemes used in most LBL codes inte-
grate along the line-of-sight to obtain the radiance, assuming that the source
function is known, which is the case when scattering is ignored. However,
the source function due to multiple scattering depends on the radiance (see
Chapters 7 and 9), which is an unknown. Hence, it is a non-trivial task
to compute the multiply scattered radiation field, implying that most LBL
codes must remedy this shortcoming.

The original version of FASCODE (Clough et al., 1981) treated parti-
cle scattering as equivalent to absorption so that all scattered radiation was
treated as re-emitted energy that was previously absorbed. An approximate
treatment of multiple scattering2 was later introduced by using a two-stream
approximation combined with an adding algorithm. This approach was cho-
sen because it is consistent with the radiance/transmittance computation in
FASCODE which treats one layer at a time, but which employs a spectral

2 Inclusion of multiple scattering is described by Isaacs et al. (1987).
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step size that may vary from layer to layer. However, this approach is in-
consistent with monochromatic multiple scattering treatments which require
the use of a fixed wavenumber throughout the medium.

Scattering is not considered in the GENLN2 code. However, this code can
be used to compute monochromatic absorption optical depths, because it
utilizes the same spectral step size in all atmospheric layers. Thus, the spec-
tral sampling in GENLN2 is compatible with monochromatic multiple scat-
tering algorithms. Similarly, the gaseous optical depths computed in FAS-
CODE (now LBLRTM) can be interpolated to the same spectral step size in
all atmospheric layers and thereby become compatible with monochromatic
multiple scattering algorithms.

Thus, both FASCODE (LBLRTM) and GENLN2 can be used to compute
the quantity required for LBL multiple scattering computations, namely the
monochromatic (fixed wavenumber) absorption optical depth. However, the
radiative transfer schemes employed in most existing LBL codes, including
LBLRTM and GENLN2, are ill-suited to perform multiple scattering com-
putations. E↵orts to design and implement comprehensive and e�cient LBL
multiple scattering codes are are still being pursued.

Finally, we note that properly designed LBL codes that include multiple
scattering in a rigorous manner would provide a testbed for ‘benchmark’
computations against which alternative approaches aimed at enhanced ef-
ficiency may be tested. One possible way to proceed in the pursuit of an
e�cient yet accurate inclusion of multiple scattering in LBL codes would
be an attempt to reduce the need for multiple scattering computations by
exploiting the existing redundancy in absorption coe�cients across a given
spectral interval over which the particle scattering and absorption coe�-
cients do not vary appreciably. In principle, such an approach resembles the
philosophy underlying the k-distribution method.

I.2.2 The Correlated-k Method

The average transmittance, Eq. I.1 may be written in k-distribution form
for an inhomogenous path, in analogy to Eq. 4.95, as

hTb(u)i =

Z k
max

k
min

dkf⇤(k) exp



�
Z u

0
du0k(u0)

�

(I.6)

or, in finite-di↵erence form

hTb(u`1 , u`2 , ✓)i =
N
X

j=1

f⇤(kj) exp



�
`2
X

`=`1

k`�u`

�

. (I.7)

We have assumed a vertical path, ✓ = 0. The kj are the absorption coef-
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ficients appropriate for the jth layer, assuming each of the layers are thin
enough to be considered homogeneous. The integration extends from the cen-
ter of the layer identified by u`1 to the center of the layer u`2 . The quantities
f⇤ and g⇤ (introduced below) denote the distribution, and the cumulative
distribution (respectively) of the absorption coe�cients along the inhomo-
geneous path. Clearly f⇤ and g⇤ are not equal to the distributions f and g,
discussed previously, since they applied to a homogeneous path.

In terms of the cumulative distribution variable g⇤(k⇤) =
R k⇤

0 dk0f⇤(k0),
we can write Eq. I.7 as

hTb(u)i =

Z 1

0
dg⇤ exp



�
Z u

0
du0k(g⇤, u0)

�

. (I.8)

Note carefully the di↵erence between Eqs. I.8 and 4.98, the latter equation
applying to a homogeneous path. The function k(g⇤, u0) refers to the distri-
bution appropriate to the particular level u0. However the distribution g⇤ is
the cumulative distribution of k-values for the inhomogeneous line of sight.
The finite-di↵erence form of the above equation is

hTb(u)i =
N
X

j=1

�g⇤j exp



�
`2
X

`=`1

k`(g
⇤
j )�u`

�

. (I.9)

The correlated-k (c-k) method consists of replacing Eqs. I.8 and I.9 with

hTb(u)i =

Z 1

0
dg exp



�
Z u

0
du0k(g, u0)

�

(I.10)

hTb(u)i ⇡
N
X

j=1

�gj exp



�
`2
X

`=`1

k`(gj)�u`

�

. (I.11)

The replacement of the variable g⇤ with g implies that the single variable
g maps into the distribution functions at all levels u0. Since g depends on
wavenumber, the replacement of g⇤ with g assumes that there is a one-to-
one correspondence, or mapping, of wave numbers from one level to another.
Thus the optical depth at a specific wavenumber g is given by the integral
of k(g, u0) over the appropriate range of u0, with g fixed. Hence, the net
transmittance is the weighted average over all values of g. Equations I.10
and I.11 essentially describe the integration over a pseudo-spectral line, as
described earlier.

Example I.1: Isolated Lorentz line
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It is instructive to once again consider the simplest inhomogeneous case for which we have
exact analytic solutions. We may find the k-distributions for the inhomogeneous line of sight from
Eq. I.3, where for simplicity we let z0 ! 1. Denoting k⇤L by simply k and solving for ⌫̃(k) we find

⌫̃L(k) =
↵Lp

e2⇡↵Lk/S � 1
. (I.12)

Note that this result depends upon the height z through the dependence of ↵L on z. (More
generally, it depends upon both z and z0, and upon ✓.) The k-distribution for the inhomogeneous
path is

f⇤
L(k) =

2

�⌫̃

d⌫̃L(k)

dk
=

(⇡↵L/S)e2⇡↵Lk/S

�⌫̃

2

�
e2⇡↵Lk/S � 1

�3/2 . (I.13)

Note also that since k
max

= S/2⇡↵L, the denominator ! 0, and f⇤(k) ! 1 as k ! k
max

. This
situation presents no di�culty in practice (it occurs also for the homogeneous case, Eq. 4.104).
Proceeding as in the homogeneous case, we can solve analytically for the cumulative distribution
g⇤(k) and its inverse

g⇤L(k) =
↵L

(�⌫̃/2)
p

e2⇡↵Lk/S � 1
� 1 (I.14)

k⇤L(g) =
S

2⇡↵L
ln

(⇥
(�⌫̃/2)(1 + g)

⇤2
+ ↵2

L⇥
(�⌫̃/2)(1 + g)

⇤2

)
. (I.15)

As in the homogeneous case, the correspondence of ⌫̃ in the band and the variable g in the
pseudo-line are one-to-one.

For an isolated line, the monotonic ordering by strength of absorption co-
e�cients retains the relative spectral alignment of absorption lines between
di↵erent levels in the atmosphere. We can carry out a ‘mapping’ from the
variable ⌫̃ to the variable g at one height, say z1; we then go to a second
height, and map this same variable g back into a wavenumber ⌫̃ 0 at the height
z2. The wavenumber ⌫̃ 0 will be found to be exactly the same wavenumber ⌫̃,
or in other words, there is a perfect spectral correlation at di↵erent pressure
levels (see Fig. I.1). Exercise 4.12 shows how this mapping works in detail for
an isolated Lorentz line. Clearly, it should work for any isolated line profile,
so long as the line center remains fixed in wavenumber, and the broadening
maintains a symmetrical line shape. It can also be shown to apply to an El-
sasser band, and to a band for which the lines are randomly distributed in a
spectral interval �⌫̃. In the latter case, it is valid if the averaged absorptance
corresponding to a single line can be identified.

Unfortunately, this one-to-one uniqueness does not work for a general
molecular band, except in the weak-line and strong-line limits.3 It is clear
that for a real molecular band, a single value of k may correspond to a large
number of wavenumber values ⌫̃1, ⌫̃2, etc. This value of k will map into a
certain value of g (or more accurately a band of values �g around g) at
the height z1. We then take this same value of g and find the corresponding
value of k at a di↵erent height z2, by using the relationship k(z2, g). A way

3 This statement is proven by Goody et al. (1989).
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Figure I.1 Illustration of perfect wavenumber correlation at di↵erent pres-
sure levels for an isolated line. The mapping begins at pressure p1 and
wavenumber ⌫̃ (upper left panel). The absorption coe�cient k0 correspond-
ing to this wavenumber (actually k⇤

L in Eq. I.3) maps into the ‘pseudo-
wavenumber’ variable g1(k0) (upper right panel) using Eq. I.14. We now
move to a di↵erent pressure level p2 and map this value of g1 using the
inverse relationship to go from g to k (Eq. I.15), but di↵erent pressure
half-width (lower right panel). This wavenumber ⌫̃00 turns out to be the
same ⌫̃0 chosen at the initial pressure level.

of testing to see whether there is good correlation between levels would then
be to replot the mapped spectrum at the original wavenumber values ⌫̃1, ⌫̃2,
etc. If the mapped spectrum matches closely the actual spectrum calculated
at z2, then the correlation is good.

An example of this mapping is shown in Fig. I.2, which uses two con-
tiguous atmospheric slabs separated by a large pressure di↵erence (0.1–1.0
bars), a more extreme example than what is normally encountered in the
atmosphere [taken from Fig. 11 of Lacis and Oinas (1991)]. The mapped
spectrum (dashed lines) is seen to be very close to the actual spectrum
(dark lines). Another way of assessing the error in the assumption of cor-
relation is shown in Figs. I.3a and b. The left-hand panel shows the CO2

absorption spectra for three di↵erent levels in a model atmosphere, while
the right-hand panel shows a mapping from wavenumber to g such that
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Figure I.2 Spectral correlation for the transmission across a pressure inho-
mogeneity of 0.1–1.0 bars (taken from Fig. 11 of Lacis and Oinas (1991)).
(a) Results for the 1510–1520 cm�1 portion of the 6.3 µm water band at
0.1 bar and (c) 1.0 bar, respectively; (b and d) Numerical k-distributions of
respective absorption spectra an (a) and (c); The dashed line in (a) is the
result of mapping the absorption spectrum in (c) via the k-distributions in
(d) and (b).

k increases monotonically for the bottom (high pressure) layer. The same
mapping was applied to the k-spectrum of other layers in the atmosphere.
The fundamental assumption of the c-k method is that a single mapping
will produce a monotonically increasing k-spectrum in every layer. On the
contrary, Fig. I.3 shows that a mapping which produces a monotonically
increasing k-spectrum for one layer produces a k-spectrum for other layers
in which neighboring k-values fluctuate by orders of magnitude (West et al.,
1990). More sophisticated mapping algorithms than those described here
(West et al., 1990) have been devised to minimize the errors in the c-k tech-
nique. In general, this approximation can produce irradiances and heating
rate values with errors less than 1%. Although they are much more e�cient
(typically by factors of 1000) than LBL methods, they are most suitable
for 1-D radiative-convective models. They are generally too slow for 3-D
GCM models, and more drastic approximations are necessary. Overlapping
absorption by bands from di↵erent constituents is easily accommodated by



I.2 LBL Transmission Computation: Inhomogeneous Paths 543

Figure I.3 LEFT PANEL: CO2 absorption coe�cient spectra computed for
three di↵erent pressure-temperature values, which (from top to bottom)
are respectively (0.05 bar, 200 K), (0.25 bar, 245 K) and (0.9 bar, 295 K).
The coe�cients for the second layer have been multiplied by 10�1 and the
third layer by 10�7. RIGHT PANEL: Spectra sorted by wavenumber such
that k increases monotonically for the third layer (bottom curve). The
wavenumber was mapped onto g according to the procedure described in
the text. Note the non-monotonic behavior, illustrating the inadequacies
of this mapping procedure in this particular example.

the correlated-k technique, and these refinements are discussed elsewhere.4

I.2.3 Inclusion of Multiple Scattering in the Correlated-k Method

It is straightforward to include scattering particles or Rayleigh scatter-
ing from air molecules in the c-k method, since most multiple-scattering
methods assume monochromatic absorption. The assumption is made that
each of the scattering coe�cient, single-scattering albedo, and scattering
phase function is constant over the spectral regions corresponding to the
sub-intervals k1, k1 +�k1, k2, k2 +�k2, etc. The single scattering albedo for
the ith spectral interval is $i = ⌧sc(i)/⌧ext(i), where ⌧sc(i), is the total scat-
tering optical depth (molecules plus particles), ⌧ext(i) = ⌧sc(i) + ⌧a(i) + kiu
is the extinction optical depth, ⌧a(i) is the particle absorption optical depth,
and kiu is the molecular absorption optical depth. For example, the mean

4 An excellent reference for the correlated-k method is the article by Lacis and Oinas (1991).



544 Non-Gray Inhomogeneous Media

transmittance and mean reflectance of a non-gray, scattering atmosphere is

hTbi =
N
X

i=1

Tb(⌧i, ai)�gi; h⇢i =
N
X

i=1

⇢(⌧i, ai)�gi (I.16)

where �gi is the relative weighting of the ith k-interval. Note that the
monochromatic transmittance, Tb(⌧i, ai) and the corresponding reflectance,
⇢(⌧i, ai) can be calculated from two-stream methods, or a doubling algorithm
(described in Chapters 7 and 9) for each atmospheric layer. By combining
the layers using an adding algorithm the radiance and irradiance are ob-
tained. Alternatively, the radiative transfer equation can be solved layer
by layer for each spectral subinterval, and the layers combined using two-
stream methods, or the DISORT algorithm. Thus, the most general problem
of scattering and absorption in a vertically-inhomogeneous atmosphere can
be solved accurately with such methods. Such techniques are the ‘state of
the art’ (in terms of band models) at the present time.

Example I.2: Application of the Correlated-k Method
Suppose we wish to solve for the mean irradiance reflectance of an absorbing/scattering slab

over the spectral interval �⌫̃. Then

h⇢(2⇡)i =
1

�⌫̃

Z

�⌫̃

d⌫̃⇢(2⇡, ⌫̃) =

Z
k

max

k

min

dkf(k)⇢(2⇡, k) =

Z 1

0
dg⇢[2⇡, k(g)]

where ⇢(2⇡, k) is the irradiance reflectance calculated for a specific value of k. To be specific, let the
slab be homogeneous and semi-infinite. (The same ideas apply to an inhomogeneous slab, except
that analytic solutions will not exist.) For a specific single-scattering albedo $(k) the irradiance
reflectance is found in Chapter 7:

⇢(2⇡, k) =
1 �p

1 �$(k)

1 �p
1 + $(k)

=
1 �p

1 � �/(� + k)

1 +
p

1 � �/(� + k)
=

p
� + k �p

kp
� + k +

p
k
.

Thus

h⇢(2⇡)i =

Z 1

0
dg

p
� + k(g) �p

k(g)
p

� + k(g) +
p

k(g)
. (I.17)

The relationship between k to g is given by the particular line, or band profile – it may be an
analytic result (such as in Example 4.6), or more likely it will be derived as a table of k-values versus
g-values. For a molecular band this table will be constructed from the spectroscopic parameters
of the lines within the spectral interval �⌫̃. The mean reflectance is then evaluated by numerical
integration of Eq. I.17.



Appendix J

Reciprocity for the Bidirectional Reflectance

In this appendix we prove the Principle of Reciprocity for the bidirectional
reflectance, that is

⇢(⌫; ✓0,�0; ✓,�) = ⇢(⌫; ✓,�; ✓0,�0). (J.1)

With reference to Fig. J.1, the proof first determines the exchange of radia-
tive energy between the black elements dA1 and dA2 in a hohlraum due to
reflection of energy by the surface dA2. The theorem is proven by equating
the energy exchange dE⌫123 from 1 to 3 via 2, and the energy exchange
dE⌫321 from 3 to 1 via 2, and equating these two quantities (see Fig. J.1).

The energy exchange dE⌫123 must balance the reciprocal energy exchange
dE⌫321 in a TE situation. Otherwise there would be a net heating/cooling of

 
Black enclosure 
at temperature T

Reflecting element 

dA2 within enclosure

dA3

dA1

r1
r2

2π-ϕ
ϕ

θ1

θ
θ
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Figure J.1 Exchange of radiative energy within a hohlraum.
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one of the areas at the expense of the other, and this violates the conditions
of the hohlraum. Let’s first consider the exchange from 1 to 3 via 2. The
radiative energy reflected by dA2 and intercepted by dA3 is given by that
‘emitted’ into the solid angle subtended by dA3, dA3 cos ✓3/r2

2,

dE⌫123 = I+
⌫r2(✓

0,�0; ✓,�) cos ✓
dA3 cos ✓3

r2
2

d⌫dt. (J.2)

The reflected radiance I+
⌫r2 is related to the radiance I�⌫ (✓0,�0) arriving at

dA2 through Eq. 5.15

I�⌫r2(✓
0,�0) = cos ✓0⇢(⌫; ✓0,�0; ✓,�)I�⌫1(✓

0,�0)d!21 (J.3)

where

d!21 =
dA1

r2
1

cos ✓1 (J.4)

is the angle subtended by dA1 from the point dA2. Putting these together,
we find that the rate of energy exchange per unit frequency from 1 to 3 via
2 is

dE⌫123

d⌫dt
= I�⌫1(✓

0,�0)⇢(⌫; ✓0,�0; ✓,�) cos ✓0


dA1

r2
1

cos ✓1

�

cos ✓



dA3

r2
2

cos ✓3

�

.

(J.5)
Now consider energy exchange in the reverse direction, 3 to 1 via 2. The

rate of energy per unit frequency reflected at dA2 into the direction of dA1

is
dE⌫321

d⌫dt
= I+

⌫r2(✓,�; ✓0,�0) cos ✓0dA2



dA1

r2
1

cos ✓1

�

. (J.6)

But the reflected radiance at dA2 is given by

I+
⌫r2(✓,�; ✓0,�0) = I�⌫3(✓,�))⇢(⌫; ✓,�; ✓0,�0) cos ✓d!23 (J.7)

where d!23 = dA3 cos ✓3/r2
2 is the solid angle subtended by dA3 at the point

dA2. Putting these together, we find for the energy exchange rate

dE⌫321

d⌫dt
= I�⌫3(✓,�)⇢(⌫; ✓,�; ✓0,�0) cos ✓0 cos ✓



dA3

r2
2

cos ✓3

� 

dA1

r2
1

cos ✓1

�

.

(J.8)
Equating the two rates of energy exchange, we find

I�⌫1(✓
0,�0)⇢(⌫; ✓0,�0; ✓,�) = I�⌫3(✓,�)⇢(⌫; ✓,�; ✓0,�0). (J.9)

But in TE, the two radiances are just the Planck function, I�⌫1 = I�⌫3 = B⌫ .
Therefore

⇢(⌫; ✓0,�0; ✓,�) = ⇢(⌫; ✓,�; ✓0,�0). (J.10)
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Given the above reciprocity property for the BDRF, we now show that
reciprocity also applies to the reflected irradiance. Placing the two definitions
together, we have

⇢(⌫; �⌦̂0, 2⇡) =

Z

+
d! cos ✓⇢(⌫; �⌦̂0, ⌦̂) (J.11)

⇢(⌫; 2⇡, ⌦̂) =

Z

�
d!0 cos ✓0⇢(⌫; �⌦̂0, ⌦̂). (J.12)

The first quantity, ⇢(⌫; �⌦̂0, 2⇡) is the directional-hemispherical reflectance,
and the second quantity, ⇢(⌫; 2⇡, ⌦̂) is the hemispherical-directional reflectance.
If we evaluate the first of the above equations at ⌦̂0 = ⌦̂, and place primes on
the angular integration variables (realizing that they are dummy variables),
we have

⇢(⌫; �⌦̂, 2⇡) =

Z

+
d!0 cos ✓0⇢(⌫; �⌦̂, ⌦̂0). (J.13)

Invoking reciprocity of the BDRF, ⇢(⌫; �⌦̂, ⌦̂0) = ⇢(⌫; �⌦̂0, ⌦̂), we have

⇢(⌫; �⌦̂, 2⇡) =

Z

+
d!0 cos ✓0⇢(⌫; �⌦̂0, ⌦̂). (J.14)

But this is the same expression for the hemispherical-directional reflectance,
Eq. J.12. Thus we find the desired reciprocity relationship

⇢(⌫; �⌦̂, 2⇡) = ⇢(⌫; 2⇡, ⌦̂). (J.15)



Appendix K

Harmonic Electromagnetic Plane Waves

We review in this appendix some basic aspects of light. We use light as a
shorthand for electromagnetic radiation, and do not necessarily imply visible
light, which occupies only a small portion of the electromagnetic spectrum.
Some simple mathematical fundamentals are provided in Appendix F, in-
cluding a discussion of elementary concepts such as coordinate systems, the
Dirac delta-function, and the solid angle. In this section, we restrict our
attention to a review of electromagnetic plane waves, and their polariza-
tion properties. More advanced topics concerning the Stokes vector rep-
resentation, partial polarization, and the Mueller matrix are described in
Appendix L.

K.1 Harmonic Plane Electromagnetic Waves

Light is an electromagnetic phenomenon, along with gamma-rays, X-rays,
and radio waves. It is described by solutions of the famous set of equations of
J. C. Maxwell, formulated in 1865. These equations in di↵erential form and
in SI units for an isotropic, homogeneous, non-dispersive, and source-free
medium, are

r ⇥ H = ✏
@E

@t
+ �E (a); r ⇥ E = �µ

@H

@t
(b);

r · H = 0 (c); r · E = 0 (d). (K.1)

Here r⇥ and r· denote the curl and divergence operators, respectively, E
and H are the electric and magnetic fields, t is time, ✏ is the permittivity, �
is the conductivity, and µ is the permeability, all properties of the medium.
A net charge of zero throughout the medium is assumed, and the medium
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is assumed to be lossless, so that ✏ is a real-valued quantity. The basis of
these equations and the medium properties are described in various texts.1

A solution of the coupled partial di↵erential equations in Eqs. K.1 is
sought for the case in which both E and H are harmonic functions of time,
i.e. the temporal variation is of the form cos!t or <[exp(�i!t)], where i =p�1 is the imaginary unit and < denotes the real part. Let us assume a
non-conducting, non-magnetic, lossless dielectric medium, for which � = 0,
µ = µ0, and ✏ is a real-valued quantity. Taking the curl2 of Eqs. K.1a and
K.1b, using the vector identity r ⇥ (r ⇥ a) = r(r · a) � r2a together
with Eqs. K.1c and K.1d, and replacing @2/@t2 by (�i!)2, we find (since
✏ is assumed to be time-independent and does not vary with position in a
homogeneous medium) that both E and H satisfy the same second-order
reduced wave equation or Helmholtz equation

�r2 + k2
�

E = 0;
�r2 + k2

�

H = 0; k2 =
!2

c02
; c0 =

1p
µ0✏

. (K.2)

Here c0 is the speed of light in the medium, whereas c = 1/
p

µ0✏0 = 2.9979⇥
108 [m · s�1] is the speed of light in vacuum. It can readily be shown that
harmonic electromagnetic plane waves of the form

E(r, t) = <
n

E0e
i(k⌦̂·r�!t)

o

H(r, t) = <
n

H0e
i(k⌦̂·r�!t)

o

(K.3)

are solutions of Eq. K.2, where E0 and H0 are complex constant vectors. The
unit vector ⌦̂ points in the propagation direction of the plane wave. k = !/c0

is the wavenumber [cm�1], and ! is the angular frequency [rad · s�1], related
to the ordinary frequency ⌫, [cycles·s�1] or [Hz], by ! = 2⇡⌫. These solutions
are called plane waves because at any fixed time t they have the same value
at each point in any plane normal to ⌦̂, i.e. at any fixed time t, E(r, t) and
H(r, t) are constant vectors in any plane defined by ⌦̂ · r = constant.

Note that we have restricted our attention to harmonic electromagnetic
plane waves having a sinusoidal variation in time and space. According to
Eq. K.3, each Cartesian component of E and H will be of the general form

1 The constitutive relations D = ✏E and B = µH, where D is the displacement vector and B is
the magnetic flux vector, are included in Eqs. K.1. See Stratton, J. A., Electromagnetic
Theory, McGraw-Hill Book CO., New York, 1941. Jackson, J. D. Classical Electrodynamics,
New York, Wiley, 1975. A good modern text is Gri�ths, D. J., Introduction to
Electrodynamics, Prentice-Hall, 1981.

2 For readers unfamiliar with vector analysis, see for example, Edwards (1990).
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(with j denoting either x, y, or z)

Ej(r, t) = ej cos(k⌦̂ · r � !t + �j)

Hj(r, t) = hj cos(k⌦̂ · r � !t + �j) (K.4)

where ej and hj are arbitrary real coe�cients, and �j and �j are arbitrary
phase angles.

The harmonic electromagnetic plane waves in Eqs. K.3 are solutions of
Helmholtz equation (Eq. K.2) for arbitrary values of E0 and H0, but must
also satisfy Maxwell’s equations. Substituting Eqs. K.3 in Eqs. K.1a and
K.1b (with � = 0), we find that

p
µ ⌦̂ ⇥ H0 =

p
✏ E0;

p
✏ ⌦̂ ⇥ E0 =

p
µH0 (K.5)

from which it follows that E0 · H0 = 0, E0 · ⌦̂ = H0 · ⌦̂ = 0, so that both
E0 and H0 are orthogonal to each other and to the propagation direction
⌦̂. In other words, E0, H0, and ⌦̂ form a right-handed triad, and both E0

and H0 are transverse to the the propagation direction ⌦̂.
If we choose the coordinate system such that ⌦̂ is along the positive z-axis,

we can write

E = Ek + E?; Ek = Ekêk; E? = E?ê? (K.6)

H = Hk + H?; Hk =

r

✏

µ
êz ⇥ Ek = Hkê?; H? =

r

✏

µ
êz ⇥ E? = H?êk.

(K.7)

where Hk = �
q

✏
µEk, and H? =

q

✏
µE?. Here each of the components Ek,

E?, Hk, and H? satisfies the Helmholtz equation, and ê?, êk, and êz are
unit vectors forming a right-handed triad

ê? · êk = ê? · êz = êk · êz = 0, ê? ⇥ êk = êz. (K.8)

Ek and E? are electric field components that are parallel and perpendicular
to any plane containing the z-axis.3

From Eqs. K.3 and K.6–K.7, it follows that

Ek = <{Ek}; E? = <{E?}. (K.9)

where the complex amplitudes Ek and E? are given by

Ek = ak exp[i(kz � !t + �k)] (K.10)

E? = a? exp[i(kz � !t + �?)]. (K.11)

3 The plane spanned by the interface normal and êk is the plane of incidence in the case of
reflection and refraction at a plane interface.
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Here ak and a? are real-valued electric field amplitudes and �k and �? are
real-valued phase angles. Similar forms can be derived for the magnetic com-
ponents.

If we define the wavenumber in vacuum, k0 ⌘ !/c ⌘ 2⇡/�0, where �0 is
the vacuum wavelength, we can express Eqs. K.9–K.11 in a more compact
form

Ek,? = <�ak,? exp
�

i
⇥

(k0mz � !t) + �k,?
⇤  

(K.12)

where, in general, m is the complex refractive index of the medium: m =
mr + imi. In a lossless medium (assumed above) mi = 0, so that m = mr ⌘
c/c0 = �0/� = k/k0 =

p

✏0/✏, the real part of the refractive index, the
ratio of the propagation speed in vacuum to that in the medium.4 These
solutions apply to an ideal harmonic or monochromatic (single frequency)
plane wave of infinite transvese spatial extent (�1 < x, y < +1) traveling
in the positive z-direction. The value of mr varies slightly with frequency in
natural media: in air it is very close to unity – for example, mr(� = 1 µm) =
1.0 + 2.892 ⇥ 10�4. In pure water, mr(� = 486 nm) = 1.3371.

The solution for a conducting (lossy) medium (� 6= 0) is worked out
in Exercise K.2. In this case, the wave is damped or attenuated along the
propagation direction. The solution can be expressed mathematically in the
same form as Eqs. K.12, except that the appearance of a ‘damping factor’
exp(�k0miz) (see Eq. K.25), where mi is the imaginary part of the com-
plex refractive index m = mr + imi, shows that the presence of a finite
conductivity is associated with absorption along the propagation direction.

K.1.1 Energy Transfer

Light waves transmit energy. It is this feature that makes it possible to detect
light away from sources, and it explains how the sun warms the earth and
ultimately sustains life. The rate at which energy is transported by light is
expressed by the Poynting vector S. This quantity is related to the electric
and magnetic field vectors, E and H through S = E ⇥ H. This expression
gives both the magnitude and direction of instantaneous energy flow. In
other words, E ⇥ H is the radiative power per unit area carried along the
propagation direction.

4 There are actually two light speeds to consider: the phase speed, v
p

= c0 = !/k, and the group
speed, v

g

= @!/@k. Since k = m(!)!/c, and m(!) is generally a function of frequency, !
(that is to say, the medium is dispersive) then v

p

6= v
g

. However in a non-dispersive medium,
v
p

= v
g

.
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For time-harmonic plane-wave solutions it follows from Eqs. K.6–K.9 that

S = E ⇥ H =

r

✏

µ
[Ekêk + E?ê?] ⇥ [Ekêz ⇥ êk + E?êz ⇥ ê?]

=

r

✏

µ
[EkEk + E?E?]êz =

r

✏

µ
[<(Ek)<(Ek) + <(E?)<(E?)]⌦̂. (K.13)

Here ⌦̂ is a unit vector in the propagation direction of the wave. We are
seldom interested in the instantaneous value of S. Of greater interest is the
time-averaged value

hSi =
1

hti
Z hti

0
dtS(t) (K.14)

where hti is the averaging time. For a periodic function, hti is an integral
number of wave periods, where one period is 1/⌫. It is shown in Exercise K.2
that the time average of the product of two time-harmonic functions of the
same periodicity is

h<{a(t)} · <{b(t)}i =
1

2
<{ab⇤} =

1

2
<{a⇤b} (K.15)

where a(t) and b(t) both are of the form in Eqs. K.10 and K.11. The asterisk
denotes complex conjugation. Using this result in Eq. K.13, we find that the
flow in the general direction ⌦̂ is

hSi =
mr

2µc

n ✏

2
[Ek · E⇤

k + E? · E⇤
?]
o

⌦̂ (K.16)

where we have used c0 = 1/
p

µ0✏ and mr = c/c0 =
p

✏/✏0. The quantity
in the curly brackets is the energy density U = Ue + Um of the harmonic
plane electromagnetic wave, consisting of the sum of electric field (Ue) and
magnetic field (Um) energy densities. Equation K.16 shows that the energy
density of a harmonic plane electromagnetic wave propagates with velocity
c0 = c/mr in the ⌦̂-direction.

Also, Eq. K.16 shows that a plane electromagnetic wave may be considered
to have two components

Ik = (mr/2µc)|Ek|2 and I? = (mr/2µc)|E?|2. (K.17)

Ik and I? are called the intensity components.5 Equation K.16 tells us that
the average radiative power is Ik + I?. The fact that light waves have these
two independent components accounts for the phenomenon of polarization

5 This definition of intensity is is close to our definition of irradiance (Chapter 2).
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Figure K.1 A simple wave packet. (a) The wave a cos(kz�!t). (b) The wave
2a cos

⇥

1
2 (z�k � t�!)

⇤

. (c) The wave packet 2a cos
⇥

1
2 (z�k � t�!)

⇤

cos(kz �
!t). The ordinate represents one of the two independent variables (t or z)
while the other is kept constant.

associated with the transverse character of electromagnetic waves. It dis-
tinguishes light waves from scalar waves, such as sound waves in liquids
or gases, which are longitudinal waves having only a single energy-carrying
component.

K.1.2 Addition of Plane Waves

The harmonic or monochromatic plane wave solutions are elementary solu-
tions to Maxwell’s equations. Clearly, they are idealizations. Any real wave
is a linear superposition of monochromatic plane waves of di↵erent frequen-
cies, directions, and phases. If all waves in a group have almost the same
frequency, we have a wave packet. Consider a wave packet consisting of only
two waves, both propagating along the z-axis, and having slightly di↵erent
frequencies and wave numbers. Let the waves have the same amplitude ak,
and consider only one polarization component, say Ek. The total electric
field is the coherent sum of the individual waves, i.e.

Ek(z, t) = <
n

akei(kz�!t+�1) + akei[(k+�k)z�(!+�!)t+�2]
o

(K.18)

where �! and �k are the (small) di↵erences in frequencies and wave numbers,
and �1 and �2 are the respective phase angles. We may combine the two terms
by using the well-known relationship between the cosine-function and the
complex exponentials. The result is

Ek(z, t) = 2ak cos[(1/2)(z�k � t�! + �0)]<
n

ei(kz�!t+�)
o

(K.19)

where ! = ! + 1
2�!, k = k + 1

2�k, and � = (�1 + �2)/2. These are the
mean angular frequency, the mean wavenumber, and the mean phase angle,
respectively. �0 is the phase angle di↵erence �1 � �2. The resultant wave is a
plane wave of angular frequency ! and wavelength 2⇡/k propagating in the
z-direction. However, the amplitude of the wave is not constant, but varies
with time and position, between the values of 2ak and zero (see Fig. K.1).

This is a mathematical description of the phenomenon of beats. The two
waves change from being totally in phase (where constructive interference
occurs) to being totally out of phase (where destructive interference occurs).
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If we set the two frequencies or wave numbers equal, we have two monochro-
matic plane waves with di↵ering phases, i.e.

Ek(z, t) = 2ak cos [(1/2)(�1 � �2)] <
n

ei(kz�!t+�)
o

. (K.20)

When the phases are equal, �1 = �2, the amplitude in Eq. K.20 has its
maximum value, 2ak. Again we have constructive interference for in-phase
waves. For �1 � �2 = ±n⇡ (n = 1, 2, · · · ), we obtain a zero amplitude for
out-of-phase waves, and the destructive interference is complete.

K.1.3 Standing Waves

We now consider the superposition of two plane waves travelling in opposite
directions. This situation will lead us to the concept of a standing wave, a
topic of importance to the subject of blackbody radiation. We imagine two
oppositely-directed waves of the same frequency, phase and amplitude (the
latter we set equal to unity). Again, consider only one component (say the
parallel component) of the electric field. The total E-field component is

Ek(z, t) = <
n

ei(kz�!t�⇡/2) + ei(�kz�!t�⇡/2)
o

(K.21)

where we have chosen the phase � = �⇡/2 for convenience. Using the rela-
tionship cos kX = (1/2)[exp(ikX) + exp(�ikX)], we write Eq. K.21 as

Ek(z, t) = 2 cos(kz + ⇡/2)<
n

e�i!t
o

= 2 sin(kz) cos(!t).

The result is a wave that neither moves forward or backward. It vanishes at
values of z for which sin(kz) = 0, that is, where kz = n⇡ (n = 0, 1, · · · ). In
between these nodes, the disturbance vibrates harmonically with time. The
maxima are located at the anti-nodes, at kz = n⇡/2 (n = 1, 3, · · · ).

For a standing wave located in a finite cavity, the electric field must vanish
at the boundaries, say at z = 0 and at z = L. The nodes will of course
correspond with the boundaries, so that k = n⇡/L (n = 0, 1, · · · ). For
example, the two lowest-order wave-modes are given by

E(1)(z, t) = 2 cos(⇡z/L) cos(!t); E(2)(z, t) = 2 cos(2⇡z/L) cos(!t).

The n = 1 wave-mode is fixed at the two ends; the n = 2 wave-mode is fixed
at both ends and in addition is fixed at the center, z = L/2. Higher-order
wave-modes E(n) have n + 1 nodes, etc.

In a three-dimensional cavity (taken to be cubic of sides L for conve-
nience), there are three independent components (actually six, taking into
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account the perpendicular component). Each has its own wave number, so
that

kx = nx⇡/L; ky = ny⇡/L; kz = nz⇡/L (nx, ny, nz = 0, 1, · · · ).
In vector notation, we write k = ⇡n/L where n is a unit vector in a three-
dimensional pseudo-space with Cartesian components nx, ny, and nz.

The above results are applicable to the study of blackbody radiation and is
used in the derivation of the Planck distribution in Appendix G. A radiation
field may be thought of as a system of standing waves in a large cavity,
or hohlraum. The cavity ‘walls’ are unimportant except for establishing the
boundary conditions. In the quantum theory each standing wave may be
associated with a photon, a particle of light having a quantized energy and
momentum given by

photon energy = Ep = h⌫ =
hc

�
=

h

2⇡
! =

h

2⇡
c|~k|

photon momentum = Pp =
h⌫

c
=

h

�
=

h

2⇡
|~k|.

where h is Planck’s constant = 6.63 ⇥ 10�34 [J · s].
In this appendix we found that the linear superposition of electromag-

netic fields leads to the phenomena of beating, interference, and standing
waves. These are all results of coherent addition of light waves, and is to be
contrasted with the very di↵erent situation of incoherent addition, which we
are mainly concerned with in this book.

K.1.4 Polarization

We now consider the way in which the electric field vector of a harmonic
plane wave varies in space and time. Defining the variable part of the phase
factor of Eqs. K.9–K.11 as � = kz � !t, we may write the electric field
components as

Ek = ak cos(�+ �k); E? = a? cos(�+ �?). (K.22)

We can determine how E varies in space by eliminating �. It is easily shown
that

✓

Ek
ak

◆2

+

✓

E?
a?

◆2

� 2
EkE?
aka?

cos � = sin2 � (K.23)

where � ⌘ �k��?. This is the equation of an ellipse, which is inscribed into a
rectangle whose sides are parallel to the coordinate axes, and whose lengths
are 2ak and 2a? (see Fig. K.2).
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Figure K.2 Elliptically polarized wave. The vibrational ellipse for the elec-
tric vector. The ellipse is inscribed into a rectangle whose sides are parallel
to the co-ordinate axes whose lengths are 2ak and 2a?. The ellipse touches
the sides at the points (±ak, ±a? cos �) and (±ak cos �, ±a?).

At a given point in space, the tip of the electric field vector will therefore
trace out an ellipse – the wave is said to be elliptically polarized. The prop-
erties of the ellipse are determined by three quantities: either ak, a?, and
� = �k � �?; or by the major and minor axes, a and b, and the angle  . The
latter is the angle the major axis makes with the horizontal (parallel axis)
as shown in Fig. K.2. It may be shown that these quantities are related to
the first set by

a2 + b2 = a2
k + a2

?; ±ab = aka? sin �;

tan 2 = (tan 2↵) cos �; tan↵ =
ak
a?

. (K.24)

K.1.5 Polarization: linear and circular

The special cases of linear and circular polarization occur when the ellipse in
Eq. K.23 degenerates into either a straight line or a circle. When the phase
di↵erence of the two components is an integral multiple of ⇡, that is when
� = �k � �? = m⇡ for (m = 0, ±1, ±2, · · · ), Eq. K.23 yields

E?
Ek

= (�1)m
a?
ak

.

In this case, E is linearly polarized. The two components bear a constant
ratio to one another. Considering the time-dependent factor � (see Eq. K.22),
we see that the E-vector oscillates in magnitude (with angular frequency !)
along a straight line, from the value �ak to +ak. When the components
have equal magnitude, ak = a? = a, and in addition the phase angles are
in quadrature, that is � = �k � �? = m⇡/2 where m = (±1, ±3, ±5, · · · ),
Eq. K.23 reduces to the equation for a circle, i.e.

E2
k + E2

? = a2.

Additional information on the Stokes-vector representation of light, and
other advanced topics, is given in Appendix L and in other texts.6 In the

6 Plane waves, polarization, and the Stokes parameters are discussed in the following
references: Chapter 1 of Born and Wolf (1980), Coulson (1988), and Kliger et al. (1990).



Exercises 557

natural environment light is partially-polarized or in some limiting situa-
tions, unpolarized. Simply stated, the latter means that there is no prefer-
ence between the parallel- and perpendicular-directions, and no permanent
phase relationships exist between these two components. Sunlight, di↵use
visible light emanating from an optically-thick cloud cover, and thermal
IR emission are important examples of (nearly) unpolarized light. Rayleigh
scattering from a clear sky is a counter-example, as the degree of linear
polarization of scattered light can be quite high. Despite its importance in
some applications, we will ignore polarization on the grounds that we are
mainly concerned with the energy flow, rather than the accurate radiance
distribution. This approach is called the scalar approximation. Even though
caution is advised, it often provides reasonably accurate results even for the
directional distribution of radiation. In addition there are ways to estimate
the polarization by making first-order corrections to scalar solutions (for
example, see §7.2).

Exercises

K.1 Consider a harmonic plane electromagnetic wave propagating in the z-
direction through an isotropic, homogeneous medium with conductivity
� and permittivity ✏. For this geometry Maxwell’s equations simplify
to

@2Ek
@z2

= µ✏
@2Ek
@t2

+ µ�
@Ek
@t

@2E?
@z2

= µ✏
@2E?
@t2

+ µ�
@E?
@t

.

(a) Show that the electric field strength diminishes along the beam
according to the exponential Extinction Law (§2.7), that is, the above
set of equations has a solution of the form

Ek = ak exp{i[(!t � k0mrz)] � k0miz} (K.25)

where

k0 =
2⇡

�0
=
!

c
= !

p
µ0✏0

and mr and mi are the real and imaginary parts of the complex refrac-
tive index.

A practical non-mathematical approach is found in Shurcli↵, W. A. and S. S. Ballard,
Polarized Light, Van Nostrand, Princeton, 1964; An influential journal review article is
Hansen and Travis (1974).
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(b) Find the expressions for the two quantities, mr and mi, and for
the speed of light in the medium in terms of the electric and magnetic
properties of the medium. Show that the absorption coe�cient ↵ =
k0mi is given by

↵ = !

v

u

u

t

✏µ

2

"

�1 +

r

1 +
⇣ �

!✏

⌘2
#

.

K.2 (a) Show that the real part of the time-average of the product of two
complex quantities, A⇤ and B⇤ (having the same periodicity) is given
by

h<(A) · <(B)i =
1

2
<(AB⇤). (K.26)

(b) Solve for the H-components of the plane wave traveling in a di-
electric medium. From these expressions, show that the Poynting vector
is given by Eq. K.16.



Appendix L

Representations of Polarized Light

L.1 Stokes Parameters

In addition to the frequency, three independent quantities are needed to
completely specify a time-harmonic electromagnetic plane wave. Since the
quantities used in Appendix K are combinations of amplitudes and angles,
which have di↵erent units, it is more convenient to use quantities having the
same dimensions. In 1852 G. G. Stokes introduced his four parameters

I = a2
k + a2

?; Q = a2
k � a2

?; U = 2aka? cos �; V = 2aka? sin �.
(L.1)

Only three of these are independent, since I2 = Q2 + U2 + V 2. We already
found that I is the energy carried by the wave. The other parameters are
related to the angle  (0   < ⇡) specifying the orientation of the ellipse
(Fig. K.2) and the ellipticity angle, �(�⇡/4  �  ⇡/4), which is given by
tan� = ±b/a. The relationships are as follows (Born and Wolf, 1980):

Q = I cos 2� cos 2 ; U = I cos 2� sin 2 ; V = I sin 2�. (L.2)

L.2 The Poincaré Sphere

Equations L.2 provide a simple geometrical representation of all the di↵er-
ent states of polarization: Q, U and V may be regarded as the Cartesian
coordinates of a point P on a sphere of radius I, such that 2� and 2 are
the spherical coordinates of this point (Fig. K.2). Every possible state of po-
larization of a plane wave is represented by a point on this Poincaré Sphere,
developed by H. Poincaré in 1892. A point in the upper hemisphere (� pos-
itive) represents right-handed polarization, that is, when the observer views
the wave ‘head-on’, ~E rotates in a clockwise direction. Left-handed polariza-
tion corresponds to a point in the lower hemisphere (� negative); when the
observer views ~E ‘head on,’ it rotates in a counter-clockwise direction.
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Figure L.1 Poincaré’s representation of the state of polarization of a
monochromatic wave. (The Poincaré sphere).

Linear polarization occurs when the phase di↵erence � is zero, or an in-
tegral multiple of ⇡. From Eq. L.1, V is zero, and from Eq. L.2, the z-
component of the point P on the Poincaré sphere is zero. Linear polarization
is represented by points in the equatorial plane. For circular polarization,
ak = a?, and � = ⇡/2 or � = �⇡/2, according to whether the polarization
is right- or left-handed. Thus right-handed circular polarization corresponds
to the north pole (Q = U = 0, V = I), and left-handed circular polarization
corresponds to the south pole (Q = U = 0, V = �I). Elliptical polariza-
tion corresponds to a general point on the sphere, other than those in the
equatorial plane or at the poles.

The Poincaré Sphere is useful in giving a simple geometrical visualization
of the Stokes parameters. It applies only to a light wave which is perfectly
polarized, an idealization which seldom occurs in nature. We now consider
the general situation in which correlation between the two electric field com-
ponents is not perfect.

L.3 Partial Polarization and the Incoherency of Natural Light

So far we have assumed that light is a plane wave with constant amplitude
and phase di↵erence between the two components. However, a more realistic
view is that light is a mixture of plane waves, whose ~E-field oscillates over
a staggering number of cycles in one second. For example for visible light
of � = 500 nm, a wave oscillates at 6 ⇥ 1014 cycles in one second. Even a
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detector with a very short integration time (say, 10�4 s) will time-average
over many oscillations. The e↵ective Stokes parameters measured by a de-
tector is therefore not the instantaneous values (given by Eq. L.2), but the
time-averaged values

I =
D

a2
k
E

+
⌦

a2
?
↵

; Q =
D

a2
k
E

�⌦a2
?
↵

; U =
⌦

2aka? cos �
↵

; V =
⌦

2aka? sin �
↵

.

(L.3)
Generally, a light wave consists of a mixture of waves from di↵erent

sources, which are statistically uncorrelated over the averaging time of a
detector. Suppose we pass the light from such a ‘natural’ source, e. g. a
hot filament, through a filter which passes only a narrow band of frequen-
cies. Even though the frequencies of all the waves are practically equal, the
phase angles will di↵er from one wave to the other. We may visualize the
E-components at a point in space as being harmonic in time over immea-
surably short time intervals (of the order of 10�8 � 10�9 s), but ‘switching’
randomly from one phase angle to another over longer time intervals. If this
switching occurs in completely random ways, there will be as many positive
phase di↵erences as negative phase di↵erences, or in other words, the time
averages of the products 2aka? cos � and 2aka? sin � will be zero. Similarly,
we can visualize the amplitudes being harmonic, and of specific amplitudes
over short time intervals, but in a mixture of uncorrelated waves, the av-
erage values of the two polarization components will be the same, that is,
ha2

ki = ha2
?i. Thus, for an uncorrelated mixture of plane waves, Q, U , and

V all vanish. This situation is known as unpolarized light. Examples of un-
polarized light are direct sunlight, di↵use skylight from an overcast sky, and
infrared thermal radiation. However, most scattered light in natural media
is partially polarized. It is clear that if some correlation exists between am-
plitudes or phases, Q, U , and V may be finite, but smaller in value than
in the case of a mixture of coherent waves. Thus, we see that the di↵erence
between coherent and incoherent light is the degree of correlation between
the two E-field components. In this case, the relationship I2 = Q2 +U2 +V 2

(valid for fully polarized light) becomes an inequality, I2 � Q2 + U2 + V 2.
This property gives us a quantitative measure of the degree of polarization,
defined as

P =

p

Q2 + U2 + V 2

I
. (L.4)

What is the physical significance of the Stokes parameters? We can relate
I, Q, U , and V to a set of ideal measurements, involving a linear polarizer
(such as a polaroid filter), and a retardation plate (such as a thin calcite
crystal). The polaroid removes the ~E-field component of light that passes
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through in a direction perpendicular to its axis of polarization, and trans-
mits the other component with 100% transmission1. The retardation plate
will a↵ect the relative phases of the two components, i. e. it will introduce a
relative phase shift, �. Suppose we have a radiation detector which measures
the radiative energy which has passed through a polarizer-retarder combi-
nation. It may be shown2 that the radiance of transmitted light is given
by

I( , �) = (1/2)
⇥

I 0 + Q0 cos 2 + (U 0 cos � + V 0 sin �) sin 2 
⇤

(L.5)

where primed quantities represent the Stokes parameters of the incident
light, � = �k � �? is the retardation of the ?-component, relative to the
k-component, and  is the angle of the polarizer axis with the horizontal
(k) axis. It is clear from Eq. L.5 that we can use a number of measurements
of the incoming beam (varying  ) to solve for the Stokes parameters of the
incident light. If we first consider only a linear polarizer in the beam, so that
there is no retardation (� = 0), and make measurements at  = 0�, 45�, 90�,
and 135�, the first three Stokes parameters may be obtained from these four
measurements of I( , �):

I 0 = I(0�, 0) + I(90�, 0) (a)

Q0 = I(0�, 0) � I(90�, 0) (b)

U 0 = I(45�, 0) � I(135�, 0) (c). (L.6)

It is clear from Eq. L.6 that the fourth component V 0 cannot be mea-
sured with a linear polarizer alone: a retarder is needed. Suppose we use a
polarizer/quarter-wave plate combination. For � = ⇡/2, we get

V 0 = I(45�,⇡/2) � I(135�,⇡/2). (L.7)

The physical significance of the Stokes parameters can now be stated in
terms of preferences as follows: (1) Q gives preference to the k-component
over the ?-component; (2) U gives preference to the component making
an angle of 45� over that making an angle of 135�; and V gives preference
to the 45� component over the 135� component when passed through a
polarizer-retarder combination. If unpolarized light were subjected to these
measurements, the intensities I( , �) would be independent of  and �, so
that Q0 = U 0 = V 0 = 0.

1 Ideally, a polaroid filter would have no e↵ect on that component parallel to the polarization
axis, but in all real polaroids, some absorption will take place along this axis also.

2 The equivalent form of Eq. L.5 in Chandrasekhar (1960), Eq. 163 (p. 129) has been shown by
Hansen and Travis (1974) to have an error in sign. This error arises in the inconsistency
between Chandrasekhar’s definition of phase di↵erence in his Eq. 154 (p. 28) with the
definition of phase di↵erence employed for the Stokes parameters.
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If we were to add two polarized light beams together, what is the polariza-
tion of the mixture? We found earlier that if we add together two coherent
plane waves of the same frequency and amplitude, we obtained an intensity
that varies between zero and twice the amplitude of an individual wave.
This occurred because of mutual interference, which depended upon the
phase angle di↵erence between the two waves. However, if we add together
two partially-polarized waves with no (time-average) correlation between the
phases, the net result is that the Stokes parameters of the mixture is the sum
of the individual Stokes parameters. This is the most important property of
the Stokes parameters. In this book we consider such light mixtures, or in
other words, we consider incoherent light fields.

Despite our emphasis on incoherent light in this book, it is important to
remember that coherent processes are also at work in the natural environ-
ment; otherwise we would be deprived of a host of beautiful phenomena, such
as rainbows, iridescence, haloes, mirages, etc..3 This co-existence of coherent
and incoherent light is explained by the notion of partial coherence, and the
spatial scales over which the various phenomena occur. As discussed in §3.2,
a natural radiation field is coherent over an inner scale, called the coher-
ence length, d (usually d ⇡ �). Thus, light transmitted through a dielectric
particle will undergo coherent interaction with its mutual parts, provided
the circumference of the particle is of the order of �. On the other hand,
if the particle is much larger than �, the various beams will behave as if
they are refracted and transmitted independently.4 In this case, the laws of
geometrical optics provide a good description of the overall interaction.

L.4 The Stokes Vector Representation of Polarized Light

The Stokes vector ~I is a four-vector having the four Stokes parameters as its
components,

~I = [I Q U V ]T . (L.8)

where the superscript T denotes the transpose. In view of the linearity prop-
erty of light fields, the Stokes vector of a mixture of two incoherent light

3 For a lucid description of coherent processes in nature, this classic text should be consulted:
Minnaert (1954). A later edition of this book was published in 1995 by Springer, with color
photos by Pekka Parviainen (Minnaert, 1995).

4 This description assumes that the particle is optically homogeneous. If the particle is
inhomogeneous, scattering from irregularities causes the internal radiation field to be
multiply-scattered, and mutual interference complicates the description. See §3.2 for more
discussion.
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fields whose Stokes vectors are ~I1 and ~I2 is simply ~I = ~I1 + ~I2, or

~I = [I1 Q1 U1 V1]
T + [I2 Q2 U2 V2]

T = [I1 + I2 Q1 + Q2 U1 + U2 V1 + V2 ]T .
(L.9)

The additivity principle also tells us that an unpolarized radiation field
can be represented as the sum of two linearly-polarized fields which have
equal E-field components and have their polarization directions normal to
one another. Thus, two linearly-polarized incoherent light fields of equal
intensity (I/2) add together to give an unpolarized field:

~I = (I/2)[1 1 0 0 ]T + (I/2)[1 � 1 0 0 ]T = I[1 0 0 0 ]T . (L.10)

Note that the first vector in Eq. L.10 has its polarization direction in the
k-direction, so that from Eq. L.6, the component in the 90�-direction is zero.
The second vector has a zero component in the 0�-direction, so that Q is
the negative of that of the first vector.

It is also easy to see that an arbitrarily-polarized light field may be repre-
sented by the sum of an unpolarized (u) and a perfectly-polarized (p) light
field

~I = ~Iu + ~Ip = [I �
p

U2 + Q2 + V 2 0 0 0 ]T + [
p

U2 + Q2 + V 2 Q U V ]T .
(L.11)

In view of the additivity of Stokes parameters it is easy to see why it is
possible to represent any arbitrarily-polarized, incoherent radiation field as
the linear sum of an unpolarized part Iu and a 100% polarized part, Ip,
I = Iu + Ip. The degree of polarization is then written P = Ip/I, which
gives us a more intuitive interpretation of P than provided by Eq. L.4.

For perfectly-polarized light (~Iu = 0), ~I is a vector whose tip lies on the
Poincaré sphere. We may visualize partially-polarized light as a vector ~Ip, to
which is added a ‘smeared-out’ component of radius ~Iu. Over the averaging
time period hti, the tip of the vector ~Iu traces out with equal probability all
4⇡ steradians of the Poincaré sphere.

L.5 The Mueller Matrix

The action of any optical device on an incoherent light beam can be thought
of as producing a Stokes vector which is a linear combination of the Stokes
components of the light. Formally, we can represent the e↵ect of an optical
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device in terms of a Mueller matrix operation on ~I, or in mathematical terms

~I = [I Q U V ]T = M~I 0 =

2

6

6

4

M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

3

7

7

5

[I 0 Q0 U 0 V 0 ]T .

(L.12)
The input radiation field components are denoted by primes, and the out-
put radiation field components are unprimed. The components Mij may be
derived for various types of polarization analyzers, including polaroid filters
(or in general dichroic linear polarizers) and retarding plates (see Coulson
(1988), pp. 577–584). We are often concerned with the action of scattering
particles on the state of polarization of an incident radiation field. This ac-
tion can also be represented as a linear matrix operator, called the scattering
matrix, S, whose elements depend upon the angle ⇥ between the incident
and scattered wave (the scattering angle), i.e., Sij = Sij(⇥). In addition
Sij depends upon the light-interaction properties of the particles. For the
simplest type of scattering, i.e. Rayleigh scattering, the scattering matrix is
given by

SRay(⇥) =
3�

4⇡

2

6

6

4

1 + cos2 ⇥ cos2 ⇥ � 1 0 0
cos2 ⇥ � 1 1 + cos2 ⇥ 0 0

0 0 2 cos ⇥ 0
0 0 0 2 cos ⇥

3

7

7

5

(L.13)

where � is the scattering coe�cient, defined in Chapter 2.
The radiation field in atmospheres and oceans can be highly polarized. For

example, for clear skies or pure oceans where Rayleigh scattering dominates
the radiative transfer, Eq. L.13 shows that for scattering angles near ⇥ =
⇡/2, there is 100% linear polarization for ⇥ = ⇡/2. However, in reality there
are slight deviations from this idealized Rayleigh scattering so that the light
is about 96% polarized for ⇥ = ⇡/2. (The presence of aerosols reduces this
number to no more than 80% in actual cloud-free situations.) Reflection from
water or ice surfaces can also lead to high linear polarizations. However, the
elliptic component V is always very small, and it is seldom necessary to
specify all four Stokes parameters. In fact, since I conveys the information
on the energy carried by the field, it is often permissible to ignore the Q
and U components as well. This assumption is the principal approximation
made in this book. We note, however, that although I ‘carries the energy’,
it is sometimes necessary to solve the full vector equation (for the Stokes’
parameters) to calculate it properly. The scalar equation is in many cases
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adequate as can be confirmed by comparison between vector and scalar
solutions.

Exercises

L.1 (a) Find the Stokes vector for Rayleigh-scattered light from a small
volume element dV having a concentration of n molecules. Use the
equation ~I = ndV SRay

~I 0, where SRay is given by Eq. L.13. Assume
that the solar radiation is unpolarized and given by

~I 0 = [F s�(cos ✓0 � cos ✓)�(�0 � �), 0 0 0 ]T (L.14)

where F s is the solar irradiance [W · m�2] and (✓0,�0) is the direction
of the incoming solar beam.

(b) Describe the state of polarization for Rayleigh-scattered light
evaluated at the scattering angles ⇥ = ⇡/2 and ⇥ = 0.

L.2 2. Devise a number of ‘thought experiments’ to find the elements of the
Mueller matrix for the following optical instruments:

(a) an ideal linear polarizer, e.g. a polaroid filter, with its axis along
the horizontal (k) axis.

(b) the same as (a) but with its axis along the perpendicular (?)
axis.



Appendix M

Spherical Shell Geometry

For solar zenith angles greater than about 80� and twilight situations, we
have to take the curvature of the Earth into account and solve the radiative
transfer equation appropriate for a spherical shell atmosphere (the treat-
ment of spherical geometry is described in Sobolev (1975)). The geometry
is illustrated in Fig. M.1. In plane geometry the slant path is the same for
all layers of equal geometrical thickness, whereas in spherical geometry the
slant path changes from layer to layer.

In spherical shell geometry, the derivative of the radiance consists of three
terms in addition to the one term occurring for slab geometry. These ad-
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Figure M.1 Illustration of plane versus spherical geometry. (a) In plane
geometry the slant path is the same for all layers of equal geometrical
thickness. (b) In spherical geometry the slant path changes from layer to
layer.
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ditional terms express the change in the radiance associated with changes
in polar angle, azimuthal angle, and solar zenith angle. Hence, for a spher-
ical shell medium illuminated by a direct (collimated) beam of radiation,
the appropriate radiative transfer equation for the di↵use radiance may be
expressed as

⌦̂ · rI(r, u,�, µ0) = �k(r)[I(r, u,�, µ0) � S(r, u,�, µ0)]. (M.1)

Here r is the distance from the center of the planet and k is the extinction
coe�cient, while u and � are the cosine of the polar angle and the azimuthal
angle, respectively. The symbol ⌦̂ · r denotes the derivative operator or the
‘streaming term’ appropriate for this geometry. To arrive at this term we
must use spherical geometry. If we map the radiance from a set of global
spherical coordinates to a local set with reference to the local zenith direc-
tion, then as explained in Appendix N, the streaming term becomes1

⌦̂ · r ⌘ u
@

@r
+

1 � u2

r

@

@u

+
1

r
f(u, µ0)



cos(�� �0)
@

@µ0
+

µ0

1 � µ2
0

sin(�� �0)
@

@(�� �0)

�

(M.2)

where the factor f is given by

f(u, µ0) ⌘
p

1 � u2
q

1 � µ2
0. (M.3)

For a slab geometry, only the first term contributes. The curvature gives
rise to additional terms. Thus, for spherically symmetric geometry, the sec-
ond term must be added, while the third and fourth terms are required for
a spherical shell medium illuminated by direct (collimated) beam radiation.
The source function in Eq. M.1 is

S(r, u,�, µ0) ⌘ $(r)

4⇡

Z 2⇡

0
d�0
Z 1

�1
du0p(r, u0,�0; u,�)I(r, u0,�0, µ0)

+
$(r)

4⇡
p(r, �µ0,�0; u,�)F se�⌧Ch(r,µ0). (M.4)

The first term in Eq. M.4 is due to multiple scattering and the second term is
due to first-order scattering. We have used the di↵use/direct splitting so that
Eq. M.1 describes the di↵use radiation field only. We note that for isotropic

1 The derivation of the ‘streaming’ term given in Appendix N is taken from: A. Kylling:
Radiation Transport in Cloudy and Aerosol Loaded Atmospheres, Ph.D. Thesis, University of
Alaska, Fairbanks, USA, 1992, and the discussion of the azimuthally-averaged equation from:
Dahlback and Stamnes (1991).
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scattering, the primary scattering ‘driving term’ becomes isotropic, which
implies that the radiance becomes azimuth independent. The argument in
the exponential, Ch(r, µ0), is the air-mass factor or the Chapman function:
the quantity by which the vertical optical depth must be multiplied to ob-
tain the slant optical depth. For a slab geometry, Ch(r, µ0) = 1/µ0 = sec ✓0.
Hence exp[�⌧Ch(r, µ0)] yields the attenuation of the incident solar irradi-
ance F s (normal to the beam) along the solar beam path.

We find that Eq. M.4 may be written as follows

S(r, u,�, µ0) =

$(r)

4⇡

Z 2⇡

0
d�0
Z 1

�1
du0
2N�1
X

m=0

(2 � �0m)pm(⌧, u0, u) cos m(�� �0)
�

I(r, u0,�0)

+

"

2N�1
X

m=0

Xm
0 (⌧, u) cos m(�� �0)

#

e�⌧Ch(r,µ0) (M.5)

where pm(⌧, u0, u) and Xm
0 (⌧, u) are defined by Eqs. 6.31 and 6.34.

M.1 “Isolation” of Azimuth Dependence

The extra derivative terms in Eq. M.2 makes the spherical geometry case
more di�cult to treat than the corresponding slab problem. In general, we
could expand the radiance in a Fourier series containing both sine and cosine
terms to account for the appearance of both types of terms in the derivative
operator. However, if the e↵ects of sphericity are small, it is useful to treat
the second, third, and fourth derivative terms in Eq. M.2 (which are due to
the spherical geometry) as a perturbation. Thus, if we ignore these terms, we
are left with a plane parallel problem to solve and the derivative terms can
be included in an iterative manner by utilizing the plane parallel solutions.
Then, since the first term in Eq. M.5 is essentially a Fourier cosine series,
and the di↵use radiance described by Eq. M.1 is driven by the second term
in Eq. M.5, which contains only cosine terms, we may expand the radiance
as previously expressed by Eq. 6.32 ignoring sine terms. The reason is that
we have assumed that the third and fourth terms in Eq. M.2, which contain
sine terms, can be treated as a perturbation and hence can be evaluated in
an iterative manner from the plane parallel solutions.
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With these assumptions, Eq. M.1 becomes

2N�1
X

m=0

⇢

u
@Im(r, u, µ0)

@r
+

1 � µ2
0

r

@Im

@u

+ k(r) [Im(r, u, µ0) � Sm(r, u, µ0)]

�

cos m(�0 � �) = J(r, u,�, µ0).

(M.6)

Here

Sm(r, u, µ0) ⌘ $(r)

2

Z 1

�1
pm(r, u0, u)Im(r, u0)du0 + Xm

0 (r, u)e�⌧Ch(r,µ0)

(M.7)
and

J(r, u,�, µ0) ⌘ 1

r
f(u, µ0)

⇢

cos(�0 � �)
2N�1
X

m=0

cos m(�0 � �)
@Im(r, u, µ0)

@µ0

+
µ0

1 � µ2
0

sin(�� �0)
2N�1
X

m=0

m sin m(�� �0)I
m(r, u, µ0)

�

.

(M.8)

In the following example, we describe how the equations may be solved in a
simplified geometry.

Example: Zenith Sky and Mean Radiance – Iterative Approach

If we are interested in only the zenith sky radiance (which is azimuthally independent), then
only the m = 0 term in Eq. 6.32 contributes. For m = 0, the second term in Eq. 6.32 is identically
zero. Upon averaging over azimuth the first term becomes proportional to @I1(r, u, µ0)/@µ0 and
may also be discarded if our interest lies solely in the zenith sky radiance. Thus, the zenith sky
radiance is obtained by setting J(r, u, µ0) = 0 in Eq. M.6 and solving it for m = 0 only. Similarly,
for isotropic scattering there is no azimuth dependence and the complete solution is again arrived
at by setting J(r, u, µ0) = 0 in Eq. M.6 and solving the equation for m = 0 only.

If our interest is in photolysis and heating rates, only the mean radiance is needed. We therefore
average Eq. M.6 over azimuth to obtain:

u
@I0(r, u, µ0)

@r
+

1 � µ2
0

r

@I0

@u
+

1

r

⇥
J1(r, u, µ0|I1) + J2(r, u, µ0|I1)

⇤
= �k(r)

⇥
I0(r, u, µ0) � S0(r, u, µ0)

⇤

where S0(r, u, µ0) is obtained by setting m = 0 in Eq. M.7 and

J1(r, u, µ0|I1) =
1

2
f(u, µ0)

@I1(r, u, µ0)

@µ0

J2(r, u, µ0|I1) =
1

2
f(u, µ0)

µ0

1 � µ2
0

I1(r, u, µ0).
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We note that J1 and J2 depend functionally on the first azimuth-dependent Fourier component
of the radiance, I1, as indicated. Dividing by �k(r), and introducing d⌧ = �k(r)dr, we obtain

u
@I(⌧, u)

@⌧
= I(⌧, u) � $(r)

2

Z 1

�1
du0p(r, u0, u)I(r, u0) � S⇤(⌧, u)

where

S⇤(⌧, u) ⌘ X0(⌧(r), u)e�⌧Ch[⌧,µ0] +
1 � u2

kr

@I

@u
+

1

kr
(J1 + J2). (M.9)

To simplify the notation, we have dropped the m = 0 superscript. If we ignore the three last terms
in the expression for S⇤(⌧, u), we are left with an equation which is identical to that obtained
for plane geometry except that the primary scattering term is evaluated in spherical geometry
using the correct path length. We shall refer to this approach, in which the primary scattering
driving term is included correctly but the multiple scattering is done in plane geometry, as the
‘pseudo-spherical’ approximation. Having obtained a ‘pseudo-spherical’ solution, we may proceed
to evaluate the terms we neglected and then solve the equation again including those terms.
Repetition of this procedure provides an iteration scheme that is expected to converge if the
perturbation terms (i.e., the three last terms on the right side of Eq. M.9) are small compared
with the driving term. Su�ce it to say here that this approach has been found to be quite useful
for obtaining both the mean radiance and the zenith sky radiance in twilight situations.

In a stratified planetary atmosphere, spherical e↵ects (i.e., the angle deriva-
tives), become important around sunrise and sunset. Thus, the first term in
Eq. M.9 is the dominant one and the other terms may be treated as pertur-
bations. It has been shown (by using a perturbation technique to account
for the spherical e↵ects) that in a stratified atmosphere, mean radiances
may be calculated with su�cient accuracy for zenith angles less than 90� by
including only the first term in Eq. M.9, when spherical geometry is used
to compute the direct beam attenuation. Then, we may ignore all angle
derivatives and simply write the streaming term as

⌦̂ · r ⇠= u
@

@⌧
. (M.10)

While this ‘pseudo-spherical’ approach works adequately for the compu-
tation of radiances in the zenith– and nadir-viewing directions, and mean
radiances (for zenith angles less than 90�), it may not work for computation
of radiances in directions o↵-zenith (or o↵-nadir) unless it can be shown that
the angle derivative terms are indeed small.

Exercises

M.1 The optical depth in a curved atmosphere is required to compute the
attenuation of solar irradiance. For an overhead sun, the vertical optical
depth between altitude z0 and the sun is

⌧(z0, ⌫) =

Z 1

z0

dzk(z, ⌫)
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where k(z, ⌫) is the extinction coe�cient at frequency ⌫, and dz is mea-
sured along the vertical. For a non-vertical path dz must be replaced
by the actual length along the ray path. In slab geometry the actual
path length along a ray is simply dz/µ0 where µ0 is the cosine of the so-
lar zenith angle. In spherical geometry the situation is somewhat more
complex. Then dz must be replaced by the actual ray path through a
curved atmosphere.

(a) For solar zenith angles ✓0 < 90�, use geometrical considerations
to derive the following expression for the optical depth between level
z0 and the Sun in a spherical atmosphere

⌧(z0, ⌫, µ0) =

Z 1

z0

dz
k(z, ⌫)

r

1 �
⇣

R+z0
R+z

⌘2
�

1 � µ2
0

�

(✓0 < 90�)

where R is the radius of the planet and z0 the distance above the
Earth’s surface.

(b) Similarly for ✓0 > 90� show that the following expression applies

⌧(z0, ⌫, µ0) = 2

Z 1

z
s

dzk(z, ⌫)

"

1 �
✓

R + zs
R + z

◆2
#� 1

2

�
Z 1

z0

dzk(z, ⌫)

"

1 �
✓

R + z0

R + z

◆2

(1 � µ2
0)

#� 1
2

where zs is a screening height below which the atmosphere is essentially
opaque to radiation of frequency ⌫.

For practical computations we may divide the spherical atmosphere
into a number of concentric shells. Let �hj denote the (vertical) thick-
ness of the shell lying between rj (rj = R + zj) and rj+1 (rj+1 =
rj � �hj) where zj is the vertical distance from the surface of the
planet to location rj . (Note that r1 is at the top of the atmosphere
and rL+1 is at the bottom of the deepest layer (shell) considered if the
atmosphere is divided into L concentric shells.)

(c) Show that approximate expressions for the optical depth that
may be used in practical computations are given by

⌧(⌧, ⌫, µ0) =
p
X

j=1

�⌧ vj

✓

�Sj

�hj

◆

✓0 < 90�
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⌧(⌧, ⌫, µ0) =
p
X

j=1

�⌧j

✓

�Sj

�hj

◆

+2
L�1
X

j=p+1

�⌧j

✓

�Sj

�hj

◆

+�⌧L

✓

�SL

�hL

◆

(✓0 > 90�).

Here L is the layer in the atmosphere below which attenuation is com-
plete, ⌧j is the vertical optical depth of shell j, and

�Sj =
q

r2
j � r2

p(1 � µ2
0) �

q

r2
j+1 � r2

p(1 � µ2
0)

where rj and rj+1 are the distances from the center of the planet to the
upper and lower boundary, respectively of layer j, and rp is the distance
from the center to the point at which the optical depth is evaluated.

M.2 (a) Show that the Chapman function may be written

Ch(X, ✓) ⌘ N (z, ✓)

n(z)H
=

Z 1

0
dY exp[�

p

X2 + 2XY cos ✓ + Y 2 + X].

Here X = R�/H, Y = z/H, and N (z, ✓) is the slant column number for
a spherically-symmetric exponential atmosphere. (b) Defining ln V =

�p
X2 + 2XY cos ✓ + Y 2 + X, show that

Ch(X, ✓) =

Z 1

0

dV (1 � ln V/X)
q

(1 + sin ✓ � lnV
X )(1 � sin ✓ � lnV

X )
.

(c) Using the relationship
Z 1

0

dV
p

⇠2 � ln V
= 2e⇠

2
Z 1

⇠
dse�s2

show that, on neglecting terms of order X�1,

Ch(X, ✓) =
p

2XeX cos2 ✓/2[1 � erf(
p

X/2 cos ✓)]

where erf is the error function.

(c) Show that, to order X�2, that

Ch(X, ✓) =
2⇠e⇠

2

cos ✓
[1 � erf(⇠)]

where ⇠ =
p

X/2 cot ✓.

(e) Show that Ch(X ! 1, ✓) ! sec ✓ for both forms (c) and (d).
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The Streaming term in Spherical Geometry

Since the Earth’s atmosphere has the form of a spherical shell, the radiative
transfer equation must be cast in a form applicable to spherical geometry.
The components of the streaming term (⌦̂ · r) in spherical geometry are

⌦̂ = cos� sin ⇥ ex + sin � sin ⇥ ey + cos ⇥ ez (N.1)

r = er
@

@r
+ e⇥0

1

r

@

@⇥0
+ e�0

1

r sin ⇥0

@

@�0

where

er = sin ⇥0 cos �0 ex + sin ⇥0 sin �0 ey + cos ⇥0 ez (N.2)

e⇥ = cos⇥0 cos �0 ex + cos ⇥0 sin �0 ey � sin ⇥0 ez (N.3)

e� = � sin �0 ex + cos �0 ey

and the angles are defined in Fig. N.1.
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Figure N.1 The geometric setting. Note that in panel b) the directional
vector n̂ has been parallel shifted to have its starting point at the surface
of the Earth.
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Taking the dot product of ⌦̂ and r gives

⌦̂ · r = [cos⇥ cos ⇥0 + sin ⇥ sin ⇥0 cos(�0 � �)]
@

@r

�1

r
[cos ⇥ sin ⇥0 � sin ⇥ cos ⇥0 cos(�0 � �)]

@

@⇥0

�1

r

sin ⇥

sin ⇥0
sin(�0 � �)

@

@�0
. (N.4)

For practical reasons it is preferable to refer the system of spherical coordi-
nates to the local zenith direction. Thus we want to map the radiance from
the set of global coordinates (r, ⇥0, �0, ⇥, �) to the local set (r, µ0,�0, µ,�),
i.e.1

I(r, ⇥0, �0, ⇥, �) ) I(r, µ0,�0, µ,�) (N.5)

where

µ ⌘ cos ✓ ⌘ er · ⌦̂ = cos⇥ cos ⇥0 + sin ⇥ sin ⇥0 cos(�0 � �) (N.6)

µ0 ⌘ cos ✓0 (N.7)

and the local polar (✓0, ✓) and azimuthal angles (�0,�) are defined in Fig. N.1.
In view of Eq. N.6 we may rewrite N.4 as

⌦̂ · r = µ
@

@r
+

1

r

@µ

@⇥0

@

@⇥0
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1

r sin2 ⇥0
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@�0

@

@�0
. (N.8)

Since µ is a function of both ⇥0 and �0
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(N.9)
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and Eq. N.8 becomes

⌦̂ · r = µ
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. (N.10)

Using Eq. N.6 and some relationships from spherical trigonometry
"

✓

@µ

@⇥0

◆2

+
1

sin2 ✓0

✓

@µ

@�0

◆2
#

= 1 � µ2 (N.11)

1 The global coordinates r, ⇥0 and �0 denote a point in R3, whereas ⇥ and � are the
coordinates of a point on the unit sphere S2 = {x, y : x2 + y2 = 1}, and similar for the local
coordinates. Hence both I(r,⇥0,�0,⇥,�) and I(r, µ0,�0, µ,�) are real–valued functions
defined on R3 ⇥ S2.
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@µ

@⇥0
= � cos ⇥ sin ⇥0 + sin ⇥ cos⇥0 cos(�0 � �) = �

p

1 � µ2 cos(�0 � �)

(N.12)
@µ

@�0
= � sin ⇥ sin ⇥0 sin(�0 � �) = �

p

1 � µ2 sin ✓0 sin(�0 � �) (N.13)

@�0

@�0
=
@(�0 � �)

@(�0 � �)
= cos ✓0 sin(�0 � �) (N.14)

we may finally write the streaming term in spherical geometry referenced to
the local zenith direction as

µ
@

@r
+

1 � µ2

r

@

@µ
+

p

1 � µ2
p

1 � µ0
2

r



cos(�� �0)
@

@µ0
+

µ0

1 � µ2
0

sin(�� �0)
@

@(�� �0)

�

. (N.15)

We note that in a plane parallel geometry only the first term in Eq. N.15 is
included. For a spherically symmetric atmosphere the second term must be
added. The full expression is, as stated above, valid for an inhomogeneous
spherical shell, i.e. a planetary atmosphere.

N.1 The streaming term pertinent to calculation of mean
radiances

Quite generally the radiance may be expanded in a Fourier series

I(r, µ0,�0, µ,�) =
1
X

m=0

{Icm(r, µ0, µ) cos m(�� �0)

+ Ism(r, µ0, µ) sin m(�� �0)} . (N.16)

Combining Eq. N.15 and Eq. N.16 we find

(

µ
@

@r
+

1 � µ2

r

@

@µ
+

p

1 � µ2
p

1 � µ0
2

r
cos(�� �0)

@

@µ0

)

I(r, µ0,�0, µ,�)

+

p

1 � µ2
p

1 � µ0
2

r

µ0

1 � µ2
0

sin(�� �0)

·
1
X

m=0

{�m Icm(r, µ0, µ) sin m(�� �0) + m Ism(r, µ0, µ) cos m(�� �0)} .

(N.17)
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If our interest lies in the mean radiance

I(r, ✓,�) =
1

4⇡

Z 2⇡

0
d�0

Z ⇡

0
sin ✓d✓0 I(r, ✓0,�0,�, ✓)

=
1

4⇡

Z 2⇡

0
d�0

Z 1

�1
dµ0 I(r, µ0,�0,�, µ) (N.18)

we average Eq. N.18 over azimuth to get

µ
@Ic0(r, µ0, µ)

@r
+

1 � µ2

r

@Ic0(r, µ0, µ)

@µ
+

1

2

p

1 � µ2
p

1 � µ2
0

r

@Ic1(r, µ0, µ)

@µ0

+
1

2

p

1 � µ2
p

1 � µ2
0

r

µ0

1 � µ2
0

Ic1(r, µ0, µ). (N.19)

Note that only the cosine terms ‘survived’ the averaging over azimuth.



Appendix O

Isolation of the Azimuth-Dependence

The purpose of this Appendix is to provide a derivation of the azimuthal
components of the radiance field. We start with the half-range equations
for the di↵use radiance which we write in full-range form for the present
purpose

u
dI(⌧, u,�)

d⌧
=

I(⌧, u,�) � $

4⇡

Z 2⇡

0
d�0
Z 1

�1

⇢

du0p(u0,�0; u,�)I(⌧, u0,�0)

�$F s

4⇡
p(�µ0,�0; u,�)e�⌧/µ0

�

.

(O.1)

Since, as noted in Chapter 6 the expansion of the phase function in Legendre
polynomials is essentially a Fourier cosine series, i.e.

p(u0,�0; u,�) =
2N�1
X

m=0

(2��0m)

(

2N�1
X

l=m

(2l + 1)�m
l ⇤m

l (u)⇤m
l (u0)

)

cos[m(���0)],
(O.2)

we expand the radiance likewise

I(⌧, u,�) =
2N�1
X

m=0

Im(⌧, u) cos[m(�0 � �)]. (O.3)
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Substitution of eqns. O.2 and O.3 into the integral term of eqn. O.1 yields

$

4⇡

Z 2⇡

0
d�0
Z 1

�1
du0p(u0,�0; u,�)I(⌧, u0,�0) =

$

4⇡

Z 2⇡

0
d�0
Z 1

�1
du0
(

2N�1
X

m=0

(2 � �0m)

·
2N�1
X

l=m

(2l + 1)�m
l ⇤m

l (u)⇤m
l (u0) cos[m(�� �0)]

)

·
(

2N�1
X

r=0

Ir(⌧, u0) cos[r(�0 � �0)]

)

. (O.4)

Focussing on the integration over azimuth we find that for arbitrary m-
values only the r = m term contributes. Thus, we obtain 2⇡I0(⌧, u0) for
m = 0, 2⇡I1(⌧, u0)cos(�0 � �) for m = 1, and in general contributes.

2N�1
X

m=0

Z 2⇡

0
d�0(2 � �0m)

2N�1
X

r=0

Ir(⌧, u0) cos[m(�� �0)] cos[r(�0 � �0)] =

2⇡
2N�1
X

m=0

Im(⌧, u0) cos[m(�0 � �)]. (O.5)

Therefore Eq. O.4 reduces to

$

4⇡

Z 2⇡

0
d�0
Z 1

�1
du0p(u0,�0; u,�)I(⌧, u0,�0) =

2N�1
X

m=0

⇢

$

2

Z 1

�1
du0pm(u0, u)Im(⌧, u0)

�

cos[m(�0 � �)] (O.6)

where

pm(u0, u) =
2N�1
X

l=m

(2l + 1)�l⇤
m
l (u)⇤m

l (u0). (O.7)

It is now clear that substitution of Eq. O.2 and O.3 into Eq. O.1 yields the
desired result given in Chapter 6, i.e. Eqs. 6.33–6.34.

O.1 Treatment of the Lower Boundary Condition

Since we are dealing with reflection it is natural to use half-range quantities
here. The di↵use reflectance at the lower boundary, ⌧ = ⌧⇤, is written as



580 Isolation of the Azimuth-Dependence

(see §6.7.4)

I+(⌧⇤, µ,�) = ✏(µ)B(Ts) +
µ0F s

⇡
⇢d(�µ0,�0; µ,�)e�⌧⇤/µ0

+
1

⇡

Z 2⇡

0
d�0
Z 1

�1
dµ0µ0⇢d(�µ0,�0; µ,�)I�(⌧⇤, µ0,�0)

(O.8)

where ⇢d is the bidirectional reflectance and ✏ is the emittance. First we note
that only the m = 0 component of the radiance contributes to irradiances,
since

F± =

Z 2⇡

0
d�

Z 1

0
dµµI±(⌧, µ,�)

=

Z 2⇡

0
d�

Z 1

0
dµµ

2N�1
X

m=0

Im±(⌧, µ) cos[m(�� �0)]

= 2⇡

Z 1

0
dµµI0±(⌧, µ). (O.9)

Next we note that Kirchho↵’s law states

✏(µ) +
1

⇡

Z 2⇡

0
d�0
Z 1

0
dµ0µ0⇢d(�µ0,�0; µ,�) = 1 (O.10)

suggesting that we should use Eq. O.10 to compute the emittance from the
reflectance for consistency. Below we shall start by looking at the simple
case of a Lambert reflector before we consider the more general case.

O.2 Lambertian Surface

A Lambert reflector is defined such that the reflected radiation is isotropic
regardless of the directional dependence of the incident radiation. This im-
plies that the bidirectional reflectance is independent of direction, i. e.,
⇢d(�µ0,�0; µ,�) = ⇢L = constant. Now, integrating the left side of Eq. O.8,
we find that the reflected irradiance becomes

F+(⌧⇤) =

Z 2⇡

0
d�

Z 1

0
dµµI+(⌧⇤, µ,�) = ⇡I0+(⌧⇤) (O.11)

since the reflected radiation is isotropic. Integration of the first term on
the right side yields ⇡✏B(Ts), where we have used Kirchho↵’s law yielding
✏(µ) + ⇢L = 1, which implies ✏ = constant (independent of µ) in this special
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case. The second term yields ⇢Lµ0F se�⌧⇤/µ0 , and the third term becomes
Z 2⇡

0
d�

Z 1

0
µdµ



⇢L

⇡

Z 2⇡

0
d�0
Z 1

0
dµ0µ0I�(⌧⇤, µ0,�0)

�

=

2⇡⇢L

Z 1

0
dµ0µ0I0�(⌧⇤, µ0) (O.12)

where I0�(⌧⇤, µ0) = 1
2⇡

R 2⇡
0 I�(⌧⇤, µ0,�)d� is the azimuthally-averaged down-

ward radiance (or the m = 0 azimuthal component since we have expressed
the radiance in a Fourier cosine series). Thus, for a Lambert reflector we
have the following simple boundary condition relating the radiance reflected
by the surface to the downward radiance there

I0+(⌧⇤) = ✏B(Ts) +
µ0

⇡
F s⇢Le�⌧⇤/µ0 + 2⇢L

Z 1

0
dµ0µ0I0�(⌧⇤, µ0). (O.13)

O.3 Non-Lambertian Surface

We shall assume that the bidirectional reflectance is azimuthally-symmetric
so that we may expand it in a Fourier cosine series as

⇢d(�µ0,�0; µ,�) =
2N�1
X

m=0

⇢md (�µ0, µ) cos[m(�0 � �)]. (O.14)

In this more general case we find that the third term on the right side of
Eq. O.8 becomes

1

⇡

Z 2⇡

0
d�0
Z 1

�1
dµ0µ0⇢d(�µ0,�0; µ,�)I�(⌧⇤, µ0,�0) =

1

⇡

Z 2⇡

0
d�0
Z 1

�1
dµ0µ0

(

2N�1
X

m=0

⇢md (�µ0, µ) cos[m(�0 � �)]

·
2N�1
X

r=0

Ir�(⌧⇤, µ0) cos[r(�0 � �0)]

)

. (O.15)

Since

2N�1
X

m=0

Z 2⇡

0
d�0

2N�1
X

r=0

Ir�(⌧⇤, µ0) cos[m(�0 � �)] cos[r(�0 � �0)] =

⇡(1 + �0m)
2N�1
X

m=0

Im�(⌧⇤, µ0) cos[m(�0 � �)] (O.16)
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we find

1

⇡

Z 2⇡

0
d�0
Z 1

�1
dµ0µ0⇢d(�µ0,�0; µ,�)I�(⌧⇤, µ0,�0) =

2N�1
X

m=0

⇢

2

Z 1

0
dµ0µ0⇢md (�µ0, µ)Im�(⌧⇤, µ0)

�

cos[m(�0 � �)].

(O.17)

Finally, substitution of Eqs. O.3 and O.17 into Eq. O.8 yields

2N�1
X

m=0

(

Im+(⌧⇤, µ) � ✏(µ)B(Ts)�0m � 1

⇡
F s⇢md (�µ0, µ)e�⌧⇤/µ0 �

(1 + �0m)

Z 1

0
dµ0µ0⇢md (�µ0, µ)Im�(⌧⇤, µ0)

)

cos[m(�0 � �)] = 0. (O.18)

Thus, we see that each Fourier component of the radiance must satisfy the
boundary condition

Im+(⌧⇤, µ) = ✏(µ)B(Ts)�0m +
1

⇡
F s⇢md (�µ0, µ)e�⌧⇤/µ0

+ (1 + �0m)

Z 1

0
dµ0µ0⇢md (�µ0, µ)Im�(⌧⇤, µ0). (O.19)

We note that for m = 0 and ⇢d = constant = ⇢L we retain the azimuthally-
independent case pertinent for a Lambertian surface considered above as we
should.



Appendix P

Scaling Transformation for Anisotropic Scattering

We will show that the transfer equation is invariant under certain scale
changes of the optical depth and the phase function. The so-called �-M
method, discussed in Chapter 6, turns out to be one such invariant scaling
transformation.

We start with the general radiative transfer equation (Eq. 5.45) for the
total radiance which in slab geometry may be written

u
dI(⌧, ⌦̂)

d⌧
= I(⌧, ⌦̂) � $

4⇡

Z

4⇡
d!0 p(⌦̂0, ⌦̂)I(⌧, ⌦̂0) (P.1)

where we have ignored the thermal emission term. If we define a kernel

G(⌦̂0, ⌦̂) ⌘ 1

4⇡
[�$p(cos ⇥) + 4⇡�(⌦̂0 � ⌦̂)] (P.2)

then we may rewrite Eq. P.1 as

u
dI(⌧, ⌦̂)

d⌧
=

Z

4⇡
G(⌦̂0, ⌦̂)I(⌧, ⌦̂0)d!0. (P.3)

Now, by introducing a new optical depth, ⌧̂ , and a new kernel, Ĝ, through

⌧ = �⌧̂ (P.4)

G = ��1Ĝ (P.5)

we find that Eq. P.3 becomes

u
dI(⌧̂ , ⌦̂)

d⌧̂
=

Z

4⇡
Ĝ(⌦̂0, ⌦̂)I(⌧̂ , ⌦̂0)d!0 (P.6)

In view of the definition of G (Eq. P.2) we may rewrite Eq. P.6 as

u
dI(⌧̂ , ⌦̂)

d⌧̂
= I(⌧̂ , ⌦̂) � $̂

4⇡

Z

4⇡
p̂(⌦̂0, ⌦̂)I(⌧, ⌦̂0)d!0 (P.7)
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where

Ĝ(⌦̂0, ⌦̂) =
1

4⇡
[�$̂p̂(cos ⇥) + 4⇡�(⌦̂0 � ⌦̂)] = �G(⌦̂0, ⌦̂)

=
1

4⇡
[��ap(cos ⇥) + 4⇡��(⌦̂0 � ⌦̂)] (P.8)

which implies

$̂p̂(cos ⇥) = [�$p(cos ⇥) + 4⇡(1 � �)�(⌦̂0 � ⌦̂)]. (P.9)

If we now require the scaled phase function to be normalized to unity as
usual, then integration of Eq. P.9 over 4⇡ steradians yields

$̂ = $� + (1 � �) (P.10)

or

1 � $̂ = �(1 �$). (P.11)

This last equation implies that if $ = 1, then $̂ = 1, i. e. conservative
scattering remains conservative under the scaling transformation.

Since expansion of the scattering phase function in Legendre polynomials
has been shown to be an extremely useful way of “isolating” the azimuth
dependence in slab geometry, we proceed by expanding both scattering phase
functions in this manner

p(cos ⇥) =
1
X

n=0

(2n + 1)�nPn(cos ⇥) (P.12)

p̂(cos ⇥) =
1
X

n=0

(2n + 1)�̂nPn(cos ⇥) (P.13)

where Pn(cos ⇥) is the Legendre polynomial, and the expansion coe�cients
are defined by Eq. 6.22. The �-function may also be expanded in Legendre
polynomials, i.e.

4⇡�(⌦̂0 � ⌦̂) = 4⇡�(µ0 � µ)�(�0 � �) = 2�(1 � cos ⇥) =
1
X

n=0

(2n + 1)Pn(cos ⇥).

(P.14)
We note that the expansion coe�cients in this case are all unity. Substi-

tution of Eqs. P.12 and P.14 into Eq. P.6 yields

1
X

n=0

[â�̂n � �a�n � (1 � �)](2n + 1)Pn(cos ⇥) = 0 (P.15)
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which implies

â�̂n = �a�n + (1 � �) (P.16)

or

1 � $̂�̂n = �(1 �$�n) (P.17)

or

⌧̂ $̂(1 � �̂n) = ⌧$(1 � �n) (P.18)

where we have used Eqs. P.3 and P.9 in the last step. Since �0 = 1 Eqs. P.16
and P.10 imply $̂�̂0 = �$ + 1 � � = $̂ or �̂0 = 1. This shows that the ex-
panded scaled phase function is correctly normalized as implied by Eq. P.10.

Finally, by defining hn = (2n+1)(1�$�n) and using Eq. P.17, we obtain

ĥn = (2n + 1)(1 � $̂�̂n) = �hn = (⌧/⌧̂)hn (P.19)

or

⌧̂ ĥn = ⌧hn. (P.20)

The radiative transfer equation is invariant under scale changes of the
optical depth and phase function which leave invariant the parameter

⌘n ⌘ hn⌧ = (2n + 1)(1 �$�n)⌧. (P.21)

It is clear that � = 1 �$f in the �-M method.



Appendix Q

Reciprocity, Duality, and E↵ects of Surface
Reflection

The purpose of this Appendix is to provide some details that were omit-
ted in §6.8 regarding the relationship between the reflection and transmis-
sion for unidirectional (parallel beam or ‘solar’) and uniform (isotropic over
the downward hemisphere) illumination of an inhomogeneous slab. The re-
flectance and transmittance for unidirectional illumination of a slab will
be shown to be equivalent to the angular distribution of the azimuthally-
averaged reflected and transmitted radiances, respectively, pertaining to uni-
form illumination of the slab with unit incident radiance. For an inhomoge-
neous slab the transmittance for unidirectional illumination from one side
(e.g. the top) is equivalent to the angular distribution of the radiance per-
taining to illumination from the other side (the bottom) of the slab. We will
then derive an analytic expression for the radiance reflected from a Lambert
surface underlying an inhomogeneeous slab, which in turn is required to de-
rive simple analytic expressions for the reflectance and transmittance of an
inhomogeneous slab overlying a partially reflecting surface in terms of the
solution pertaining to the same slab overlying a black surface.

Q.1 Principle of Reciprocity

If the angular scattering depends only on the scattering angle, i.e. the angle
between the direction of incidence and the direction in which the photon is
scattered, then the phase function may be written

p(⇥) = p(cos ⇥) = p[uu0 + (1 � u2)
1
2 (1 � u02)

1
2 cos(�� �0)] (Q.1)

where we have used Eq. 3.22. We see that the phase function satisfies the
following relations

p(µ,�; µ0,�0) = p(µ0,�0; µ,�) (Q.2)
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p(�µ,�; �µ0,�0) = p(µ0,�0; µ,�) (Q.3)

p(µ,�; �µ0,�0) = p(�µ0,�0; µ,�) = p(µ0,�0; �µ,�). (Q.4)

The above relations are usually referred to as Helmholtz’ reciprocity princi-
ple. They are a consequence of time reversal invariance and they apply to a
single scattering event.

Q.2 Homogeneous Slab

For a slab of finite thickness multiple scattering cannot, in general, be ne-
glected. Therefore we do not expect reciprocity to be directly applicable.
What is important here is, however, that the above reciprocity relations im-
ply the following reciprocity rules for the reflectance and transmittance of a
homogeneous slab of arbitrary (but finite) thickness ⌧⇤

⇢(⌧⇤; µ,�; µ0,�0) = ⇢(⌧⇤; µ0,�0; µ,�) (Q.5)

T (⌧⇤; µ,�; µ0,�0) = T (⌧⇤; µ0,�0; µ,�). (Q.6)

The radiation reflected and transmitted by the slab may be expressed as

I+(0, µ, µ0,�) = µ0F
s⇢(⌧⇤; µ,�; µ0,�0) (Q.7)

I�(⌧⇤, µ, µ0,�) = µ0F
sT (⌧⇤; µ,�; µ0,�0) (Q.8)

where µ0F s is the (vertical) irradiance of the incident ‘solar’ radiation. Av-
eraging over azimuth, we obtain

I+(0, µ, µ0) = µ0F
s⇢(⌧⇤; µ; µ0) (Q.9)

I�(⌧⇤, µ, µ0) = µ0F
sT (⌧⇤; µ; µ0) (Q.10)

where

⇢(⌧⇤; µ, µ0) =
1

2⇡

Z 2⇡

0
d�⇢(⌧⇤; µ,�; µ0,�0) (Q.11)

T (⌧⇤; µ, µ0) =
1

2⇡

Z 2⇡

0
d�T (⌧⇤; µ,�; µ0,�0). (Q.12)
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Q.3 Collimated incidence:

The reflectance and transmittance for collimated beam (’solar’) incidence is
obtained by integration

⇢b(⌧
⇤, µ0) =

2⇡

µ0F s

Z 1

0
dµµI+(0, µ, µ0)µdµ = 2⇡

Z 1

0
dµµ⇢(⌧⇤, µ, µ0) (Q.13)

Tb(⌧
⇤, µ0) =

2⇡

µ0F s

Z 1

0
dµµI�(⌧⇤, µ, µ0) = 2⇡

Z 1

0
dµµT (⌧⇤, µ, µ0). (Q.14)

Another integration yields the spherical albedo and transmittance

⇢̄b(⌧
⇤) = 2

Z 1

0
dµ0µ0⇢(⌧

⇤, µ0) = 4⇡

Z 1

0
dµµ

Z 1

0
dµ0⇢(⌧

⇤, µ, µ0) (Q.15)

T̄b(⌧
⇤) = 2

Z 1

0
dµ0µ0⇢(⌧

⇤, µ0) = 4⇡

Z 1

0
dµµ

Z 1

0
dµ0T (⌧⇤, µ, µ0). (Q.16)

The subscript ‘b’ is used to remind us that the illumination is collimated.

Q.4 Uniform incidence

The emergent angular distribution of the reflected and transmitted radiances
for uniform illumination with unit incident radiance, and hence irradiance
Funi(⌧ = 0) = ⇡, are

I+
uni(0, µ) = 2⇡

Z 1

0
dµ0I

+(0, µ, µ0) = 2⇡

Z 1

0
dµ0µ0⇢(⌧

⇤, µ, µ0) (Q.17)

I�uni(⌧
⇤, µ) = 2⇡

Z 1

0
dµ0I

�(⌧⇤, µ, µ0) = 2⇡

Z 1

0
dµ0µ0T (⌧⇤, µ, µ0). (Q.18)

The plane albedo and transmittance are given by

F+
uni(0)

⇡
= 2

Z 1

0
dµµI+(0, µ) = 4⇡

Z 1

0
dµµ

Z 1

0
dµ0⇢(⌧

⇤, µ, µ0) (Q.19)

F�
uni(⌧

⇤)
⇡

= 2

Z 1

0
dµµI�(⌧⇤, µ) = 4⇡

Z 1

0
dµµ

Z 1

0
dµ0T (⌧⇤, µ, µ0). (Q.20)

The subscript ‘uni’ is used to remind us that the illumination is uniform.
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Q.5 Duality:

Since ⇢(⌧⇤; µ, µ0) = ⇢(⌧⇤; µ0, µ) and T (⌧⇤; µ, µ0) = T (⌧⇤; µ0, µ), the dual-
ity relations given in §6.8 follow by comparing the above expressions for
collimated and uniform incidence.

Q.6 Inhomogeneous Slab

The expressions given above pertaining to a homogeneous slab will now be
generalized to apply to a vertically inhomogeneous slab. We must distinguish
between illumination from the top and the bottom. Thus, considering first
illumination from the top we find that the same expressions as before (given
by Eqs. Q.13–Q.16 and Eqs. Q.17–Q.20 above) apply for unidirectional and
uniform illumination, respectively. However, for unidirectional and uniform
illumination from the bottom we obtain the following expressions

⇢̃b(⌧
⇤, µ0) = 2⇡

Z 1

0
dµµ⇢̃(⌧⇤, µ, µ0);

Ĩ�uni(⌧
⇤, µ) = 2⇡

Z 1

0
dµ0µ0⇢̃(⌧

⇤, µ, µ0), (Q.21)

T̃b(⌧
⇤, µ0) = 2⇡

Z 1

0
dµµT̃ (⌧⇤, µ, µ0);

Ĩ+
uni(0, µ) = 2⇡

Z 1

0
dµ0µ0T̃ (⌧⇤, µ, µ0), (Q.22)

˜̄⇢b(⌧
⇤) = 4⇡

Z 1

0
dµµ

Z 1

0
dµ0⇢̃(⌧

⇤, µ, µ0);

F̃�
uni(⌧

⇤)
⇡

= 4⇡

Z 1

0
dµµ

Z 1

0
dµ0⇢̃(⌧

⇤, µ, µ0) (Q.23)

˜̄T b(⌧
⇤) = 4⇡

Z 1

0
dµµ

Z 1

0
dµ0T̃ (⌧⇤, µ, µ0);

F̃+
uni(0)

⇡
= 4⇡

Z 1

0
dµµ

Z 1

0
dµ0T̃ (⌧⇤, µ, µ0). (Q.24)
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Q.7 Reciprocity and Duality:

As noted in §6.8 for an inhomogeneous slab the reflectance and transmittance
satisfy the following reciprocity relations

⇢(⌧⇤, µ, µ0) = ⇢(⌧⇤, µ0, µ);

⇢̃(⌧⇤, µ, µ0) = ⇢̃(⌧⇤, µ0, µ);

T (⌧⇤, µ, µ0) = T̃ (⌧⇤, µ0, µ). (Q.25)

A crucial di↵erence between the homogeneous and the inhomogeneous slab
is the reciprocity relating the transmittance due to illumination from one
side to the illumination from the other side. Of course, for a homogeneous
slab it makes no di↵erence to which side we apply the illumination.

By comparing the expressions pertinent for collimated and uniform inci-
dence and using these reciprocity relations we find that it is now a simple
matter to generalize the duality relations for a homogeneous slab to obtain
the expressions valid for an inhomogeneous slab provided in §6.8.

Q.8 Derivation of the Reflected radiance Component Ir

In §6.9 we derived simple analytic expressions for the radiation reflected and
transmitted by a slab overlying a partially reflecting (Lambert) surface in
terms of the reflected radiance reflected at the lower boundary, Ir. In fact,
the quantity

Ir

µ0F s
=
⇢LT (µ0; 2⇡)

⇡(1 � ˜̄⇢⇢L)
=
⇢LT (�⌦̂0, �2⇡)

⇡[1 � ˜̄⇢⇢L]

appears in Eqs. 6.75 and 6.76 for the bidirectional reflectance and trans-
mittance of a slab overlying a Lambertian surface. Below we derive an ex-
pression for Ir in terms of the reflectance and transmittance pertinent to an
inhomogeneous slab overlying a black (i.e non-reflecting surface).

In general, the radiance reflected at the lower boundary, I+(⌧⇤, µ,�), is
related to the incident radiance, I�(⌧⇤, µ,�), through

I+(⌧⇤, µ,�) =

Z 2⇡

0
d�0
Z 1

0
dµ0µ0⇢(�µ0,�0; µ,�)I�(⌧⇤; µ0,�0) (Q.26)

or by averaging over azimuth

I+(⌧⇤, µ) = 2⇡

Z 1

0
dµ0µ0⇢(�µ0, µ)I�(⌧⇤, µ0) ⌘ Ir (Q.27)

where ⇢(�µ0,�0; µ,�) is the bidirectional reflectance of the surface, and
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⇢(�µ0, µ) its azimuthal mean. Here Ir is a constant because we are deal-
ing with a Lambert surface for which ⇢(�µ0, µ) = ⇢L = constant.

Next we consider the total reflected radiance I+
tot(0; µ,�), which consists

of three separate components: (a) the contribution from the atmosphere
assuming a non-reflecting or black lower boundary (⇢ = 0); (b) the di↵usely-
transmitted component arising from Ir (see Eq. 5.34); and (c) the directly-
transmitted component arising from Ir. In mathematical terms, we write

I+
tot(0; µ,�) = I+(0; µ,�; ⇢ = 0)+

Z 2⇡

0
d�0
Z 1

0
dµ0µ0T̃d(µ

0,�0; µ,�)Ir+Ire
�⌧⇤/µ

(Q.28)
since we have assumed that the reflected radiance is azimuth-independent
and given by Eq. Q.27. Removing Ir from the integral (it is independent of
angle), we combine terms (b) and (c), to obtain the total transmittance

Ir
h

e�⌧⇤/µ +

Z 2⇡

0
d�0
Z 1

0
dµ0µ0T̃d(µ

0; µ)
i

. (Q.29)

The second term is recognized as the di↵use part of the hemispherical-
directional transmittance T̃d(2⇡; µ) pertaining to radiation incident from be-
low. We note the absence of azimuthal dependence. Reciprocity applies also
to the di↵use transmittance

T̃d(2⇡; µ) = T̃d(µ; 2⇡). (Q.30)

In words, the hemispherical-directional transmittance is also the directional-
hemispherical transmittance. Therefore

I+
tot(0; µ,�) = I+(0; µ,�; ⇢ = 0) + IrT̃ (µ; 2⇡) (Q.31)

where T̃ (µ; 2⇡) = e�⌧⇤/µ + T̃d(µ; 2⇡), or the total transmittance is the sum
of the beam and di↵use transmittances. We note that the remaining �-
dependence of the total radiance is due to the first term, and is traceable to
a �-dependence of the collimated beam illumination. The extra term in the
above equation (arising from the boundary) is azimuthally independent by
assumption (Lambert reflector).

The first term may be expressed in terms of the incident radiation field
(assumed to be a collimated solar beam) and the atmospheric reflectance as
µ0F s⇢(�µ0,�0; µ,�). Therefore

I+
tot(0; µ,�) = µ0F

s⇢(�µ0,�0; µ,�) + IrT̃ (µ; 2⇡). (Q.32)

Proceeding in a similar manner we find that the transmitted radiance can
be expressed as

I�tot(⌧
⇤; µ,�) = µ0F

sT (�µ0,�0; µ,�) + Ir⇢̃(µ; 2⇡). (Q.33)
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Here the first term is the di↵usely transmitted radiance, while the second
term stems from radiation reflected first from the surface and then from the
atmosphere above.

It remains to determine Ir. Setting the reflected irradiance ⇡Ir equal to a
constant, ⇢L, times the downward irradiance at ⌧⇤, we have

⇡Ir = ⇢L

h

µ0F
se�⌧⇤/µ0 + µ0F

sTd(µ0; 2⇡) + ⇡Ir ˜̄⇢
i

. (Q.34)

The first term on the left side is the directly-transmitted beam irradiance,
the second term is the di↵usely-transmitted component for a completely
black surface, and the third term is the (downward) reflected component
due to the upward reflection from the Lambert surface followed by down-
ward reflection by the atmosphere. We recognize ˜̄⇢ as the spherical albedo
pertaining to illumination from below. Solving the above for Ir we obtain

Ir =
µ0F s⇢L

⇥

e�⌧⇤/µ0 + Td(µ0; 2⇡)
⇤

⇡(1 � ˜̄⇢⇢L)
=

µ0F s⇢LT (µ0; 2⇡)

⇡(1 � ˜̄⇢⇢L)
(Q.35)

where we have once again combined the sum of the direct and di↵use trans-
mittances into a total transmittance.



Appendix R

Probabilistic Aspects of Radiative Transfer

In this section we consider an alternate formulation of the radiative transfer
process. This approach will focus on properties of the scattering medium,
which are independent of the distribution of sources of radiation, either ex-
ternal or internal. The point-direction gain and the escape probability are the
basic quantities of interest. These quantities incorporate all the basic scat-
tering properties of the medium, through the single-scattering albedo and
the phase function, plus the knowledge of the total optical depth. Through
the point-direction gain, and its angular moments it is possible to solve prob-
lems di↵ering in their sources of radiation. In the days before computers,
this approach provided a considerable advantage, since in principle, these
fundamental quantities could be calculated once and for all, and presented
in tables for general use. This approach is no longer necessary, since com-
puters make it a relatively simple matter to alter the boundary conditions
or internal sources of radiation in the program code. However, these prob-
abilistic concepts are still of great pedagogical interest. We will therefore
discuss only the essential elements of the method.

We begin with a ‘thought-experiment’ which will illustrate the concept.
We assume a slab geometry, and an isotropic scattering law. The medium
may be inhomogeneous, so that the single-scattering albedo depends upon
the optical depth. Consider an interior point at the optical depth ⌧ 0 within
the medium. Within the thin layer between ⌧ 0 and ⌧ 0 + d⌧ 0, is contained
an isotropic source of radiation, given by Q(⌧ 0), whose detailed specification
will not concern us. Q will generally consist of the sum of a thermal source,
(1�$)B plus an imbedded source of first-order scattered photons, S⇤. (We
will continue to suppress the frequency subscript.) The emergent photons
will execute a variety of scattering trajectories, depending upon the specific
emission direction, and upon the random nature of the angular scattering
process.
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Figure R.1 Illustration of the Point direction Gain concept. (a) Without
an interacting medium, the radiance emitted by the region within the thin
layer of thickness d⌧ , in direction cos�1 µ, is given by Qd⌧

µ

. (b) When the

thin layer is imbedded in an absorbing/scattering medium, the radiance
emitted in the same direction is GQd⌧

µ

, where G is the point-direction gain.

We are interested in those photons which eventually reach the surface
(⌧ = 0), and which leave the medium in the direction given by µ. (There is
no dependence on the azimuthal angle �, because of the assumption of an
isotropic source, and an isotropic phase function.) The di↵erential contribu-
tion to the emergent radiance due to this thin layer may be written

dI+(0, µ) ⌘ G(⌧ 0, µ;$, ⌧⇤)Q(⌧ 0)
d⌧ 0

µ

where G is the (dimensionless) point-direction gain. To understand the mean-
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ing of this quantity, consider the contribution to the emergent radiance from
the same source in the absence of a medium. This is just

dI+(0, µ) = Q(⌧ 0)
d⌧ 0

µ
(G = 1).

The presence of the term d⌧ 0/µ is explained by the fact that the column of
emitting material is in the direction µ. The change in the radiation field, G,
is a result of the intervening medium. We may now write down an expression
for the emergent radiance from the entire medium, which is just a linear sum
over all layers (an integral in the limit of very small layer thicknesses):

I+(0, µ) =

Z ⌧⇤

0

d⌧ 0

µ
G(⌧ 0, µ;$, ⌧⇤)Q(⌧ 0). (R.1)

The radiance emerging from the bottom of the medium (assuming no reflec-
tion from the boundary) is given by

I�(⌧⇤, µ) =

Z ⌧⇤

0

d⌧ 0

µ
G̃(⌧⇤ � ⌧ 0, µ;$, ⌧⇤)Q(⌧ 0). (R.2)

For an inhomogeneous medium, the point-direction gain is di↵erent for
downward emitted radiation than for upward radiation, hence the di↵er-
ent symbol, G̃. For a homogeneous medium, G̃ = G.

The above experiment is called direct, in that we seek the external radia-
tion field derived from a certain internal source. We now consider the inverse
experiment, that is, we are given an external radiation field, I�(0, µ) and we
seek to determine the internal source function. We assume that no thermal
sources of radiation are present, and we postulate that the source function
arising from this incident radiation field is given by

S(⌧) =
$

4⇡

Z 2⇡

0
d�

Z 1

0
dµG(⌧, µ;$, ⌧⇤)I�(0, µ,�).

In the particular case of an incident collimated beam

I�(0, µ,�) = F s�(µ � µ0)�(�� �0)

the source function is

S3(⌧) =
$

4⇡
F sG(⌧, µ0;$, ⌧⇤) (R.3)

where the subscript 3 refers to Prototype Problem 3 (i.e. collimated inci-
dence). Since S3 satisfies the Milne-Schwarzschild equation (Eq. 6.80)

S3(⌧) =
$

4⇡
F se�⌧/µ0 +

$

2

Z ⌧⇤

0
d⌧ 0E1(|⌧ � ⌧ 0|)S3(⌧

0)
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then G satisfies the following equation

G(⌧, µ0;$, ⌧⇤) = e�⌧/µ0 +
$

2

Z ⌧⇤

0
d⌧ 0E1(|⌧ � ⌧ 0|)G(⌧ 0, µ0;$, ⌧⇤). (R.4)

We now return to the direct experiment, and assume that the internal
source is just Q = S⇤ = [$/4⇡]F se�⌧/µ0 , that is, it is provided by an
external collimated beam with irradiance F s. From Eq. R.1, the emergent
radiance from this source is

I+(0, µ) = F s
Z ⌧⇤

0

d⌧ 0

µ

$

4⇡
G(⌧ 0, µ;$, ⌧⇤)e�⌧ 0/µ0 .

We set the angle µ = µ0, so that

I+(0, µ0) = F s
Z ⌧⇤

0

d⌧ 0

µ0

$

4⇡
G(⌧ 0, µ0;$, ⌧⇤)e�⌧ 0/µ0

and use the relationship between radiance and the source function (where
we set S(⌧ 0) = S3(⌧ 0))

I+(0, µ0) =

Z ⌧⇤

0

d⌧ 0

µ0
e�⌧ 0/µ0S3(⌧

0).

The above two equations for I+(0, µ0) are valid for all µ0 and ⌧⇤, if and
only if

S3(⌧) =
$

4⇡
F sG(⌧, µ0;$, ⌧⇤) (R.5)

which is the same result as in the inverse experiment, Eq. R.3. It is another
illustration of the Principle of Duality, discussed in §6.8.

Other relationships connecting G and its angular moments may be es-
tablished with the classical functions of radiative transfer theory. It su�ces
to mention only one set of relationships to the X-, Y -, and H- functions,
described by V. A. Ambartsumyan and S. Chandrasekhar. These functions
have played a key role in the development of the classical theory of radiative
transfer.1 It may be shown that these functions are equal to the point direc-
tion gain evaluated at the upper and lower bounds of the medium (assumed
homogeneous):

X(µ;$, ⌧⇤) ⌘ G(0, µ;$, ⌧⇤); Y (µ;$, ⌧⇤) ⌘ G(⌧⇤, µ;$, ⌧⇤) (R.6)

H(µ;$) ⌘ G(0, µ;$, ⌧⇤ ! 1). (R.7)

It should be apparent that knowledge of G allows one to solve entire classes

1 See Chandrasekhar (1960). For a readable exposition of classical methods of the Russian
school, see Sobolev (1963).
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of radiative transfer problems. This is the case for the source function for an
arbitrary incident radiance on either or both faces, and also for the emergent
radiances for any arbitrary disposition of internal sources.

R.1 The Escape Probability

As discussed earlier, the quantity ($/4⇡)G has a dual interpretation. In the
inverse problem, it is the source function for the problem of an isotropically-
scattering slab of optical depth ⌧⇤ illuminated by a collimated beam of
radiation of irradiance unity (see Eq. R.5). For the direct problem, we can
interpret it in terms of a directional escape probability. The formal relation-
ship is

P(⌧, µ;$, ⌧⇤) ⌘ $

4⇡
G(⌧, µ;$, ⌧⇤). (R.8)

The quantity Pd! is interpreted as the joint probability of two successive
events: (1) first, $/4⇡ is the probability per unit solid angle that a photon,
having su↵ered an extinction event at ⌧ , will emerge as a scattered photon;
and (2) Gd! is the probability that a photon will emerge from the upper
surface of the medium in the direction µ within the solid angle d!. If we then
integrate the product of these two probabilities over all emergent angles in
the upper hemisphere, we obtain the hemispherical escape probability

P(⌧ ;$, ⌧⇤) ⌘
Z 2⇡

0
d�

Z 1

0
dµP(⌧, µ;$, ⌧⇤) =

$

2

Z 1

0
dµG(⌧, µ;$, ⌧⇤). (R.9)

Here P(⌧ ;$, ⌧⇤) is the probability of a photon emerging from the medium in
any (upward) direction, and it is seen to be proportional to the zeroth-order
moment of the point-direction gain. The escape probability for a homoge-
neous medium is proportional to the source function for Prototype Prob-
lem 1 (uniform incidence). Suppose the medium is optically thin, so that
G ⇡ e�⌧/µ, from Eq. R.4. Then P ! P where

P (⌧ ;$, ⌧⇤) ⌘ $

2

Z 1

0
dµe�⌧/µ =

$

2
E2(⌧) = S1(⌧) (R.10)

where S1(⌧) is the source function for Prototype Problem 1 . The above quan-
tity, the single-flight escape probability, is given a special symbol because of
its importance. It describes the probability of direct escape of all photons
emerging at that point either from thermal emission or from a scattering.
It is clear that those photons which have been scattered one or more times
are counted in the general escape probability P. Note that the single-flight
escape probability out the bottom of the medium is P (⌧⇤ � ⌧).



Appendix S

Details and Derivations

S.1 Chapter 4 - Details and Derivations

S.1.1 §4.5 – Absorption in Molecular Lines and Bands

We are concerned with molecular absorption by solar near-IR (1 to 3 µm)
and thermal IR radiation which occupies the spectrum from about 3 to 100
µm. We shall refer to this entire range, 1 to 100 µm (100 � 10, 000 cm�1),
generically as the IR spectral range. The molecular excited states of interest
are those of vibration (500�10, 000 cm�1) and rotation (1�500 cm�1). This
range of energies contrasts with that of the higher-lying electronic states
(10, 000 � 100, 000 cm�1) which interact primarily with visible and ultra-
violet radiation. To a first approximation the internal excitation energy is
the sum of these three types of energies, electronic (Ee), vibrational (Ev),
and rotational (Er). We shall also be concerned with the kinetic energy of
the molecules, since it plays an important indirect role in determining the
populations of the various absorbing states.

Mastery of the subject of IR spectroscopy demands a thorough familiar-
ity with quantum mechanics, a subject which is beyond the scope of this
book. Our approach is to consider only a few of the simpler ideas under-
lying the physics of vibrational and rotational spectra. Fortunately an un-
derstanding of the radiative transfer process itself does not require detailed
spectroscopic knowledge. This situation has been made possible in recent
years by the availability of accurate compilations of line strengths and fre-
quencies for all the major terrestrial molecular species. We will follow this
empirical approach, as opposed to the more traditional and perhaps more
intellectually-satisfying spectroscopic approach.

We first consider some elementary physics of the absorption process. It is
important to note that the major molecular species (O2, N2) of the Earth’s
atmosphere have essentially no importance for IR absorption. This lack of
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IR absorption is due to the symmetrical structure of homonuclear, diatomic
molecules, as will be explained shortly. Four of the most important IR-
absorbing molecular species are the minor constituent polyatomic molecules,
water vapor (H2O), carbon dioxide (CO2), ozone (O3), and methane (CH4).
Although dozens of other species have a small overall e↵ect on the radiative
energy budget, and together with their isotopic variants are important in
remote sensing, we will discuss only these four representative species.

The absorption of light gives rise to excited states, which may be due
to a combination of electronic, vibrational, and rotational motions (we will
ignore the small e↵ects associated with nuclear spin). We will begin with a
consideration of molecular vibration, ignoring for the time being electronic
or rotational energy. Separating the three is a useful abstraction, because
the total internal energy of a molecule is given approximately by the sum
of the three kinds of energy. Before discussing specifics, we will attempt
to provide a visualization of the physics of the absorption process, in the
same spirit as our earlier discussion of the Lorentz atom with regard to the
scattering process (§3.2). The constituent atoms are held together in a semi-
rigid structure by attractive forces provided by the electron ‘cloud’ which
is more-or-less shared by all the atoms. The bonding forces can be either
electrostatic (ionic bonding) or quantum-mechanical (exchange or covalent
bonding). The nature of these forces does not concern us here. We need only
consider their behaviour as ‘springs’ binding the various positively-charged
nuclei together. The simplest example is a diatomic molecule which acts
in many ways like a classical oscillator. Upon being “struck”, either by a
collision with another molecule or by absorption of a photon of the proper
frequency, the constituent atoms are set into internal motion, alternately
stretching and compressing the molecule. In addition, the bonds may ‘bend’
so that the angles between the various axes may also oscillate. Classically,
the energy of oscillation of a molecule can vary continuously, but in reality,
the number of energy states is a discrete set, due to the quantum nature of
energy states.

According to classical-mechanical analyses, the internal motion of a semi-
rigid system, no matter how complicated, can be decomposed into a sum
of elementary motions, the so-called normal modes. A diatomic molecule,
modelled by a simple harmonic oscillator, has only one normal mode of
oscillation, along the internuclear axis. However, with increasing complexity
of the molecule, more normal modes are possible. The general rule is that if
a molecule has N atoms, the number of independent modes (or degrees of
freedom) is 3N �6 for a non-linear molecule (N > 2), and 3N �5 for a linear
molecule. Figure S.1 illustrates some of the normal modes of N2, O2, CO2,
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Figure S.1 Normal modes of vibration of N2, O2, CO2, and H2O. (a) N2 and
O2 are diatomic, homonuclear molecules with only one mode of vibration.
(b) CO2 is a linear, triatomic molecule. Its ⌫1 stretching mode is symmetric
and therefore optically inactive. ⌫2a

and ⌫2b

are two separate modes but
with the same energy, and are said to be degenerate. The two modes di↵er
only by a 90� rotation about the internuclear axis. ⌫3 is the asymmetrical
bending mode. (c) Both H2O and O3 (not shown) have three normal modes,
all of which are optically active.

and H2O. If the motions are of small amplitude, the quantum mechanical
result for the total vibrational energy is

Ev =
X

k

h⌫k(vk + 1/2) (vk = 0, 1, 2 · · · ) (S.1)

where the subscript v stands for ‘vibration’. The sum is over all modes de-
noted by the index k, h⌫k is the vibrational constant for that mode, ⌫k is
the mode frequency, and vk is an integer, the vibrational quantum number.
The value of h⌫k will depend upon the molecule, as well as the particular
electronic energy state, and is usually in the range 300 � 3000 cm�1 (corre-
sponding to values of h⌫k in the range 0.037- 0.37 eV). The constant 1/2 in
Eq. S.1 is a quantum-mechanical feature associated with the ‘zero-point en-
ergy’. The lowest vibrational energy levels are somewhat higher than thermal
energy1 ⇠ kBT ⇠ 210 cm�1 for T = 300 K. For a classical simple harmonic
oscillator, elementary analysis shows that h⌫k depends upon the square-root
of the ‘spring constant’ ke divided by the reduced mass. It is usually written

1 A temperature of T = 300 K corresponds to a thermal energy of kBT . Thus, h⌫ = kBT
corresponds to a wavenumber of ⌫̃ = (kBT )/(hc) =
(1.3806 ⇥ 10�23 J K�1 ⇥ 300 K)/(6.626 ⇥ 10�34J s ⇥ 2.998 ⇥ 1010 cm s�1) = 208.5 cm�1.
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Figure S.2 Potential curve of the H2 ground state with vibrational lev-
els (Herzberg, 1950). The continuous term spectrum, above v

k

= 14, is
indicated by vertical hatching.

in terms of a vibrational constant (!e in cm�1) as h⌫k = hc!e. The inter-
molecular force for a diatomic molecule is given by the spatial derivative of
the potential energy function V (r), which for small-amplitude oscillations,
is given by �ke(r � re). Here re is the equilibrium nuclear separation. Fig-
ure S.2 shows the function V (r) for the H2 molecule, along with the array
of vibrational energy states (Herzberg, 1950). Departures from strictly har-
monic oscillations are described by higher order terms.

In addition to being excited by molecular collisions, molecular vibrations
may also be induced by absorption of radiation provided the radiative en-
ergy is in resonance with a normal mode. Classically we can think of this
interaction as the temporary creation of an induced electric dipole moment
by the incident electromagnetic field. Such an interaction occurs if the new
configuration results in an electron distribution whose first moment (‘center
of gravity’) is displaced from its original position. In their ground, or lowest
energy states, the dipole moment of symmetrical molecules, such as N2, O2,
CO2, and CH4 is zero. However, there are asymmetrical stretching or bend-
ing modes of vibration (for example the ⌫2 state of CO2) which result in an
electric dipole. Radiative transitions between these states and the ground
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state are allowed because there is a change in the dipole moment. Note that
the homonuclear molecules N2 and O2 are symmetrical in both their ground
and (single) excited state, and therefore have no vibrational spectra, that
is, they are radiatively inactive.

In quantum theory, absorption takes place if there is a finite dipole ma-
trix element2 between the initial and excited states. Sometimes this ma-
trix element is zero for certain combinations, and the transition is forbid-
den, at least for dipole transitions. Higher-order moments, such as electric
quadrupole and magnetic dipole moments may exist but their associated ab-
sorptions are much weaker than electric dipole transitions. So-called selection
rules follow from considerations of whether a transition is ‘dipole-allowed’
or ‘dipole-forbidden’. The wave number of a vibrational transition is given
by hc⌫̃ = Ev(v0) � Ev(v00) with the selection rule �v = v0 � v00 = ±1, the
so-called fundamental rule. Because of deviations from strict harmonic oscil-
lator behavior of a real molecule, higher order transitions (overtone bands)
can occur where �v = ±2, ±3, etc.

Up to now we have ignored rotation, but rotational energy always ac-
companies vibrational energy. Rotation imposes a ‘fine structure’ on the
vibrational transitions, giving rise to a far richer absorption spectrum than
Eq. S.1 would imply.

S.1.2 Molecular Rotation: the Rigid Rotator

Molecular rotation is easy to understand in principle. For simplicity we as-
sume that the molecule is a rigid rotator, that is, the internuclear separation
is fixed, regardless of the rotation. A diatomic molecule will be characterized
by one moment of inertia, I, expressed classically as M1r2

1 +M2r2
2 where Mj

and rj are the nuclear masses and distances along the principal axis from
the center of gravity of the nuclei. The two radii are given by

r1 =
M2

M1 + M2
r and r2 =

M1

M1 + M2
r

where r = r1 + r2 is the internuclear separation. The classical expression
for the energy of rotation is Er = I!2/2 = L2/2I, where ! is the angular
velocity of rotation about the principal axis, I is the corresponding moment
of inertia, and L is the angular momentum. The usual quantum-mechanical

2 The electric dipole matrix element is the convolution of the ground- and excited-state
quantum mechanical wave functions with the electric dipole moment ex, where e is the
electron charge and x is the displacement of the charge from the equilibrium position.
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‘prescription’ is to replace the classical angular momentum with the quan-
tized quantity (h/2⇡) times an integer where h is Planck’s constant. Since
we are dealing with the square of the angular momentum, the quantum-
mechanical equivalent is L2 ! (h/2⇡)2J(J + 1) where J is a positive inte-
ger, called the rotational quantum number. Thus, the rotational energy of a
rigid-rotator is given by

Er(J) =
1

2I

✓

h

2⇡

◆2

J(J + 1) = hcBvJ(J + 1) (J = 0, 1, · · · ) (S.2)

where Bv ⌘ h/(8⇡2cI) is the rotational constant corresponding to a par-
ticular electronic and vibrational state, which explains the subscript v on
Bv.

How does rotation a↵ect absorption and emission? Again, we invoke the
principle that a change in electric dipole moment must be involved. For a
radiative interaction it is necessary to have a permanent electric dipole mo-
ment. Since the dipole moment is a vector quantity, a change of its direction
would constitute a change in the dipole moment. This interaction leads to
pure rotational transitions, whose energies occur in the far-IR and microwave
portion of the spectrum. The wavenumber of the emitted or absorbed photon
is �Er/hc, so that Eq. S.2 gives:

⌫̃ = BvJ
0(J 0 + 1) � BvJ

00(J 00 + 1) (S.3)

where the selection rule is �J = J 0 � J 00 = ±1, that is, J may change or
‘jump’ by only one unit. The pure rotational spectrum of a rigid rotator
can be seen to be a sequence of equidistant lines. Linear molecules, such
as N2, O2, or CO2, are symmetrical in their ground states. They have no
permanent dipole moment and thus no pure rotational spectrum. Finally,
it should be mentioned that pure rotational transitions prevail in the mi-
crowave spectrum. For example H2O exhibits intense microwave absorption
at 22 and 183 GHz (1 GigaHertz = 1 ⇥ 109 Hz). Although the ground state
of O2 possesses no electric dipole moment, it does have an unusually large
magnetic dipole. Thus weak (‘forbidden’) magnetic dipole transitions occur
in the microwave spectrum, which are important for atmospheric absorption
because of the very high abundance of O2.

S.1.3 Molecular Vibration and Rotation: the Vibrating Rotator

Recognizing that vibration and rotation can occur simultaneously, we now
consider the vibrating rotator. If there were no interaction between rotation
and vibration, the energy would be simply the sum Ev +Er. However, if the
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centrifugal force and the Coriolis force associated with the rotating frame
are considered, the situation becomes more complicated. The energy levels
can be written as so-called term values

E(v, J)

hc
= !e(v+1/2)�!exe(v+1/2)2 +BvJ(J +1)�DvJ

2(J +1)2. (S.4)

!e and !exe are vibrational constants, expressed in wavenumber units. The
quadratic terms are the ‘interaction’ terms for an anharmonic oscillator.
Note the presence of two rotational constants, Bv and Dv, whose subscript
v indicates their dependence on the vibrational mode. The term involving
!exe is an anharmonic correction, which takes into account departures from
simple harmonic oscillator motion.

The total molecular energy includes the electronic energy Ee. With this
addition, the values of the rotational constants may also depend upon the
particular electronic energy state. The wave number of a spectral line in a
vibration-rotation band within a given electronic state is given by the di↵er-
ence of the term values of the two states defined by (v0, J 0) and (v00, J 00)

⌫̃ = ⌫̃k + Bv0J
0(J 0 + 1) � Bv00J

00(J 00 + 1) [cm�1] (S.5)

and where ⌫̃k is the basic wavenumber of the pure vibrational transition
without taking into account any rotation (that is when J 0 and J 00 are set
equal to zero). With �J = J 0�J 00 = +1 and �J = J 0�J 00 = �1, we obtain
the wave numbers of the R-branch and P-branch, respectively

⌫̃R = ⌫̃k + 2Bv0 + (3Bv0 � Bv00)J
00 + (Bv0 � Bv00)J

002 (J = 0, 1, · · · ) (S.6)

⌫̃P = ⌫̃k � (Bv0 + Bv00)J
00 + (Bv0 � Bv00)J

002 (J = 1, 2, · · · ). (S.7)

Figure S.3 shows the various transitions in a vibration-rotation band, illus-
trating the separation into two branches.

This description of a diatomic molecule is still approximate. Each electron
(having a small mass compared to that of the nucleus) has a small moment
of inertia about the internuclear axis. Nevertheless the total angular momen-
tum of the electrons is comparable to that of the nucleus (which we denote
by the vector N), because of their fast orbital motions. Only the component
of the total angular momentum ⇤ of the electrons along the internuclear
axis contributes (the other components average to zero) because the electric
field points along this axis. The associated quantum number ⇤ is a posi-
tive number. The total angular momentum J of the molecule is the vector
sum of the nuclear angular momentum N (which points perpendicular to
the internuclear axis) and the component of the total angular momentum ⇤
of the electrons (which points along the internuclear axis). The magnitude
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!	
!!	

Figure S.3 Energy levels of the vibrating rotator [adapted from Fig. 11.5 of
Rybicki and Lightman (1979)]. v00 and J 00 are the vibrational and rotational
quantum numbers of the lower state. v0 and J 0 refer to the upper (excited)
state. The vertical lines indicate allowed transitions (�J = ±1). R(j) (j =
1, 2, 3, 4) denotes the R-branch (�J = +1) ending in the J 0 = j state.
In the lower part of the diagram, idealized absorption is shown versus
wavenumber. P (j) (j = 0, 1, 2, 3) denotes the P -branch (�J = �1) ending
in the J 00 = j state. The vertical dashed line indicates the band head at
⌫̃ = ⌫̃0, which is missing in homonuclear diatomic molecules, because the
transition from v0 = 0 to v00 = 0 is forbidden.

of the total angular momentum J is constant, and quantized according to
|J| =

p

J(J + 1)h/2⇡ where h is Planck’s constant. The quantum number
J (� ⇤) is given by J = ⇤, ⇤ + 1, · · · . For ⇤ 6= 0, there is a precession of N
and ⇤ about the (constant) vector J. Thus a more accurate picture of the
diatomic molecule is a symmetric top nutating about the direction of the
total angular momentum. The energy levels that result are thus the sum of
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the nuclear rotational energy and the nutational energy

Er/hc = BvJ(J + 1) + (Av � Bv)⇤
2 where Bv =

h

8⇡2cIB
and Av =

h

8⇡2cIA
.

The primary moment of inertia is IB, and IA is the much smaller moment
about the internuclear axis. Hence, Av is generally much larger than Bv. ⇤ is
usually a small (integral) value. Thus for a given electronic state, the levels
of the symmetric top are the same as those of the simple rotator, except
that there is a shift of magnitude (Av � Bv)⇤2, and levels with J < ⇤ are
absent.

Ignoring electronic transitions, the selection rules are rather simple, since
⇤ does not change during the transition. Then for ⇤ = 0, �J = ±1, and
for ⇤ 6= 0, �J = 0, ±1. In the first case, since the constant term (A � B)⇤2

disappears when the two term values are subtracted, we obtain exactly the
same branches as discussed for the simple rotator. In the second case there is
a constant shift, but otherwise the term values are the same. However more
importantly, a new branch arises, the so-called Q-branch with �J = 0. The
wave numbers of the lines in this branch are

⌫̃Q = ⌫̃k + (Bv00 � Bv0)⇤
2 + (Bv0 � Bv00)J + (Bv0 � Bv00)J

2. (S.8)

The only case of atmospheric interest for which a diatomic molecule has
a Q-branch in its IR spectrum is that of nitric oxide (NO), which has a
non-zero value of ⇤ in its ground state. Its fundamental band at 5.3 µm is
important for the energy budget of Earth’s lower thermosphere.

Q-branches are more common in polyatomic molecular spectra, for exam-
ple in the pure bending mode of the ⌫2 mode of CO2. The �v = 1 transitions
“pile up” at very nearly the same frequency, accounting for the very strong
Q-branch in the 15 µm band (667 � 668 cm�1, see Fig. 4.4).

More complex molecules are categorized in terms of the relationships of
the various moments of inertia. For the most complicated molecule, all three
moments of inertia are di↵erent and also unequal to zero. This configuration
is called an asymmetric top, and is represented by the important molecules,
H2O and O3. If all three moments are equal, we have the spherical top,
represented by CH4. If two of the three moments of inertia are equal, we
have a symmetric top, already mentioned in the case of a diatomic molecule.
It is represented by the molecule CFCl3. Finally, we have the case where
one of the moments of inertia is e↵ectively zero, in which case we have a
linear molecule, examples of which are CO2, N2O, CO, and NO. Equation S.2
applies to the rotational energy for both the spherical top (Av = Bv) and the
linear molecule (⇤ = 0). However, a more detailed analysis shows that linear
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molecules and spherical tops do not have the same rotational structure, as
levels of equal J will ‘split’ in di↵erent ways. This ‘splitting’ occurs as the
theory is made more precise to consider all the various couplings between
electronic, vibrational, and rotational energies. Electron and nuclear spin
are important for setting additional selection rules, and in perturbing single
energy levels into multiple levels. A fine structure results from the interaction
of the magnetic dipole of the spinning electron with the electric field of the
other electrons. A Hyperfine structure results from a similar interaction of
the nuclear spin.

S.1.4 Line Strengths

The rather formidable task of spectroscopy is to analyze the line frequencies
of an absorption or emission spectrum in terms of the various quantum num-
bers, rotational and vibrational constants, etc. We will henceforth take a less
formidable empirical approach and assume that we are given the complete
set of spectroscopic constants (!e, !exe, B, D, etc.) necessary to determine
the frequency (or wavenumber) of all transitions within a specified frequency
range. In addition to the spectroscopic constants, modern compilations of
the absorption line strengths are also readily available. Knowledge of line
strengths is necessary for determining the overall opacity of the atmosphere
as a function of frequency. The strengths depend not only upon the nature of
the individual transition, but also upon the equilibrium number of ground-
state molecules. Thus it is necessary to return to the consideration of the
Boltzmann distribution of energy states.

We will first consider a vibration-rotation band produced by a simple
harmonic-oscillator rigid-rotator. We will assume LTE conditions, so that
the distribution of excited states is given by Boltzmann’s formula (Eq. 4.18).
First consider molecular rotation only, in which the energy levels are denoted
by the quantum number J and are given by Eq. S.2. Since the quantum
theory tells us that the statistical weight gJ (§4.3.4) of a rotational level J
is 2J + 1, the ratio of state populations with di↵erent J-values becomes

n(J)

n(J 0)
=

2J + 1

2J 0 + 1
exp

⇢

�hcB

kBT

⇥

J(J + 1) � J 0(J 0 + 1)
⇤

�

. (S.9)

A more convenient ratio is that of an excited state population to the total
number of states n within a given electronic and vibrational state

n(J)

n
=

(2J + 1)

Qr
exp



�hcBv

kBT
J(J + 1)

�

(S.10)
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where Qr is the rotational partition function

Qr =
X

J 0

(2J 0 + 1) exp



�hcBvJ 0(J 0 + 1)

kBT

�

. (S.11)

For su�ciently large T or small Bv, the spacing is very small compared with
the total extent of the rotational energy. In this limiting case we may replace
the sum with an integral, which is easily evaluated

Qr ⇡
Z 1

0
dJ(2J + 1) exp [�hcBvJ(J + 1)/kBT ] =

kBT

hcBv
.

The distribution of rotational energies with rotational quantum number J
is shown in Fig. S.4 for a number of molecules of atmospheric interest. This
distribution is very important for the absorption coe�cient, since the num-
ber of molecules in the ground (vibrational and electronic) state determine
the rate of excitation. Since Bv = h/8⇡2cI is inversely proportional to the
moment of inertia I, and therefore to the molecular mass, it follows that
light molecules, such as H2, will have more widely separated rotational en-
ergy levels (see Fig. S.4) than heavier molecules. Consequently, because the
average separation between states is relatively high in H2, there are relatively
few rotational states populated by collisions.

The LTE absorption cross section ↵⇤
in(⌫) for an individual vibration-

rotation line (denoted by subscript i, whereas subscript n is used to denote
cross section as explained in Chapter 2) can be written as the product of a
numerical factor and a frequency-dependent line profile

↵⇤
in(⌫) = Si�i(⌫). (S.12)

Here Si is the line strength or line radiance of the ith line (v00, J 00) ! (v0, J 0)
given by (double-primes denote the lower state, and single-primes denote
the excited state)

Si =

Z

d⌫↵⇤
in(⌫) [m2 · s�1] (S.13)

where the frequency integration is over the width of a single line. The ab-
sorption coe�cient is given by ↵i(⌫) = ↵in(⌫)n, where n is the total density
of radiatively-active molecules (the sum over all ground and excited states).
In tropospheric radiation problems, it is permissible to assume LTE, so that
Eq. 4.33 applies. In the present context, absorption and extinction are syn-
onymous. In Eq. 4.33, the initial (absorbing) state in the generalization to a
multi-level molecule is n⇤

1 ! n(v00, J 00). Also we let B12 ! Bi. Thus, equating
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Figure S.4 Distribution of rotational energy levels with rotational quantum
number J for the molecules O2, H2, N2, and NO assuming T = 250 K.

Eqs. 4.33 and S.12, we find the following expression for the LTE absorption
coe�cient:

k⇤(⌫) ! ↵⇤(⌫) =
h⌫i
4⇡

�i(⌫)n(v00, J 00)Bi

�

1 � e�h⌫
i

/k
B

T
� ⌘ Sin�i(⌫) (S.14)

where ⌫i denotes the central frequency of the line, and h⌫i = E(v0, J 0) �
E(v00, J 00) is the di↵erence in energies of the two states connecting the tran-
sition i. The notation �i(⌫) reminds us that the line profile may depend
upon the particular transition, i, and di↵er from line to line, and band to
band. This variation is usually small and slowly-varying with frequency over
lines within the same band. Solving Eq. S.14 for the line strength, we find

Si =
h⌫i
4⇡

Bi
n(v00, J 00)

n

�

1 � e�h⌫
i

/kBT
�

. (S.15)

Substitution from Eq. S.10 for the population ratio of a rotational state
yields

Si =
h⌫i(2J 00 + 1)

4⇡Qi
Bi exp

⇥� hcBvJ
00(J 00 + 1)/kBT

⇤�

1 � e�h⌫
i

/kBT
�

. (S.16)

We should note here that di↵erences may occur between the expressions
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above and those found in the literature. First, our definition of the absorp-
tion coe�cient in terms of the total density of molecules, as opposed to the
number of molecules in the specific ground state, accounts for the factor
n(v00, J 00)/n in Eq. S.15. Second, the assumption of LTE allowed us to ex-
press stimulated emission as negative absorption. Not all authors include the
associated factor, (1 � e�h⌫

i

/kBT ), which is often near unity. Third, we have
defined the Einstein coe�cients in terms of the mean radiance Ī⌫ , instead
of the energy density U⌫ , which is often used in the astrophysical literature,
and accounts for a factor of 4⇡/c between definitions involving Ī⌫ and U⌫ .

In Eq. S.16 we see the explicit dependence of the line strength on tem-
perature through the Boltzmann distribution of initial-state populations.
So far we have assumed that transitions connect only a ground state with
an excited state. In fact, absorption can originate from a higher vibrational
state, which occurs for so-called hot-bands. Including the possibility of initial
vibrational excitation, we have

Si = Sio
Qv(To)Qr(To)

Qv(T )Qr(T )

e�E00
i

/kBT

e�E00
i

/kBTo

(1 � e�E
i

/kBT )

(1 � e�E
i

/kBTo)
. (S.17)

The vibrational partition function, Qv, is defined analogously to Qr (see
Eq. S.11). E00

i denotes the initial state energy. Soi is simply the line strength
obtained from Eq. S.16 evaluated at the reference temperature To. Fortu-
nately, the result in Eq. S.17 may be applied to any polyatomic molecule for
which we know the various partition functions, line strengths, and central
line frequencies. For standard tabulations, the temperature dependence of all
the various terms are subsumed into the following semi-empirical expression

Si = Sio

✓

To

T

◆m

exp



�E00
i

kB

⇣ 1

T
� 1

To

⌘

�

. (S.18)

Here m is a dimensionless quantity of order unity which serves as a fitting
parameter.

The strength of a line can be determined in two basic ways: (1) from
quantum theoretical calculations, and (2) from laboratory measurements.
The first method requires rather accurate knowledge of the wave functions,
a very di�cult problem for polyatomic molecules. In practice, laboratory
results which rely upon the Extinction Law are used. The HITRAN spec-
troscopic data base contains information about several hundred thousands
of lines.3 Specifically, it includes spectroscopic data for seven major atmo-
spheric absorbers, O2, H2O, CO2, O3, N2O, CO, and CH4. Included in the
3 An early version of the HITRAN data base is described by Rothman et al. (1983). The

HITRAN data base is being updated continuously as more and better spectroscopic data
become available. The latest published version is described by Rothman et al. (2013).
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listing for each line are: ⌫i, Sio, width of the line at standard sea-level pres-
sure and reference temperature, and energy E00

i of the lower state. A data
base such as HITRAN is extremely useful to atmospheric radiative transfer
practitioners, because it provides a well-accepted standard against which
theory can be compared with data, and with other theories.

S.2 Chapter 5 - Details and Derivations

S.2.1 §5.4.3 – Derivations

We first obtain a formal solution of Eq. 5.55 by choosing the integrating
factor e⌧/µ to obtain

d

d⌧

⇣

I�⌫ e⌧/µ
⌘

=

✓

dI�⌫
d⌧

+
1

µ
I�⌫

◆

e⌧/µ =
B⌫(⌧)

µ
e⌧/µ. (S.19)

In accordance with the physical picture in Fig. 5.10 of downward beams
which start at the ‘top’ and interact with the medium in the slab on their
way downwards, we integrate Eq. S.19 along the vertical from the ‘top’
(⌧ = 0) to the ‘bottom’ (⌧ = ⌧⇤) of the medium to obtain

Z ⌧⇤

0
d⌧ 0

d

d⌧ 0
⇣

I�⌫ e⌧
0/µ
⌘

= I�⌫ (⌧⇤, µ,�)e⌧
⇤/µ�I�⌫ (0, µ,�) =

Z ⌧⇤

0

d⌧ 0

µ
e⌧

0/µB⌫(⌧
0).

Solving for I�⌫ (⌧⇤, µ,�), we find

I�⌫ (⌧⇤, µ,�) = I�⌫ (0, µ,�)e�⌧⇤/µ +

Z ⌧⇤

0

d⌧ 0

µ
B⌫(⌧

0) e�(⌧⇤�⌧ 0)/µ (S.20)

for the downward radiance emerging from the bottom of the slab. For an
interior point, ⌧ < ⌧⇤, we integrate from 0 to ⌧ . The solution is easily found
by replacing ⌧⇤ by ⌧ in Eq. S.20, that is

I�⌫ (⌧, µ,�) = I�⌫ (0, µ,�)e�⌧/µ +

Z ⌧

0

d⌧ 0

µ
B⌫(⌧

0) e�(⌧�⌧ 0)/µ. (S.21)

We now turn to the solution for the upper-half range radiance. The inte-
grating factor for Eq. 5.54 is e�⌧/µ, which yields

d

d⌧

⇣

I+
⌫ e�⌧/µ

⌘

=

✓

dI+
⌫

d⌧
� 1

µ
I+
⌫

◆

e�⌧/µ = �B⌫(⌧)

µ
e�⌧/µ.

In this case the physical picture in Fig. 5.10 involves upward beams which
start at the bottom of the slab and interact with the medium on their
way upwards. Therefore, we integrate from the ‘bottom’ to the ‘top’ of the
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medium
Z 0

⌧⇤
d⌧ 0

d

d⌧ 0
⇣

I+
⌫ e�⌧ 0/µ

⌘

= I+
⌫ (0, µ,�) � I+

⌫ (⌧⇤, µ,�)e�⌧⇤/µ

= �
Z 0

⌧⇤

d⌧ 0

µ
e�⌧ 0/µB⌫(⌧

0) =

Z ⌧⇤

0

d⌧ 0

µ
e�⌧ 0/µB⌫(⌧

0).

Solving for I+
⌫ (0, µ,�), we find

I+
⌫ (0, µ,�) = I+

⌫ (⌧⇤, µ,�)e�⌧⇤/µ +

Z ⌧⇤

0

d⌧ 0

µ
e�⌧ 0/µB⌫(⌧

0).

To find the radiance at an interior point ⌧ , we integrate from ⌧⇤ to ⌧ , to
obtain

I+
⌫ (⌧, µ,�) = I+

⌫ (⌧⇤, µ,�)e�(⌧⇤�⌧)/µ +

Z ⌧⇤

⌧

d⌧ 0

µ
e�(⌧ 0�⌧)/µ B⌫(⌧

0). (S.22)

S.2.2 Example 5.6 – Derivations

Here we illustrate the use of the formal solution of the radiative transfer
equation (Eqs. 5.67, 5.68 and 5.70) in deriving the reflectance of an idealized
flat surface of a solid material illuminated by a collimated beam. The solid
material is modeled as a homogeneous, semi-infinite (⌧⇤ ! 1) slab medium.
Even though the medium is optically infinite, because of the dense packing
of the scatterers, the penetration of photons is actually quite shallow. The
surface is located at an optical depth ⌧ = 0. The particles of the medium
are assumed to be independent scatterers of single-scattering albedo $. The
particles scatter according to a phase function p. The absorption is assumed
to dominate the scattering ($ is small), so that only the singly-scattered
photons leave the surface.

Under these assumptions, the reflected radiance is a simplified form of
Eq. 5.68

I+(0, µ,�) =

Z 1

0

d⌧ 0

µ
S(⌧ 0, µ,�)e�⌧ 0/µ (S.23)

where the source function S is obtained from Eq. 5.70. To evaluate S and
thus I+, we note that we need to determine the two unknown half-range
radiances, I+ and I� throughout the medium. This circularity is always
present in the scattering theory, and to solve this problem is one of the
main goals of this book. However in this simple example, we have simplified
the problem in order to specify the radiation field explicitly. The single-
scattering assumption permits us to replace the radiances on the right-
hand side of Eq. 5.70 with the incident radiation field. In this case I� is
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the solar radiance, evaluated within the medium from the extinction law,
I�(⌧, µ0,�0) = F s�(µ0 � µ0)�(�0 � �0)e�⌧/µ0

. The term involving I+ within
the medium can be neglected, since it represents higher-order scattering.
Inserting this result into Eq. 5.70, and ignoring thermal emission, we find

S(⌧, µ,�) =
$

4⇡

Z 2⇡

0
d�0
Z 1

0
dµ0p(�µ0,�0; µ,�)F s�(µ0 � µ0)�(�

0 � �0)e
�⌧/µ0

(S.24)
Inserting this result into Eq. S.23 we find

I+(0, µ,�) =
$

4⇡
p(�µ0,�0; µ,�)F s

Z 1

0

d⌧ 0

µ
e�⌧ 0/µ0e�⌧ 0/µ

=
$

4⇡(1 + µ/µ0)
p(�µ0,�0; µ,�)F s. (S.25)

The reflectance (BRDF) is given by

⇢(�µ0,�0; µ,�) =
I+(0, µ,�)

µ0F s
=
$

4⇡

p(�µ0,�0; µ,�)

(µ + µ0)
. (S.26)
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S.3.1 Derivations of Eqs. 6.3 and 6.4

We can write Eq. 5.45 in terms of the half-range radiances in a slab geometry
as

�µ
dI�⌫ (⌧, ⌦̂)

d⌧
= I�⌫ (⌧, ⌦̂) � (1 �$)B⌫ � $

4⇡

Z

+
d!0p(+⌦̂0, �⌦̂)I+

⌫ (⌧, ⌦̂0)

� $

4⇡

Z

�
d!0p(�⌦̂0, �⌦̂)I�⌫ (⌧, ⌦̂0) (S.27)

µ
dI+

⌫ (⌧, ⌦̂)

d⌧
= I+

⌫ (⌧, ⌦̂) � (1 �$)B⌫ � $

4⇡

Z

+
d!0p(+⌦̂0, +⌦̂)I+

⌫ (⌧, ⌦̂0)

� $

4⇡

Z

�
d!0p(�⌦̂0, +⌦̂)I�⌫ (⌧, ⌦̂0). (S.28)

The notation I�⌫ (⌧, µ,�) ⌘ I�⌫ (⌧, ⌦̂) ⌘ I⌫(⌧, �⌦̂) and p(�⌦̂0, +⌦̂) (for ex-
ample) indicates that a photon is moving downward before the scattering
(�⌦̂0), and upward (+⌦̂) after the scattering. We now substitute for the
total radiance, the sum of the direct and di↵use components (Eqs. 6.1 and
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6.2) into Eq. S.27 to obtain

�µ
dI�⌫d(⌧, ⌦̂)

d⌧
� µ

dI�⌫s(⌧, ⌦̂)

d⌧
=

I�⌫d(⌧, ⌦̂) + I�⌫s(⌧, ⌦̂) � (1 �$)B⌫ � $

4⇡

Z

�
d!0p(�⌦̂0, �⌦̂)I�⌫s(⌧, ⌦̂

0)

� $

4⇡

Z

+
d!0p(+⌦̂0, �⌦̂)I+

⌫d(⌧, ⌦̂
0) � $

4⇡

Z

�
d!0p(�⌦̂0, �⌦̂)I�⌫d(⌧, ⌦̂

0).

(S.29)

The two non-integral terms involving the direct component cancel, because
�µdI�⌫s/d⌧ = I�⌫s. If we substitute for I�⌫s from Eq. 6.1 in the first integral
term, we obtain

�µ
dI�⌫d(⌧, ⌦̂)

d⌧
= I�⌫d(⌧, ⌦̂) � (1 �$)B⌫ � S⇤

⌫(⌧, �⌦̂)

� $

4⇡

Z

+
d!0p(⌦̂0, �⌦̂)I+

⌫d(⌧, ⌦̂
0) � $

4⇡

Z

�
d!0p(�⌦̂0, �⌦̂)I�⌫d(⌧, ⌦̂

0)

(S.30)

where

S⇤
⌫(⌧, �⌦̂) =

$

4⇡

Z

�
d!0p(�⌦̂0, �⌦̂)F s

⌫ e�⌧/µ0�(⌦̂0 � ⌦̂0)

=
$

4⇡
p(�⌦̂0, �⌦̂)F s

⌫ e�⌧/µ0 . (S.31)

We repeat this procedure for the upward component to obtain

µ
dI+

⌫d(⌧, ⌦̂)

d⌧
= I+

⌫d(⌧, ⌦̂) � (1 �$)B⌫ � S⇤
⌫(⌧, +⌦̂)

� $

4⇡

Z

+
d!0p(+⌦̂0, +⌦̂)I+

⌫d(⌧, ⌦̂
0) � $

4⇡

Z

�
d!0p(�⌦̂0, +⌦̂)I�⌫d(⌧, ⌦̂

0)

(S.32)

where

S⇤
⌫(⌧, +⌦̂) =

$

4⇡

Z

�
d!0p(�⌦̂0, +⌦̂)F s

⌫ e�⌧/µ0�(⌦̂0 � ⌦̂0)

=
$

4⇡
p(�⌦̂0, +⌦̂)F s

⌫ e�⌧/µ0 . (S.33)
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S.3.2 Isotropic Scattering in Slab Geometry

It is sometimes permissible to assume that the scattering is isotropic, so that
p = 1. The source term is therefore also isotropic: S⇤±(⌧, ⌦̂) = S⇤(⌧), and the
radiative transfer equations for the half-range di↵use radiances (Eqs. S.30
and S.32) are greatly simplified because the integrals are independent of the
azimuthal angle �. Assuming a black lower boundary, we find

µ
dI+

d (⌧, µ)

d⌧
= I+

d (⌧, µ)�(1�$)B�S⇤(⌧)�$
2

Z 1

0
dµ0I+

d (⌧, µ0)�$
2

Z 1

0
dµ0I�d (⌧, µ0)

(S.34)

�µ
dI�d (⌧, µ)

d⌧
= I�d (⌧, µ)�(1�$)B�S⇤(⌧)�$

2

Z 1

0
dµ0I+

d (⌧, µ0)�$
2

Z 1

0
dµ0I�d (⌧, µ0)

(S.35)
where S⇤(⌧) = $

4⇡F se�⌧/µ0 .
Because S⇤ is isotropic in this case, the radiances are independent of the

angle �, which is an enormous simplification over the anisotropic scattering
case. A great deal of the early work in the field was performed on this type
of problem, because of its analytic simplicity rather than its resemblance to
real problems. Nevertheless, there are a few practical problems for which the
isotropic approximation is useful, such as in the integral equation approach
(§6.10), in the prototype problems (§6.7), as well as in the discussion of the
radiative equilibrium problem (Chapter 8).

From Eq. 6.12 the source function is:

S(⌧) = (1 �$)B + S⇤ +
$

2

Z 1

0
dµ
⇥

I+
d (⌧, µ) + I�d (⌧, µ)

⇤

. (S.36)

Given the source function S(⌧), the di↵use radiances follow from Eqs. 5.67
and 5.68

I�d (⌧, µ) =

Z ⌧

0

d⌧ 0

µ
S(⌧ 0)e�(⌧�⌧ 0)/µ (S.37)

I+
d (⌧, µ) =

Z ⌧⇤

⌧

d⌧ 0

µ
S(⌧ 0)e�(⌧ 0�⌧)/µ. (S.38)

S.3.3 The conservative limit for Prototype Problem 2: The Milne
Problem

The classical Milne Problem can be thought of as the limit of the imbedded-
source problem, in which there is no absorption so that $ ! 1. Then the
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source term is zero, and one is left with the simple radiative transfer equation

u
dI(⌧, u)

d⌧
= I(⌧, u) � 1

2

Z +1

�1
du0I(⌧, u0).

Note that we consider the full-range radiance (�1  u  +1) because no
particular simplifications follow from using half-range radiances, and because
it is the traditional form of the Milne problem. The medium is usually taken
to be semi-infinite, and a source of radiation is assumed to be placed at an
infinite distance below the upper boundary at ⌧ = 0. The radiation therefore
trickles upward and escapes without any losses into the half-space above the
upper boundary. As we shall see in Chapter 7 the upward irradiance is the
same in all directions, since there is neither absorption nor scattering in the
medium.

S.4 Chapter 7 - Details and Derivations

S.4.1 §7.2.2 – Derivations

It is not obvious that the Neumann series expansion given by Eq. 7.13 in
§7.2.2 converges, that is, whether it is the desired solution to Eq. 7.11. A
proof that it is indeed absolutely convergent is obtained by evaluating a
second series expansion in closed form, and whose terms are upper bounds
to those in the above series expansion.

The proof of convergence also provides us with an approximate solution
which o↵ers more insight into the general nature of the multiple-scattering
series. We assume the conditions of Prototype Problem 2, in which the only
source of radiation is thermal emission, and for which the ‘imbedded source’
is constant with ⌧ . For simplicity we assume that this source is independent
of optical depth, S(1) = (1 � $)B = constant. Consider the second-order
contribution to the source function

S(2)(⌧) ⌘ ⇤(1)(⌧, ⌧1)S
(1)(⌧1) =

$

2
S(1)

Z ⌧⇤

0
d⌧1E1(|⌧ � ⌧1|)

=
$

2
S(1)

"

Z ⌧

0
d⌧1E1(⌧ � ⌧1) +

Z ⌧⇤

⌧
d⌧1E1(⌧1 � ⌧)

#

. (S.39)
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Using the property dE2(t)/dt = �E1(t), and noting that E2(0) = 1, we find

S(2)(⌧) =
$

2
S(1)

"

Z ⌧

0
d⌧1

dE2(⌧ � ⌧1)

d⌧1
+

Z ⌧⇤

⌧
d⌧1(�)

dE2(⌧1 � ⌧)

d⌧1

#

= $S(1) [1 � 1/2E2(⌧) � 1/2E2(⌧
⇤ � ⌧)]

⌘ $S(1) [1 � P (⌧) � P (⌧⇤ � ⌧)] . (S.40)

P (⌧) ⌘ 1
2E2(⌧) and P (⌧⇤ � ⌧) ⌘ 1

2E2(⌧⇤ � ⌧) are the hemispherical single-
flight escape probabilities for a photon released at the optical depth ⌧ (see
Eq. R.10). P (⌧) describes the probability of escape without further scatter-
ing through the top (⌧ = 0), and P (⌧⇤ � ⌧) through the bottom (⌧ = ⌧⇤) of
the slab, respectively. As usual, we are assuming a black lower boundary, so
that a photon is lost when it reaches either boundary.

Since 1 � P (⌧) � P (⌧⇤ � ⌧) is the probability of photon capture upon
emission at ⌧ , the interpretation of Eq. S.40 is clear. The source function
of second-order scattered photons is the product of two factors: ($S(1) =
probability of a photon being scattered following an extinction event) ⇥ (the
probability that a photon is ‘captured’). It defines the contribution from
photons which are emitted from a unit volume4 which su↵er one extinction
and survive the extinction as a scattering event.

We are interested in an upper bound to the source function, which occurs
where the escape probability is a minimum, that is, at the mid-point in the
slab, ⌧ = ⌧⇤/2. Replacing the equality Eq. S.40 with the inequality, we have

S(2)(⌧) < $S(1) [1 � 2P (⌧⇤/2)] .

Continuing the procedure, we find that the third-order term is

S(3)(⌧) =
⇣$

2

⌘2
Z ⌧⇤

0
d⌧1E1(|⌧ � ⌧1|)

Z ⌧⇤

0
d⌧2E1(|⌧1 � ⌧2|). (S.41)

An upper limit follows from evaluating both the integrals at ⌧⇤/2

S(3)(⌧) < S(1)
⇣$

2

⌘2
Z ⌧⇤

0
d⌧1E1(|⌧1 � ⌧⇤/2|)

Z ⌧⇤

0
d⌧2E1(|⌧2 � ⌧⇤/2|)

= S(1)($)2 [1 � 2P (⌧⇤/2)]2 .

Repeating this process for every order of scattering, we find the general
upper bound

S(n)(⌧) < S(1)($)n�1 [1 � 2P (⌧⇤/2)]n�1 .
4 A unit volume in ‘tau-space’ is not the same as in geometrical space. Imagine a small

cylindrical volume whose length is d⌧ and whose cross-sectional area dA has units m2. Then
the volume will be dAd⌧ , whose units are m2, in contrast to the geometrical volume dzdA,
which has units of m3.
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The total source function thus obeys the following inequality

S(⌧) =
1
X

n=1

S(n) < S(1)
1
X

n=0

xn where x ⌘ $[1 � 2P (⌧⇤/2)].

The above sum is easily evaluated by recognizing that the geometric series
expansion of (1 � x)�1 is 1 + x + x2 + · · · . Thus, since S(1) = (1 �$)B, we
obtain:

S(⌧) <
(1 �$)B

1 �$
⇥

1 � 2P (⌧⇤/2)
⇤ . (S.42)

Since 0 < P (⌧) < 1, and 0 < $  1, this result is finite. Note that in
the limit of an optically-thick, conservatively-scattering medium where the
escape probability goes to zero, S ! (1 �$)B/(1 �$) = B, as it should.
Thus, we have shown that the Neumann series converges for any first-order
scattering source that is finite everywhere in the medium. Equation S.42 is
also interesting in its own right, since it provides in some circumstances a
useful estimate for the actual source function. If we use the more general
first-order source function (Eq. 7.6) we can replace the upper limit with the
approximation

S(⌧, µ,�) ⇡ (1 �$)B + $F s

4⇡ p(�µ0,�0; µ,�)e�⌧/µ0

1 �$
⇥

1 � 2P (⌧⇤/2)
⇤ . (S.43)

In astrophysics, the above equation is called the Sobolev approximation, and
in infrared atmospheric physics it goes by the name of the cooling-to-space
approximation (§8.2.6).

Now let ⌧⇤ << l. We note that 1�2P (⌧⇤/2) = 1�E2(⌧⇤/2) ⇡ 1�e�⌧⇤/2µ̄ ⇡
⌧⇤ (assuming µ̄ = 1/2). The multiple-scattering series becomes

S(⌧, µ,�) ⇡ [(1�$)B+
$F s

4⇡
p(�µ0,�0; µ,�)e�⌧/µ0 ][1+$⌧⇤+($⌧⇤)2+ · · · ].

S.4.2 Exponential-Kernal Approximation

An alternate method of solving radiative transfer problems is to begin with
the Milne-Schwarzschild integral-equation for the source function. The source
function yields the di↵use radiance through an integration, which may then
be added to the direct (solar) radiance. We illustrate this approach by again
solving Prototype Problem 1, and comparing to the previous results. Equa-
tion 6.80 is written for isotropic scattering for a general internal (thermal)
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source Sint and a boundary contribution S⇤

S(⌧) = Sint(⌧) + S⇤(⌧) +
$

2

Z ⌧⇤

0
d⌧ 0E1(|⌧ 0 � ⌧ |)S(⌧ 0). (S.44)

The boundary contribution may be written in terms of a general distribution
of radiance I�(0, µ,�) falling on the top of the medium. From Eq. 5.64

S⇤(⌧) =
$

4⇡

Z

4⇡
d!0I�(0, µ0,�0)e�⌧/µ (S.45)

and for hemispherically-isotropic radiation of radiance I

S⇤(⌧) =
$

2
I
Z 1

0
dµ0e�⌧/µ0

=
$

2
IE2(⌧) (S.46)

where E2 is the exponential integral of order 2.
The exponential-kernal approximation consists of the following replace-

ment

E1(|⌧ 0 � ⌧ |) =

Z 1

0

dµ0

µ0 e�|⌧ 0�⌧ |/µ0 ⇡ 1

µ̄
e�|⌧ 0�⌧ |/µ̄ (S.47)

where µ̄ has its usual meaning. This approximation may be thought of as
a one-point quadrature evaluation of the integral, or as a replacement of
the angular integral with the integrand evaluated at the mean angle of the
inclination of the rays. Note that E2 in the expression for S⇤ becomes ⇠
e�⌧/µ̄. The nth exponential integral is approximated by

En(⌧) ⇡ e�⌧/µ̄µ̄n�2. (S.48)

Substituting these results into Eq. S.44 with Sint(⌧) = 0, we find

S(⌧) =
$

2
Ie�⌧/µ̄ +

$

2

Z ⌧⇤

0

d⌧ 0

µ̄
e�|⌧ 0�⌧ |/µ̄S(⌧ 0). (S.49)

This equation can be shown to have a solution consisting of positive and
negative exponentials. Substituting the trial solution S(⌧) = Ae�⌧ + Ce��⌧

into Eq. S.49, where � is given by Eq. 7.32, and carrying out the integrations,
we obtain

Ae�⌧ + Ce��⌧ =
$

2
Ie�⌧/µ̄ +

$

2

Z ⌧

0

d⌧ 0

µ̄
e�(⌧�⌧ 0)/µ̄[Ae�⌧ 0 + Ce��⌧ 0 ]

+

Z ⌧⇤

⌧

d⌧ 0

µ̄
e�(⌧ 0�⌧)/µ̄[Ae�⌧ 0 + Ce��⌧ 0 ] = Ae�⌧ + Ce��⌧

+ e�⌧/µ̄



$

2

✓

1 � A

(1 � �µ̄)
� C

(1 + �µ̄)

◆�

� $

2



Ae��⌧⇤

(1 + �µ̄)
+

Ce�⌧⇤

(1 � �µ̄)

�

.
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After cancellation of equal terms on the left and right, we obtain an equa-
tion in which the left side is zero. In order for this equation to be correct
for all values of ⌧ , it is necessary that the coe�cients of the two linearly-
independent terms (one of which is proportional to e�⌧/µ̄ and the other
being just a constant) be separately equal to zero, that is

1 � A

(1 � �µ̄)
� C

(1 + �µ̄)
= 0;

Ae��⌧⇤

(1 + �µ̄)
+

Ce�⌧⇤

(1 � �µ̄)
= 0.

These equations are easily solved to yield

A =
�I(1 � �µ̄)e�⌧⇤

D ; C =
�⇢1I(1 � �µ̄)e��⌧⇤

D
where we have used the definition of ⇢1, Eq. 7.35, and D, Eq. 7.40. Noting
that 1��µ̄ = ($/2)(1+⇢1), we find the same solution for S(⌧) as obtained
earlier, Eq. 7.41. Given the source function, the di↵use radiance is given by

I+
d (⌧) ⇡ I+(⌧, µ̄) =

Z ⌧⇤

⌧

d⌧ 0

µ̄
S(⌧ 0)e�(⌧ 0�⌧)/µ̄ (S.50)

I�d (⌧) ⇡ I�(⌧, µ̄) =

Z ⌧

0

d⌧ 0

µ̄
S(⌧ 0)e�(⌧�⌧ 0)/µ̄. (S.51)

The total radiance is the sum of the di↵use and direct (‘solar’) terms, Id+Is,
where the direct term is

Is(⌧) =
$

2
IE2(⌧) ⇡ $

2
Ie�⌧/µ̄.

Carrying out the integrations, one finds that the total radiances I±(⌧) agree
with the earlier results, Eqs. 7.36–7.37. If µ 6= µ̄, the radiance I(⌧, µ) agrees
with the results, Eqs. 7.56–7.57.

We have shown that, at least for Prototype Problem 1, the exponential-
kernal methods yields the same solution as the traditional two-stream di↵erential-
equation approach. It should be obvious that the two methods are equiva-
lent, since they both rely upon the same approximation replacing the angular
variation of the radiance with a constant value.

S.4.3 Angular Distribution of Emergent Radiances for Isotropic
Scattering

The angular distribution of the radiance for Prototype Problem 3 can be
obtained in the same fashion as in Prototype Problem 1. The procedure is
straightforward, but the algebra is rather daunting. However, a ‘short-cut’ is
possible, provided we are interested only in the emergent radiances. We may
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use the closed-form results for the emergent radiances expressed in terms of
X- and Y -functions by S. Chandrasekhar as follows5

I+(0, µ; ⌧⇤) =
$F sµ0

4⇡(µ + µ0)



X(µ)X(µ0) � Y (µ)Y (µ0)

�

(S.52)

I�(⌧⇤, µ; ⌧⇤) =
$F sµ0

4⇡(µ � µ0)



Y (µ)X(µ0) � X(µ)Y (µ0)

�

. (S.53)

For a semi-infinite medium, Chandrasekhar’s result is written (see Exer-
cise 7.5)

I+(0, µ; ⌧⇤ ! 1) =
$F sµ0

4⇡(µ + µ0)
H(µ)H(µ0) ⇡ $F sµ0

4⇡(µ + µ0)

⇥


(µ̄ + µ)

(µ̄ + µ
p

1 �$)

�

(µ̄ + µ0)

(µ̄ + µ0
p

1 �$)

�

. (S.54)

S.4.4 Derivations (§7.5.1)

Assuming collimated incidence, S⇤(⌧, u) = ($F s/4⇡)p(�µ0, u)e�⌧/µ0 ,
we approximate the angular dependence of the radiance as a constant plus
a term linear in u, I(⌧, u) ⇡ [I0(⌧) + uI1(⌧)], which upon substitution into
Eq. 7.90 yields

u
d(I0 + uI1)

d⌧
= (I0+uI1)�$

2

Z 1

�1
du0p(u0, u)(I0+u0I1)�$F s

4⇡
p(�µ0, u)e�⌧/µ0 .

(S.55)
We expand the scattering phase function in Legendre polynomials as usual,
and find that the azimuthally-averaged scattering phase function is (see
Eq. 6.27)

p(u0, u) =
2N�1
X

`=0

(2`+ 1)�`P`(u)P`(u
0)

where the moments of the scattering phase function are given by (see Eq. 6.29)

�` =
1

2P`(u)

Z +1

�1
du0p(u0, u)P`(u

0).

In the two-stream approximation, we normally retain only two terms: (1) the
zeroth moment which is unity because of the normalization of the scattering

5 See Chandrasekhar (1960), page 209, Eqs. 3, 4, and 5.
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phase function (�0 = 1); and (2) the first moment which we refer to as the
asymmetry factor, �1 or more commonly denoted by g. Then

$

2

Z 1

�1
du0p(u0, u)(I0 + u0I1) = $(I0 + 3guhui2I1)

where the h i symbol denotes an angular average over the sphere

hui2 ⌘ 1

2

Z 1

�1
duu2.

Note that the symbol hui2 is used instead of the numerical value 1/3 to
facilitate comparison with the two-stream approximation. Since p(�µ0, u) =
1 � 3guµ0, Eq. S.55 becomes

u
d(I0 + uI1)

d⌧
= I0+uI1�$(I0+3guhui2I1)�$F s

4⇡
(1�3guµ0)e

�⌧/µ0 . (S.56)

To proceed, we first integrate Eq. S.56 over u (from �1 to 1), which yields the
first equation below. We then multiply Eq. S.56 by u, and integrate again,
to obtain the second equation below. Thus, we are left with the following
pair of coupled equations for the moments of radiance, I0 and I1

dI1

d⌧
=

1

hui2
(1 �$)I0 � $F s

4⇡hui2
e�⌧/µ0 (S.57)

dI0

d⌧
= (1 � 3g$hui2)I1 +

3$F s

4⇡
gµ0e

�⌧/µ0 . (S.58)

To derive the two-stream equations, we start by writing Eq. 7.90 in terms
of the half-range radiances

µ
dI+

d (⌧, µ)

d⌧
= I+

d (⌧, µ) � $

2

Z 1

0
dµ0p(�µ0, µ)I�d (⌧, µ0)

� $

2

Z 1

0
dµ0p(µ0, µ)I+

d (⌧, µ0) � $F s

4⇡
p(�µ0, µ)e�⌧/µ0

⌘ I+
d (⌧, µ) � S+(⌧, µ) (S.59)

�µ
dI�d (⌧, µ)

d⌧
= I�d (⌧, µ) � $

2

Z 1

0
dµ0p(�µ0, �µ)I�d (⌧, µ0)

� $

2

Z 1

0
dµ0p(µ0, �µ)I+

d (⌧, µ0) � $F s

4⇡
p(�µ0, �µ)e�⌧/µ0 .

⌘ I�d (⌧, µ) � S�(⌧, µ) (S.60)

We proceed by integrating both equations over the hemisphere by applying
the operator

R 1
0 dµ. If the I±(⌧, µ) are replaced by their averages over each
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hemisphere, I±(⌧), and the explicit appearance of µ is replaced by some av-
erage value µ̄, this procedure leads to the following pair of coupled equations
for I± (dropping the ‘d’ subscript)

µ̄
dI+

d⌧
= I+ �$(1 � b)I+ �$bI� � S⇤+ (S.61)

�µ̄
dI�

d⌧
= I� �$(1 � b)I� �$bI+ � S⇤� (S.62)

where

S⇤+ ⌘ $F s

2⇡
b(µ0)e

�⌧/µ0 ⌘ X+(⌧)e�⌧/µ0

S⇤� ⌘ $F s

2⇡
[1 � b(µ0)]e

�⌧/µ0 ⌘ X�(⌧)e�⌧/µ0 . (S.63)

S.4.5 Accuracy of the Two-Stream Method – Details (§7.6)

Table S.1 Two-stream results compared to accurate results for the di↵use
upward and downward irradiances at the top and bottom of a homogeneous

layer.a

F+(0) Error F�(⌧⇤) Error
Case µ0 ⌧⇤ $ g Exact Twostr (%) Exact Twostr (%)

1 1.000 1.00 1.0000 0.7940 0.173 0.174 0.65 1.813 1.812 -0.07
2 1.000 1.00 0.9000 0.7940 0.124 0.133 7.03 1.516 1.522 0.38
3 0.500 1.00 0.9000 0.7940 0.226 0.221 -2.14 0.803 0.864 7.59
4 1.000 64.00 1.0000 0.8480 2.662 2.683 0.81 0.480 0.454 -5.50
5 1.000 64.00 0.9000 0.8480 0.376 0.376 -0.05 0.000 0.000 0.00

Note: aThe lower surface was assumed to be black.

In Tables S.1–S.3 we show results for beam illumination of a homogeneous
slab (Prototype Problem 3). Table S.1 shows upward irradiance at the top
and downward irradiance at the bottom of a slab of optical depth ⌧⇤ = 1
and 64. The error varies from being negligible to as large as 7%. Table
S.2 shows the net irradiance and the irradiance divergence at several levels
in an optically thick slab (⌧⇤ = 64). For a conservative slab ($ = 1.0) the
errors are small (4-5%) for the net irradiance and negligible for the irradiance
divergence. For a moderately absorbing slab ($ = 0.9) the error is of similar
magnitude for the net irradiance and irradiance divergence; it is relatively
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Table S.2 Two-stream results compared to accurate results for the net
irradiance, F = F+ � F�, and the irradiance divergence,

Flayer,i+1 � Flayer,i.
a

Case 1 µ0 =1.000 $ =1.0000 ⌧⇤ =64.00 g =0.8480

⌧ Net irradiance Error Divergence Error
Exact Twostr (%) Exact Twostr (%)

.000 0.48000 0.45804 -4.6 0.00000 0.00026 0.0
3.200 0.48000 0.45778 -4.6 0.00000 0.00035 0.0
6.400 0.48000 0.45743 -4.7 0.00000 0.00070 0.0
12.800 0.48000 0.45674 -4.8 0.00000 0.00180 0.0
32.000 0.48000 0.45493 -5.2 0.00000 0.00092 0.0
48.000 0.48000 0.45401 -5.4 0.00000 0.00039 0.0
64.000 0.48000 0.45362 -5.5 0.00000 0.00000 0.0

Case 2 µ0 =1.000 $ =0.9000 ⌧⇤ =64.00 g =0.8480

⌧ Net irradiance Error Divergence Error
Exact Twostr (%) Exact Twostr (%)

.000 2.77600 2.76577 -0.4 1.16100 1.16050 0.0
3.200 1.60500 1.60526 0.0 0.77500 0.78321 1.1
6.400 0.83000 0.82205 -1.0 0.63400 0.63931 0.8
12.800 0.19600 0.18274 -6.8 0.19400 0.18143 -6.5
32.000 0.00220 0.00131 -40.2 0.00210 0.00130 -38.3
48.000 0.00010 0.00002 -81.0 0.00010 0.00002 -81.3
64.000 0.00000 0.00000 0.0 0.00000 0.00000 0.0

Note: aThe lower surface was assume to be black.

small closer to the top of the medium (⌧ < 12), but becomes as large as
80% deep within the medium. Results for the mean radiance at the top and
bottom of a Rayleigh scattering slab are shown in Table S.3. The slab overlies
a Lambert reflector with albedo-values ⇢L = 0 (non-reflecting), ⇢L = 0.25,
and ⇢L = 0.80. The error varies depending on the angle of illumination (µ0),
the optical depth of the slab (⌧⇤), and surface reflectance (⇢L), but it is
typically small (several %) except for a few cases where it is 10% or larger.

Tables S.4 and S.5 show results for an imbedded (thermal) source (Proto-
type Problem 2). Table S.4 displays emerging irradiances (top and bottom)
and the irradiance divergence. The temperature was assumed to vary lin-
early with optical depth across the slab from 270 K at the top to 280 K at
the bottom. The lower boundary (‘surface’) temperature was taken to be
zero K for the non-scattering case $ = 0, and 300 K for the non-absorbing
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Table S.3 Two-stream results compared to accurate results for the mean
radiance for conservative Rayleigh scattering ($ = 1, g = 0).

⇢L = 0.00 Error ⇢L = 0.25 Error ⇢L = 0.80 Error
µ0 ⌧ Exact Twostr (%) Exact Twostr (%) Exact Twostr (%)

4⇡I(0)/F s

0.10 0.02 1.045 1.016 -2.8 1.089 1.061 -2.6 1.187 1.161 -2.2
0.10 0.25 1.170 1.085 -7.3 1.189 1.107 -6.9 1.239 1.165 -6.0
0.10 1.00 1.212 1.119 -7.7 1.220 1.128 -7.5 1.247 1.166 -6.5
0.40 0.02 1.047 1.017 -2.9 1.235 1.210 -2.1 1.653 1.640 -0.8
0.40 0.25 1.284 1.164 -9.3 1.402 1.296 -7.5 1.707 1.645 -3.7
0.40 1.00 1.534 1.374 -10.4 1.584 1.431 -9.7 1.778 1.650 -7.2
0.92 0.02 1.040 1.017 -2.2 1.477 1.467 -0.7 2.453 2.471 0.7
0.92 0.25 1.279 1.191 -6.9 1.597 1.542 -3.4 2.404 2.466 2.6
0.92 1.00 1.691 1.572 -7.1 1.851 1.754 -5.2 2.398 2.457 2.5

4⇡I(⌧)/F s

0.10 0.02 0.864 0.834 -3.4 0.912 0.881 -3.4 1.018 0.985 -3.3
0.10 0.25 0.192 0.156 -18.6 0.224 0.188 -16.1 0.307 0.271 -11.6
0.10 1.00 0.057 0.054 -4.4 0.082 0.081 -1.1 0.168 0.183 9.2
0.40 0.02 0.998 0.968 -3.0 1.203 1.168 -2.9 1.661 1.613 -2.9
0.40 0.25 0.787 0.693 -11.9 0.988 0.883 -10.6 1.502 1.382 -8.0
0.40 1.00 0.385 0.344 -10.6 0.540 0.500 -7.4 1.071 1.099 2.6
0.92 0.02 1.018 0.996 -2.2 1.495 1.461 -2.3 2.561 2.500 -2.4
0.92 0.25 1.028 0.950 -7.6 1.560 1.453 -6.9 2.928 2.776 -5.2
0.92 1.00 0.881 0.822 -6.7 1.384 1.320 -4.6 3.109 3.241 4.2

case ($ = 1.0). The total integrated Planck function (�BT 4/⇡) was used to
‘drive’ the radiation field. The cases with no absorption ($ = 0) are ‘ex-
treme’ because the two-stream approximation is known to have problems in
this limit. These cases may therefore be considered as less favorable situa-
tions. We note that the error is never larger than about 11% for emerging
irradiances, while the error is negligible for the irradiance divergence. In
the conservative case the two-stream approximation yields slightly non-zero
values for the irradiance divergence.

In Table S.5 two-stream results are compared with accurate multi-stream
results for slabs of optical depths ⌧⇤ = 0.1, 1.0, 10.0, 100.0, single-scattering
albedo $ = 0.1 and 0.95, and asymmetry factors g = 0.05 and 0.75. The
internal source was taken to be (isotropic) thermal radiation. The surface
temperature was taken to be zero K, the top temperature to be 200 K, and
the bottom temperature to be 300 K. Again, the temperature was assumed
to vary linearly with optical depth in the slab, and the Planck function was
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Table S.4 Upward and downward irradiances and the irradiance divergence
for a single layer in the limits $ = 0 and $ = 1 for isotropic scattering.a

F+(0) Error F�(⌧⇤) Error
⌧⇤ $ Exact Twostr (%) Exact Twostr (%)

1.0 0.0 248.2 274.2 10.5 259.1 286.9 10.8
1000.0 0.0 301.4 301.4 0.0 348.5 348.5 0.0

10.0 1.0 53.623 41.791 -22.1 405.674 417.553 2.9

dF(0)/d⌧ Error dF(⌧⇤)/d⌧ Error
⌧⇤ $ Exact Twostr (%) Exact Twostr (%)

1.0 0.0 -669.4 -657.0 -1.8 -823.4 -820.2 -0.4
1000.0 0.0 -602.6 -602.6 0.0 -697.1 -697.1 0.0

10.0 1.0 0.000 -0.013 0.0 0.000 0.004 0.0

Note: aThe temperature at the top of the layer is 270 K and 280 K at the bottom.
It is assumed to vary linearly with optical depth across the layer. The surface
temperature is 0 K for the $ = 0 cases and 300 K for the $ = 1 case. The Planck
function was integrated over the interval 0.0–10, 000.0 cm�1. Exact results are
from 16–stream calculations by the DISORT algorithm (described in Chapter 9).

Table S.5 Two-stream results compared to accurate results for thermal
radiation for di↵erent optical depths, single-scattering albedos, and

asymmetry factors.

F+(0) Error F(0)�F(⌧⇤) Error
⌧⇤ $ g Exact Twostr (%) Exact Twostr (%)

0.10 0.10 0.05 19.271 20.919 8.55 -39.839 -42.721 7.23
0.10 0.95 0.75 1.264 1.282 1.40 -2.575 -2.581 0.23
1.00 0.10 0.05 80.164 87.250 8.84 -195.348 -214.882 10.00
1.00 0.95 0.75 11.317 11.615 2.64 -24.135 -24.577 1.83

10.00 0.10 0.05 63.725 61.501 -3.49 -265.788 -265.497 -0.11
10.00 0.95 0.75 53.001 48.385 -8.71 -136.632 -130.601 -4.41

100.00 0.10 0.05 56.541 55.965 -1.02 -270.983 -269.922 -0.39
100.00 0.95 0.75 39.423 34.325 -12.93 -172.113 -153.005 -11.10

integrated between wavenumbers 300 cm�1 and 800 cm�1 which includes
the main portion of the thermal radiation. The maximum error in the two-
stream results is about 12%.



S.5 Chapter 9 - Details and Derivations 627

S.5 Chapter 9 - Details and Derivations

The relationship between full-range and half-range Gaussian quadrature
points and weights are displayed in Table S.5.

N j 2N + 1 � j u
j

w0
j

µ
j

w
j

µ2N+1�j

w2N+1�j

1 1 2 0.57735 1.00000 0.21132 0.50000 0.78868 0.50000

2 1 4 0.33998 0.65215 0.06943 0.17393 0.93057 0.17393
2 3 0.86114 0.34785 0.33001 0.32607 0.66999 0.32607

3 1 6 0.23862 0.46791 0.03377 0.08566 0.96623 0.08566
2 5 0.66121 0.36076 0.16940 0.18038 0.83060 0.18038
3 4 0.93247 0.17132 0.38069 0.23396 0.61931 0.23396

4 1 8 0.18343 0.36268 0.01986 0.05061 0.98014 0.05061
2 7 0.52553 0.31371 0.10167 0.11119 0.89833 0.11119
3 6 0.79667 0.22238 0.23723 0.15685 0.76277 0.15685
4 5 0.96029 0.10123 0.40828 0.18134 0.59172 0.18134

5 1 10 0.14887 0.29552 0.01305 0.03334 0.98695 0.03334
2 9 0.43340 0.26927 0.06747 0.07473 0.93253 0.07473
3 8 0.67941 0.21909 0.16030 0.10954 0.83970 0.10954
4 7 0.86506 0.14945 0.28330 0.13463 0.71670 0.13463
5 6 0.97391 0.06667 0.42556 0.14776 0.57444 0.14776

6 1 12 0.12523 0.24915 0.00922 0.02359 0.99078 0.02359
2 11 0.36783 0.23349 0.04794 0.05347 0.95206 0.05347
3 10 0.58732 0.20317 0.11505 0.08004 0.88495 0.08004
4 9 0.76990 0.16008 0.20634 0.10158 0.79366 0.10158
5 8 0.90412 0.10694 0.31608 0.11675 0.68392 0.11675
6 7 0.98156 0.04718 0.43738 0.12457 0.56262 0.12457

S.5.1 Quadrature Formulas (§9.2.1)

The solution of the isotropic-scattering problem involves the following inte-
gral over angle

Z 1

�1
du I(⌧, u) =

Z 1

0
dµ I+(⌧, µ) +

Z 1

0
dµ I�(⌧, µ).

In the two-stream approximation we replaced the integration over u with
the simple formula

Z 1

�1
du I ⇡ I+(⌧) + I�(⌧).

The accuracy can be improved by including more points in a numerical-
integration or quadrature formula

Z 1

�1
du I(⌧, u) ⇡

m
X

j=1

w0
jI(⌧, uj).



628 Details and Derivations

w0
j is a quadrature weight and uj is a discrete ordinate. The simplest example

is the trapezoidal rule

Z 1

�1
du I ⇡ �u(

1

2
I1 + I2 + I3 + · · · + Im�1 +

1

2
Im)

and the more accurate Simpson’s rule is

Z 1

�1
duI ⇡ �u

3
(I1 + 4I2 + 2I3 + 4I4 + · · · + Im)

where �u is the (equal) spacing between the adjacent points uj , and the Ij
denotes I(⌧, uj).

If we evaluate I(⌧, u) at m points, we can replace I with its approximating
polynomial �(u), which is a polynomial of degree (m � 1). Consider the
following form for �(u), for m = 3:

�(u) = I(u1)
(u � u2)(u � u3)

(u1 � u2)(u1 � u3)
+ I(u2)

(u � u1)(u � u3)

(u2 � u1)(u2 � u3)

+I(u3)
(u � u1)(u � u2)

(u3 � u1)(u3 � u2)
.

Here �(u) is a second-degree polynomial which, when evaluated at the points
u1, u2, and u3 yields I(u1), I(u2), and I(u3), respectively. This expression
for �(u) is an example of Lagrange’s interpolation formula, which can be
abbreviated by use of the notation

Q

to indicate products of terms. For
example, we may define

F (u) ⌘
m
Y

j=1

(u � uj) = (u � u1)(u � u2) · · · (u � um).

Then, since the polynomial (u�u1)(u�u2) · · · (u�uj�1)(u�uj+1) · · · (u�um)
becomes F (u)/(u � uj) =

Qm
k 6=j(u � uk), we can write the polynomial �(u)

in a shorthand form

�(u) =
m
X

j=1

I(uj)
F (u)

(u � uj)F 0(uj)

where F 0(uj) is defined as dF/ducu=u
j

. We see that F 0(u) is a sum of m
polynomials of degree (m � 1), which, when evaluated at u = uj , all vanish
except for the polynomial (u�u1)(u�u2) · · · (u�uj�1)(u�uj+1) · · · (u�um).
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Hence, the quadrature formula arising from the assumption that the ra-
diance is a polynomial of degree (m � 1) is

Z 1

�1
du I(u) =

m
X

j=1

w0
jI(uj); w0

j =
1

F 0(uj)

Z 1

�1

du F (u)

(u � uj)
.

The quadrature points uj are, so far, arbitrary.
It can be shown that the error incurred by using the Lagrange interpo-

lation formula is proportional to the mth derivative of the function [I(u)]
being approximated (see e.g. Burden and Faires (1985), p. 153). Thus, if
I(⌧, u) happens to be a polynomial of degree (m � 1) or smaller, then the
m-point quadrature formula is exact (see Exercise 9.1).

As already mentioned, the error in the Lagrange interpolation polynomial
of degree (m�1) is proportional to the mth derivative of the function being
approximated. The resulting quadrature schemes (usually referred to as the
Newton-Cotes formulas) rely on using even spacing between the points at
which the function is evaluated. But it is possible to obtain higher accuracy
by choosing the quadrature or sampling points in an optimal manner. Gauss
showed that if F (u) is an mth-degree Legendre polynomial Pm(u), and the
quadrature points uj are the roots of that polynomial, we get an accuracy of
a polynomial of degree (2m� 1). As seen earlier (see §6.2.4, Eq. 6.24), these
polynomials are orthogonal and they are also orthogonal to every power of
u less than m, that is:

Z 1

�1
du Pm(u)u` = 0 (` = 0, 1, 2, · · · , m � 1).

Note that if uj is a root of an even-degree Legendre polynomial, then �uj

is also a root. Also, all m roots are real.

S.5.2 The Double-Gauss Method

We will proceed using a variant of the standard discrete-ordinate method,
which will in general turn out to be the most accurate solution for a given
order of approximation. It is customary to choose the even-degree Legendre
polynomials as the approximating polynomial. This choice is made because
the roots of the even-degree polynomials appear in pairs: if we use a negative
index to label quadrature points in the downward hemisphere and a positive
index for quadrature points in the upper hemisphere, then u�i = �u+i. The
quadrature weights are the same in each hemisphere, i.e. w0

i = w0
�i. The

‘full-range’ approach is not optimal because it assumes that I(⌧, u) is a
smoothly-varying function of u (�1  u  +1) with no “rapid variation”
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for all values of ⌧ . We noted earlier that, in the absence of any information
about the integrand, the Legendre polynomial yields optimum accuracy.
However, we note that, at least for small ⌧ , the radiance changes rather
rapidly as u passes through zero, that is, as the line of sight passes through
the horizontal. In fact at ⌧ = 0, this change is quite abrupt. Since there is no
incoming di↵use radiation, I(⌧, u) (for u slightly negative) is zero; and for
slightly positive u-values it will generally have a finite value. It will clearly
be di�cult to ‘fit’ such a discontinuous distribution with a small number of
terms involving polynomials that span continuously the full range between
u = �1 and u = 1. Since the region near ⌧ = 0 is the most troublesome
in terms of getting accurate solutions, we should pay the most attention to
this region.

To remedy this situation, the ‘Double-Gauss’ method was devised.6 In this
method, the hemispheres are treated separately. Instead of approximating
1
2

R 1
�1 duI(u) by the sum 1

2

P+N
i=�N w0

iI(ui) where w0
i and ui are the weights

and roots of the even-degree Legendre polynomial P2N , we break the angular
integration into two hemispheres, and approximate each integral separately

Z 1

�1
du I =

Z 1

0
dµ I+ +

Z 1

0
dµ I� ⇡

M
X

j=1

wjI
+(µj) +

M
X

j=1

wjI
�(µj)

where the wj and µj are the weights and roots of the approximating polyno-
mial for the half-range. Note that we have used the same set of weights and
roots for both hemispheres, which is not necessary, but obviously convenient.
Now within each hemisphere, if we are to obtain the highest accuracy, we
must again use Gaussian-Legendre quadrature. However, our new interval
is (0  µ  1) instead of (�1  u  1). This change is easily accomodated
by defining the variable u = 2µ � 1, so that the orthogonal polynomial is
PM (2µ � 1). The new quadrature weight is given by

wj =
1

P 0
M (2µj � 1)

Z 1

0
dµ

PM (2µ � 1)

(µ � µj)
(S.64)

and the µj are the roots of the half-range polynomials. It is easy to find the
weights for M = 1 (N = 2M = 2) from the above formula (see Example 9.1
below).

Algorithms to compute the roots and weights are usually based on the
full range. It is therefore useful to relate the half-range quadrature points µj

and weights wj to the corresponding points uj and weights w0
j for the full

6 Sykes (1951) is generally given the credit for this suggestion. Actually, this method was first
proposed by J. Yvon, according to Kourgano↵ (1952), p. 101.
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range. Since the linear transformation t = (2x�x1 �x2)/(x2 �x1) will map
any interval [x1, x2] into [�1, 1] provided x2 > x1, Gaussian quadrature can
be used to approximate

Z x2

x1

dxI(x) =

Z 1

�1
dtI



(x2 � x1)t + x2 + x1

2

�

(x2 � x1)

2
.

Choosing x1 = 0, x2 = 1, x = µ and t = u, we find

Z 1

0
dµI(µ) =

1

2

Z 1

�1
duI[(u + 1)/2]

and by applying Gaussian quadrature to each integral, we find on setting
M = 2N for the half-range

Z 1

0
dµI(µ) =

2N
X

j=1

wjI(µj) =
1

2

Z 1

�1
duI[(u + 1)/2] =

1

2

N
X

j=�N
j 6=0

w0
jI[(uj + 1)/2].

(S.65)
Thus, for even-degree Legendre polynomials the half-range points µj and
weights wj are related to the corresponding full-range points uj and weights
w0
j by

µj =
uj + 1

2
; wj =

1

2
w0
j . (S.66)

S.5.3 Four-stream approximation (N = 2)

In this case we obtain four coupled di↵erential equations from Eqs. 9.7 and
9.8 as follows (again by assuming that we have chosen a quadrature satisfying
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µ�i = �µi, w�i = wi)

µ1
dI+(⌧, µ1)

d⌧
= I+(⌧, µ1) � Q0+(⌧, µ1)

�w2
$

2
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�(⌧, µ2) � w1
$

2
p(�µ1, µ1)I
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�w1
$
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p(µ2, µ1)I
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�w2
$

2
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2
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We may rewrite these equations in matrix form as follows

d

d⌧

2

6

6
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I+(⌧, µ1)
I+(⌧, µ2)
I�(⌧, µ1)
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3

7

7

5
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6
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I+(⌧, µ2)
I�(⌧, µ1)
I�(⌧, µ2)
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7
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5
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6

6

4

Q+(⌧, µ1)
Q+(⌧, µ2)
Q�(⌧, µ1)
Q�(⌧, µ2)

3

7

7

5

(S.67)
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where

Q±(⌧, µi) = ±µ�1
i Q0±(⌧, µi), i = 1, 2
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2
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We introduce the two-element row vectors

I± =
�

I±(⌧, µi)
 

, Q± = {Q±(⌧, µi)}, i = 1, 2

where {I±(⌧, µi)} or {Q±(⌧, µi)} stands for the two-element row vector with
µi = 1 and µi = 2. Then we may write Eq. S.67 in a more compact form as

d

d⌧



I+

I�

�

=

 �↵̃ ��̃
�̃ ↵̃

� 

I+

I�

�

�


Q+

Q�

�

(S.68)

where the elements of the 2 ⇥ 2 matrices ↵̃ and �̃ are given by the four
elements in the lower right and left corner, respectively, of the 4 ⇥ 4 matrix
in Eq. S.67.

S.6 The merit of the interpolation scheme

Equations 9.43 and 9.44 provide a convenient means of computing the radi-
ances for arbitrary angles, at any desired optical depth. However, the merit
of these expressions depends crucially on the ability to compute e�ciently
the eigenvectors g̃j(±µ) and the particular solution vector Z̃0(±µ). Since
the eigenvectors gj(µ) are known at the quadrature points (µ = µi, i =
±1, . . . , ±N), this information can be used as a basis for interpolation using
any standard interpolation scheme. To illustrate the problems one might
encounter in interpolation using standard techniques we show in Fig. S.5
the eigenvector corresponding to the smallest eigenvalue for a scattering
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Figure S.5 Interpolated eigenvector. The solid line pertains to the use of the
analytic formula in Eq. 9.41, the dashed line is a cubic spline interpolation,
and the filled circles refer to values at the quadrature points. Note that the
spline fails to produce accurate results, whereas the analytic formula gives
adequate results.

phase function typical of atmospheric aerosols with single-scattering albedo
$ = 0.9. This example illustrates the typical behavior of some of the eigen-
vectors. A 16-stream computation (N = 8) was used in this example. The
values at the quadrature points to be interpolated are indicated by the dots.
We see a pronounced dip close to µ = 0, which obviously is di�cult to
fit with a polynomial expression. A cubic spline interpolation also performs
poorly on both sides of the dip as illustrated, whereas the analytic expression
(Eq. 9.41) yields quite adequate results.
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To illustrate the consequence of using di↵erent interpolation schemes we
computed di↵use radiances for a slab of optical thickness ⌧⇤ = 1.0. The slab
was illuminated by a collimated beam with F s = 1.0 at an angle of incidence
with µ0 = 0.5. The results are based on Eqs. 9.43 and 9.44. Figure S.6 shows
the azimuthally-averaged di↵use radiance at optical depth ⌧ = 0.05. The
solid line results from using the analytic expressions (Eqs. 9.41 and 9.42)
to compute the eigenvectors and the particular solution vector. The results
obtained by using cubic spline interpolation of the eigenvectors are shown
by the dashed line. We notice that the cubic spline interpolation leads to
erroneous results for �0.6 < u < �0.1.

This example illustrates that an interpolation scheme which interpolates
the eigenvectors, is perhaps best suited as a general purpose interpolation
scheme since it can provide radiances at any desired angle and depth. As
we have seen, the analytic expressions (Eqs. 9.41 and 9.42) yield adequate
results.

S.7 Removal of Numerical Ill-Conditioning

By “ill-conditioning” we mean that when Eqs. 9.50 and 9.51 are written in
matrix form the resulting matrix cannot be successfully inverted by existing
computers that work with “finite-digit” arithmetic. As we shall see below,
if ⌧⇤ is su�ciently large, some of the elements of the matrix become huge
while others become tiny, and this situation leads to ill-conditioning.

Attempts to solve Eqs. 9.50 and 9.51 as they stand reveal that they are
notoriously ill-conditioned. In fact, this problem explains why the discrete-
ordinate method has not been used very frequently by researchers in the
past. We shall now show that this ill-conditioning can be completely elimi-
nated, which makes the method very useful for solving practical problems.
The root of the ill-conditioning problem lies in the occurrence of exponen-
tials with positive arguments in Eqs. 9.50 and 9.51 (recall that kj > 0 by
convention) which must be removed. This removal is achieved by the scaling
transformation

C+j = C 0
+je

k
j

⌧t and C�j = C 0
�je

�k
j

⌧b . (S.69)

where we have written ⌧t and ⌧b for the optical depths at the top and the
bottom of the layer, respectively. This was done deliberately in anticipation
of generalizing this scaling scheme to apply to a multi-layered medium. In
the present one-layer case we have, of course, ⌧t = 0 and ⌧b = ⌧⇤.

Inserting Eqs. S.69 into Eqs. 9.50 and 9.51 and solving for the C 0
j in-

stead of the Cj , we find that all the exponential terms in the coe�cient
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Figure S.6 Azimuthally-averaged radiance at ⌧ = 0.05 for oblique inci-
dence (µ0 = 0.5) of collimated light of unit irradiance on a slab of total
optical depth ⌧⇤ = 1. The slab consists of particles that scatter radiation
according to an isotropic scattering phase function (aerosol particles, see
Fig. 6.3) with single-scattering albedo $ = 0.9. The solid line is obtained
from the analytic expressions (Eqs. 9.43 and 9.44 using Eqs. 9.41 and 9.42),
the dashed line from cubic spline interpolation of the eigenvectors, and the
dotted line from cubic spline interpolation of the radiances at the quadra-
ture points. The filled circles denote the values of the radiances at the
quadrature points.
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matrix have negative arguments (kj > 0, ⌧b > ⌧t). Consequently, numerical
ill-conditioning is avoided implying that the system of algebraic equations
determining the C 0

j will be unconditionally stable for arbitrary layer thick-
ness.

As stated above, the merit of the scaling transformation is to remove all
positive arguments of the exponentials occurring in the matrix elements of
the coe�cient matrix. To demonstrate how this scheme works we shall use
the two-stream case as an example.

S.7.1 Removal of Ill-Conditioning – Two-Stream Case (N = 1)

In this simple case, Eqs. 9.50 and 9.51 reduce to

C1g1(�µ1)e
�k⌧t + C�1g�1(�µ1)e

k⌧t = C1g
�
1 e�k⌧t + C�1g

�
�1e

k⌧t = (RHS)t

r1C1g1(+µ1)e
�k⌧b+r�1C�1g�1(+µ1)e

k⌧b = r1C1g
+
1 e�k⌧b+r�1C�1g

+
�1e

k⌧b = (RHS)b

where we have used Eqs. 9.24 and 9.25. The left hand side may be written
in matrix form as



g�1 e�k⌧t g��1e
k⌧t

r1g
+
1 e�k⌧b r�1g

+
�1e

k⌧b

� 

C1

C�1

�

.

This matrix is ill-conditioned because one element becomes very large while
another one becomes very small as k⌧b (the product of the eigenvalue and the
optical depth) becomes large. In practice this limits solutions to problems
for which k⌧b < 3 or 4. As we go beyond the two-stream case the problem
becomes more severe because some of the eigenvalues become large. We recall
that for isotropic scattering the eigenvalues are flanked by the values 1/µ1,
1/µ2 etc., showing that the larger N is, the larger the biggest eigenvalue.
This is the case also for anisotropic scattering. Hence, it is clear that for the
method to be of any practical value this problem must be overcome.

Using the scaling transformation we find that the matrix above becomes


g�1 g��1e
�k(⌧b�⌧t)

r1g
+
1 e�k(⌧b�⌧t) r�1g

+
�1

� 

C 0
1

C 0�1

�

.

In the limit of large values of k(⌧b � ⌧t) this matrix becomes


g�1 0
0 r�1g

+
�1

�

which shows that the ill-conditioning problem has been eliminated.
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S.8 Numerical Implementation of the Discrete Ordinate Method

The solution of the radiative transfer equation described in previous sections
has been implemented numerically into a code written in FORTRAN. This
code applies to vertically inhomogeneous, non-isothermal, plane-parallel me-
dia and it includes all the physical processes discussed previously, namely
thermal emission, scattering, absorption, bidirectional reflection and ther-
mal emission at the lower boundary. The medium may be forced at the top
boundary by direct (collimated) or di↵use illumination and by internal and
boundary sources as well.7

As discussed in §6.6 for strongly forward-peaked scattering, it is di�cult
to obtain accurate solutions to the radiative transfer equation. The �-M
method, which replaces the forward-scattering peak of the scattering phase
function by a �-function (see §6.6), is useful and improves the accuracy sig-
nificantly, especially for irradiances and the mean radiance. The radiance
computation is also generally improved by using �-M but further improve-
ments are desirable and essential if one desires to use low-order discrete
ordinate approximations (say N < 10) to reduce the computational burden.
Special algorithms have been invented to correct the radiance computation
for strongly forward-peaked scattering. The development of such algorithms
starts with the notion that the single scattering solution can be computed
exactly and used to improve the accuracy. Such an algorithm, described in
§9.9, is implemented in the DISORT code and used in conjunction with the
�-M method to provide acceptable accuracy for as little as 10 streams. With-
out these algorithms similar accuracy will typically require a quintupling of
the number of streams which implies that they provide computational sav-
ings of the order of 53 = 125 since the most time-consuming computation in
DISORT is the solution of the algebraic eigenvalue problem and the inversion
of the matrix required to obtain the constants of integration in which the
computation time varies as the cube of half the number of streams (i.e. N3).

In §6.9 we derived simple expressions for the irradiance reflectance and
transmittance for media without internal sources and showed that an ana-
lytic correction allows us to find the solutions pertaining to reflecting (Lam-
bert) surfaces. These expressions which are implemented in DISORT, o↵er
substantial computational advantages when only integrated quantities such
as irradiance reflectance and transmittance are required.

7 A description of the code called DISORT is provided in a NASA report by Stamnes et al.
(2000), and in Lin et al. (2015), and Laszlo et al. (2016).
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Figure S.7 Comparison of accurate (48-stream) and approximate 16-stream
di↵use radiances computed with and without �-M scaling at several optical
depths within an aerosol layer of total optical depth ⌧⇤ = ⌧L = 1 for ��
= 0 and 180�, $ = 0.9, and µ0 = 0.5. The solid curve is for 48 streams,
the dashed and dotted-dashed curves are for 16 streams with and without
�-M scaling, respectively. Note that the ordinate scale is not the same in
the various diagrams.
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Figure S.8 Scattering phase function computed by Mie theory and the
�-M representation for N = 10.
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Figure S.9 Relative error of the reflected and transmitted radiances com-
puted by strict application of �-M and by applying a correction to the
�-M method (solid line) which is simply the di↵erence between the singly-
scattered radiance computed from the exact scattering phase function and
from the �-M scaled scattering phase function. This example pertains to
vertical (collimated) illumination of a homogeneous slab of total opti-
cal depth 0.8 consisting of particles with scattering properties defined in
Fig. S.8.
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Figure S.10 Three-dimensional display of di↵use radiance versus polar and
azimuth angles for several optical depths within a layer consisting of aerosol
particles of total optical depth ⌧⇤ = 1, single-scattering albedo $ = 0.9,
and cosine of solar zenith angle µ0 = 0.5.
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Figure S.11 Three-dimensional display of di↵use radiance versus polar and
azimuth angles for several optical depths within a layer consisting of oceanic
particles (hydrosols) of optical depth ⌧⇤ = 1, single-scattering albedo $ =
0.9, and cosine of solar zenith angle µ0 = 0.5.
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Figure S.12 Distribution of the total mean radiance (total scalar
irradiance/4⇡ in ocean optics terminology) with height in the atmosphere
and depth in the ocean. The result of neglecting the refraction occurring
at the atmosphere-ocean interface is also shown. The computation was
done for a solar zenith angle of 30� and a wavelength of 500 nm.
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Figure S.13 Distributions of the azimuthally-averaged radiance including
refraction in the ocean (mocn,r = 1.33), and ignoring it (mocn,r = 1.0). The
computation was done for a solar zenith angle of 30� and a wavelength of
500 nm. (a) Just below the ocean surface; (b) just above the ocean surface.



Appendix T

Inherent Optical Properties

T.1 Atmosphere

As discussed in Chapter 1, the stratified vertical structure of the bulk prop-
erties of an atmosphere is a consequence of hydrostatic balance. For an
atmosphere in a state of rest, the pressure p(z) must support the weight of
the fluid above it. By equating pressure forces and gravitational forces and
invoking the ideal gas law, one finds that the bulk gas properties at any
height is determined by the barometric law (Eq. 1.5).

T.1.1 Aerosol IOPs

It is customary to assume a log-normal distribution of aerosol sizes as pro-
posed by Davies (1974). Based on AERONET1 data, Ahmad et al. (2010)
adopted a bi-modal log-normal volume size distribution (assuming spherical
particles of radius r):

v(r) =
dV (r)

dr
=

1

r

dV (ln r)

d ln r
=

2
X

i=1

Vip
2⇡�i

1

r
exp

"

�
 

ln r � ln rvip
2�i

!2#

.

(T.1)
The subscript i represents the mode, Vi is the total volume of particles with
mode i, rvi is the mode radius, also called the volume geometric mean
radius, and �i is the geometric standard deviation. Since the numerator in

1 AERONET (Holben et al., 1998, 2001) is a federated instrument network and data archive
managed by the National Aeronautics and Space Administration (NASA) Goddard Space
Flight Center (GSFC) in partnership with the Laboratoire d’Optique Atmosphérique (LOA)
of the Université des Sciences et Technologies de Lille (France).
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the exponential of Eq. T.1 ln(r/rvi) is dimensionless, so is �i, and because

Z 1

0

drp
2⇡�

1

r
exp

"

�
 

ln r � ln rvp
2�

!2#

= 1

integration over all sizes for both modes, yields:
Z 1

0
dr v(r) = V1 + V2 = V.

In terms of the number density, Eq. T.1 becomes

n(r) =
dN(r)

dr
=

1

r

dN(r)

d ln r
=

2
X

i=1

Nip
2⇡�i

1

r
exp

"

�
 

ln r � ln rnip
2�i

!2#

(T.2)

where the number of particles Ni and the mean geometric (or mode) radius
rni are related to Vi and rvi as follows

ln rni = ln rvi � 3�2
i (T.3)

Ni =
Vi

4
3⇡r3

ni

exp(�4.5�2
i ). (T.4)

Integration of Eq. T.2 over all sizes for both modes, yields:
Z 1

0
dr n(r) = N1 + N2 = N.

If we use the subscript i = f to denote the fine mode, and the subscript
i = c to denote the coarse mode, we have V = Vf + Vc, and the volume
fraction of fine mode particles becomes fv = Vf/V.

Relationship between e↵ective radius and mode radius

The particle size distribution may also be characterized by an e↵ective radius

re↵ =

R r
max

r
min

dr r3 n(r)
R r

max

r
min

dr r2 n(r)
(T.5)

and an e↵ective variance

ve↵ =

R r
max

r
min

dr r2 (r � re↵)2 n(r)

r2
e↵

R r
max

r
min

r2 dr n(r)
(T.6)

where r2
e↵ is included in the denominator to make ve↵ dimensionless (Hansen

and Travis, 1974). The e↵ective radius re↵ can be used to describe the IOPs
in an approximate manner as will be discussed below for cloud as well as
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snow/ice materials. For a single mode, the lognormal size distribution is
given by (see Eq. T.2)

n(r) =
dN(r)

dr
=

Np
2⇡�

1

r
exp

"

�
 

ln r � ln rnp
2�

!2#

(T.7)

where rn is the mode radius, n(r) is the number density [m�3·m�1], and
N =

R1
0 dr n(r) [m�3] is the total number of particles per unit volume.

Using Eq. T.7, one can show that Eq. T.5 leads to (see Stamnes and Stamnes
(2015) for details)

re↵ = rn exp[2.5�2] (T.8)

and

ve↵ = exp [�2] � 1. (T.9)

IOPs of a polydispersion – Integrating over the size distribution

For a polydispersion of spherical particles (denoted by the subscript p) we
may compute the absorption and scattering coe�cients and the scattering
phase function by integrating over the size distribution n(r) [m�3·m�1]

↵p(�) =

Z r
max

r
min

dr (⇡r2)Q↵(r)n(r) (T.10)

�p(�) =

Z r
max

r
min

dr (⇡r2)Q�(r)n(r) (T.11)

pp(�, ⇥) =

R r
max

r
min

dr pp(�, ⇥, r)n(r)
R r

max

r
min

dr n(r)
. (T.12)

The absorption or scattering “e�ciency” Q↵(r) or Q�(r) is defined as the
ratio between the absorption or scattering cross section and the geometrical
cross section ⇡r2. A Mie code (Du, 2004) is used to compute the IOPs
of aerosol particles (Q↵(r), Q�(r), and pp(�, ⇥, r) in Eqs. T.10–T.12), and
a numerical quadrature is employed to integrate over the log-normal size
distributions to obtain ↵p(�),�p(�), and pp(�, ⇥). Based on the bi-modal log-
normal volume size distribution of the aerosols (Eq. T.1) the user specifies
the fine mode volume fraction fv = Vf/V , the volume mode radii rvf and
rvc as well as the corresponding standard deviations �f and �c in addition
to the refractive index of the particles relative to air.
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In analogy to the liquid water content defined in Eq. T.15 below, we may
introduce the aerosol mass content (AMC) for each mode defined as

AMC = ⇢a

Z r
max

r
min

dr (
4⇡r3

3
)n(r) ⌘ ⇢a fV [kg · m�3] (T.13)

where ⇢a is the bulk aerosol density [kg·m�3], and where we have defined the
aerosol volume fraction (not to be confused with the fine mode volume
fraction, fv) as

fV ⌘
Z r

max

r
min

dr (
4⇡r3

3
)n(r) = AMC/⇢a (dimensionless). (T.14)

T.1.2 Cloud IOPs

It is customary to introduce the liquid water content (LWC) defined as

LWC ⌘ ⇢w

Z r
max

r
min

dr (
4⇡r3

3
)n(r) ⌘ ⇢w fV [kg · m�3] (T.15)

where ⇢w is the liquid water mass density [kg·m�3] and fV stands for the
dimensionless liquid (cloud) particle volume fraction defined in Eq. T.14,
i.e. fV = LWC/⇢w. In Eq. T.5 for the e↵ective radius re↵ the numerator is
proportional to the concentration or LWC, while the denominator is related
to the scattering coe�cient (see Eq. T.11, omitting the subscript p) � =
R1
0 dr(⇡r2)Q�(r) n(r) [m�1]. If the size of the droplet is large compared to

the wavelength �, then Q�(r) ! 2. Therefore, in the visible spectral range
where 2⇡r/� >> 1, we find

� ⇡ 3

2

1

⇢w

LWC

re↵
=

3

2

fV
re↵

[m�1]. (T.16)

Ice Cloud IOPs

Nonspherical ice crystal size distributions are usually expressed in terms
of the maximum dimension (or length) L. Assuming that light scattering is
proportional to the cross-sectional area of nonspherical particles, we may de-
fine an e↵ective size (analogous to the e↵ective radius for spherical droplets,
Eq. T.5) as follows2

De ⌘
Z L

max

L
min

dL D2 · L · n(L)

�

Z L
max

L
min

dL D · L · n(L). (T.17)

2 The material below is taken from Fu and Liou (1993). A discussion of ice crystal optical
properties is provided by Liou and Takano (1994), Kahnert (2003), and Wendisch and Yang
(2012). A special issue of Journal of Quantitative Spectroscopy & Radiative Transfer (volume
55, number 5, May, 1996) was devoted to scattering by nonspherical particles.



650 Inherent Optical Properties

Here D(L) denotes the width, n(L) is the distribution, and Lmax and Lmin

are the maximum and minimum lengths of the ice crystals. Thus, the ef-
fective width (or size) is defined solely in terms of the ice crystal size dis-
tribution. The numerator is related to the ice water content (IWC) given
by

IWC =
3
p

3

8
⇢i

Z L
max

L
min

dL D2 · L · n(L) (T.18)

where the volume of an hexagonal ice crystal, 3
p

3D2L/8, is used and ⇢i is
the bulk density of ice. The extinction coe�cient is defined by

k ⌘
Z L

max

L
min

dL k(D, L)n(L). (T.19)

k(D, L) is the extinction cross section for a single crystal. In the geometric
optics limit, the extinction cross section is twice the e↵ective cross-sectional
area and may be expressed as

k(D, L) =
3

2
D

"p
3

4
D + L

#

. (T.20)

This expression for k(D, L) is based on the assumption that the ice crystals
are hexagonal and randomly oriented in space. In this case it can be shown
that k/IWC is linearly related to 1/De, i.e.

k ⇡ IWC(a + b/De) (T.21)

where a and b are constants. By further assuming that the absorption is
small, one may express the absorption cross section, as the product of the
imaginary part of the refractive index, mi, and the particle volume

↵n(�) =
3
p

3⇡mi(�)

2�
D2L. (T.22)

The extinction and absorption cross sections defined above, combined with
the notion that D and L are related, allow us to express the single-scattering
co-albedo approximately in terms of best-fit constants c and d as

1 �$c ⇡ c + d · De. (T.23)

For cases in which the geometric optics assumption (underlying Eq. T.21),
and the assumption of small absorption (underlying Eq. T.23) are not valid,
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higher-order expansions may be used to represent the single-scattering prop-
erties of ice crystals more accurately

kc = IWC
N
X

n=0

an/Dn
e ; 1 �$c =

N
X

n=0

bn/Dn
e (T.24)

where an and bn are coe�cients to be determined by fitting accurate values
to the above expressions, and N is the total number of terms required to
achieve a desired accuracy. Note that Eqs. T.24 reduce to Eqs. T.21 and
T.23 for N = 1. Finally, the moments of the scattering phase function may
be determined in a similar fashion. For example, the first moment (i.e. the
asymmetry factor, gc) may be expressed in terms of coe�cients, cn, as follows

gc =
N
X

n=0

cn/Dn
e . (T.25)

To determine the unknown coe�cients one may use ray-tracing techniques
developed for hexagonally-shaped particles if De > 30. For smaller De values
solutions developed for spheroidally-shaped particles may be adopted in the
absence of solutions valid for hexagonally-shaped crystals. Since the smaller
sizes are usually associated with IR wavelengths where ice is highly absorb-
ing, the detailed shape may not be critical in scattering and absorption
computations.

In spite of a considerable e↵ort by several groups worldwide to compute
the optical properties of nonspherical particles the situation is less than
satisfactory in that exact and approximate solutions seem to be generally
lacking for nonspherical particles with size parameters between 20 and 30,
in particular for shapes deviating substantially from that of the sphere (Liou
and Takano, 1994). For size parameters larger than 30, raytracing based on
geometrical optics may be used, while a variety of approaches have been tried
for size parameters comparable to the wavelength of light. Because these ap-
proaches are generally based on theories valid for relatively small departures
from the spherical shape they su↵er from numerical ill-conditioning3 when
they are applied to particles with (i) large real and/or imaginary refractive
index, (ii) large size compared with the wavelength of the incident light, and
(iii) extreme shapes that deviate substantially from that of a sphere.

3 This ill-conditioning is quite similar to that described in Chapter 9 in connection with the
scaling transformation needed to make sure the matrix to be inverted to obtain the constants
of integration in the discrete-ordinate method did not have some very large and some very
small elements (see §9.7).
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T.1.3 Snow and Ice IOPs

As discussed in Chapter 10, assuming that snow grains and sea ice inclusions
consist of spherical particles, we may obtain their IOPs from Mie compu-
tations, which require the refractive index and the size distribution of the
particles as input. Then, the IOPs, i.e. the absorption and scattering coef-
ficients and the scattering phase function, ↵p(�),�p(�), and pp(�, ⇥), can
be obtained from Eqs. T.10–T.12. Two options are available (i) direct Mie
calculations based on available information about the particle refractive in-
dex and size assuming a log-normal size distribution; (ii) a fast, yet accurate
parameterization based on Mie calculations.

Direct Mie calculations

For this option the snow grains and ice inclusions (air bubbles and brine
pockets) are assumed to consist of homogeneous spheres with a single-mode
log-normal volume size distribution (see Eq. T.1), and we use the refrac-
tive index data base for ice compiled by Warren and Brandt (2008). The
user specifies the e↵ective radius re↵ and the width of the distribution �,
from which the geometrical mean radius rn is computed using Eq. T.8. rn
and � constitute the only input required for using a Mie code to compute
absorption and scattering coe�cients as well the scattering phase function.

Parameterization based on Mie calculations

For a specific value of r, we can compute Q↵(r), Q�(r), and pp(�, ⇥, r) using
Mie theory, but evaluation of Eqs. T.10–T.12 requires knowledge of the
particle size distribution n(r), which is usually unknown. We may simplify
Eqs. T.10–T.12 by making the following assumptions (Stamnes et al., 2011)
(i) the particle size distribution is characterized by an e↵ective radius given
by Eq. T.5, which obviates the need for an integration over r; (ii) the particles
are weakly absorbing, so that

Q↵(r) ⌘ Q↵ ⇡ 16⇡ re↵ mi,p

3�

1

mrel
[m3

rel � (m2
rel � 1)3/2] (T.26)

where mi,p is the imaginary part of the refractive index of the particle, � is
the wavelength in vacuum, and mrel = mr,p/mr,med is the ratio of the real
part of the refractive index of the particle (mr,p) to that of the surrounding
medium (mr,med); (iii) the particles are large compared to the wavelength
(2⇡r/� >> 1) implying

Q�(r) ⌘ Q� = 2. (T.27)
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The scattering phase function may be represented by the Henyey-Greenstein
function, which depends only on the asymmetry factor g ⌘ hcos ⇥i =
1
2

R 1
�1 p(⇥) cos⇥ d(cos ⇥). With these assumptions, Eqs. T.10–T.12 become:

↵p(�) = ↵(�)
1

mrel

⇥

1 � (m2
rel � 1)3/2

⇤

fV (T.28)

�p(�) =
3

2

fV
re↵

(T.29)

pp(�, ⇥) =
1 � g2

(1 + g2 � 2g cos ⇥)3/2
. (T.30)

Here ↵(�) = 4⇡mi,p/� is the absorption coe�cient of the material of which
the particle is composed, and fV ⌘ 4⇡

3

R

n(r)r3dr ⇡ 4
3⇡r3

e↵ne, where ne =
number of particles per unit volume with radius re↵ . Note that Eq. T.29 is
identical to Eq. T.16. Thus, it is clear that fV represents the volume fraction
of the particles as defined in Eq. T.14.

For wavelengths �  1.2 µm, the absorption and scattering e�ciency
for snow grains as well as brine inclusions and air bubbles in sea ice may
be parameterized by Eqs. T.26 and T.27, and we may use the Henyey-
Greenstein scattering phase function (Eq. T.30). To extend the validity to
near infrared wavelengths, we may use modified parameterizations, based in
part on fits to Mie calculations. For the absorption e�ciency the modified
parameterizations work well for all wavelengths shorter than 4 µm, while for
the scattering e�ciency and g they work well for wavelengths shorter than
about 2.8 µm, but deviate significantly from Mie calculations for longer
wavelengths. Thus, for wavelengths longer than 2.8 µm it may be preferable
to use results from Mie theory [for details see Stamnes et al. (2011)].

Impurities, air bubbles, brine pockets, and snow

If the volume fraction of impurities, assumed to be distributed homoge-
neously within a snow grain, or in an ice sheet (fresh water ice or sea ice),
or a brine pocket, is not too large, which is the case for typical situations
occurring in nature, scattering by impurities can be ignored, so that their
e↵ects can be included by simply adding the imaginary part mi,imp of the
refractive index for impurities to mi,p in Eq. T.26. The corresponding ab-
sorption coe�cient is ↵imp = 4⇡mi,imp/�. For snow, the number of snow
grain particles per unit volume is N = (4

3⇡r3
e↵)�1 ⇢

s

⇢
i

. Here re↵ is the e↵ective
particle radius, while ⇢s and ⇢i are the mass densities of snow and pure ice,
respectively. The optical thickness and the single-scattering albedo of an ice
layer can be calculated from the refractive indices of pure ice (Warren and
Brandt, 2008) and impurities mi,imp. Sea ice is assumed to consist of pure
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ice with embedded brine pockets, air bubbles, and impurities. To include
the e↵ects of the embedded components, we first calculate the absorption
coe�cient ↵ for sea ice (assuming non-absorbing air bubbles, Q↵,bu = 0)

↵ = ⇡r2
brNbrQ↵,br +



1 � 4

3
⇡r3

brNbr � 4

3
⇡r3

buNbu

�

4⇡(mi,p + fimpmi,imp)

�
(T.31)

where fimp is the volume fraction of impurities, Nbr and Nbu are the number
concentrations of brine pockets and air bubbles, respectively, rbr and rbu

are the corresponding e↵ective radii, and Q↵,br is the absorption e�ciency
for brine pockets. The two terms on the right side of Eq. T.31 represent
the absorption coe�cients of brine pockets and surrounding ice (including
impurities), respectively. In Eq. T.31, we have used the general relation
↵ = 4⇡mi,p/�, where � is the wavelength in vacuum, and the expression
inside the square brackets is the volume fraction of the ice surrounding all
brine pockets and bubbles.

For brine pockets, which are in the liquid phase, the refractive index of
sea water applies. The volume fraction Vimp of impurities typically lies in
the range between 1⇥10�7 and 1⇥10�5. The scattering coe�cient � of sea
ice is given by

� = �br + �bu; �br = ⇡r2
brNbrQ�,br; �bu = ⇡r2

buNbuQ�,bu (T.32)

where �br and �bu are the scattering coe�cients for brine pockets and air
bubbles, respectively, and Q�,br and Q�,bu are the corresponding scattering
e�ciencies. Here we have ignored the scattering coe�cient for pure sea ice
because it is very small compared to either �br or �bu. The optical thickness
⌧ , the single-scattering albedo $, and the asymmetry factor g for a layer of
sea ice of thickness h now become

⌧ = (↵+ �)h; $ =
�

↵+ �
; g =

�brgbr + �bugbu

�br + �bu
. (T.33)

Salinity, density, and temperature may vary within the sea ice. Condi-
tions representative for multiyear ice in the central Arctic in mid-May and
September are: ice thickness 3 m, salinity 0.3%, density 0.9 mg · m�3 and
surface temperature �10 �C. There is strong absorption in the IR portion
of the solar spectrum and relatively weak absorption in the visible region.
Salinity is unimportant for the optical properties of sea water but plays a
significant role for sea ice, because of brine pocket development associated
with brine rejection when sea ice melts. Therefore, the albedo of first-year
ice is only about half the value of multi-year ice due to air bubble and brine
pocket formation leading to increased scattering in the uppermost layer of
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Figure T.1 Measured (broken lines) and computed (solid lines) albedo of
first-year sea ice (lower set of curves) and multi-year sea ice (upper set of
curves). The salinity and density were taken to be constant within the ice,
and the temperature was assumed to vary linearly with depth from the
surface value to a bottom temperature fixed at �2 �C. Adapted from Jin
et al. (1994).

multi-year ice. An illustration is provided in Fig. T.1 which shows a com-
parison between measured (Grenfell and Maykut, 1977), and computed (Jin
et al., 1994) results. No attempt was made to ‘tune’ the model to get better
agreement.

T.1.4 Water IOPs – Bio-optical models

In open ocean water, it is customary to assume that the IOPs of dissolved
and particulate matter can be parameterized in terms of the chlorophyll con-
centration. In turbid waters, the IOPs will depend on the presence of several
types of particulate matter including inorganic (mineral) particles and or-
ganic (algae) particles, in addition to pure water. The IOPs produced in
this manner are said to result from a bio-optical model. For illustration pur-
poses, we describe one such bio-optical model below (Ruddick et al., 2013),
hereafter referred to as the CCRR (Coast Color Round Robin) bio-optical
model.
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Absorption and scattering by pure water

For pure water, we use the absorption coe�cient ↵w(�) based on the data
published by Pope and Fry (1997) for wavelengths between 400 and 700 nm,
and by Kou et al. (1993) for wavelengths between 720 and 900 nm. Pure
water scattering coe�cients �w(�) are based on data published by Morel
(1974).

Absorption and scattering by water impurities

The CCRR bio-optical model has three input parameters that are allowed
to vary: (i) the chlorophyll concentration (CHL), (ii) the concentration of
mineral particles (MIN), and (iii) the absorption coe�cient ↵CDOM(443)
due to colored dissolved organic matter (CDOM). It should be noted that
the “mineral particle” component can include also non-algae particles whose
absorption does not covary with that of the algae particles (Ruddick et al.,
2013).

The absorption coe�cient for mineral particles at 443 nm is given by4

↵MIN(443) = 0.031 ⇥ MIN

and its spectral variation is described by (Babin et al., 2003b)

↵MIN(�) = ↵MIN(443) exp[�0.0123(�� 443)]. (T.34)

The scattering coe�cient at 555 nm is given by (Babin et al., 2003a)

�MIN(555) = 0.51 ⇥ MIN

and the spectral variation of the attenuation coe�cient is:

kMIN(�) = kMIN(555) ⇥ (�0/�)c, c = 0.3749, �0 = 555 nm (T.35)

where � is given in nm, and

kMIN(555) = ↵MIN(555) + �MIN(555)

= [0.031 ⇥ exp(�0.0123(555 � 443)) + 0.51] ⇥ MIN = 0.52 ⇥ MIN.

The spectral variation of the scattering coe�cient for mineral particles fol-
lows from

�MIN(�) = kMIN(�) � ↵MIN(�). (T.36)

4 Note on units: ↵MIN(�)/MIN has units [m2·g�1], so that if MIN has units of [g·m�3], then
the units of ↵MIN(�) will be [m�1].
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The absorption coe�cient for pigmented particles (algae particles or phyto-
plankton) can be written

↵pig(�) = A�(�) ⇥ [CHL]E�

(�) [m�1] (T.37)

where A�(�) and E�(�) are given by Bricaud et al. (1998). The chlorophyll
concentration CHL [mg·m�1] represents pigmented particles (algae particles
or phytoplankton).

The attenuation coe�cient for pigmented particles at 660 nm is given by
(Loisel and Morel, 1998)

kpig(660) = k0 ⇥ [CHL]⌘; k0 = 0.407; ⌘ = 0.795

and its spectral variation is taken to be (Morel et al., 2002a)

kpig(�) = kpig(660) ⇥ (�/660)⌫ (T.38)

where � is given in nm, and

⌫ =

⇢

0.5 ⇥ [log10 CHL � 0.3] 0.02 < CHL < 2.0
0 CHL > 2.0.

The spectral variation of the scattering coe�cient for pigmented particles
follows from

�pig(�) = kpig(�) � ↵pig(�). (T.39)

The absorption coe�cient due to CDOM is given by (Babin et al., 2003b):

↵CDOM(�) = ↵CDOM(443) ⇥ exp[�S(�� 443)] (T.40)

where a slope parameter of S = 0.0176 represents an average value for
di↵erent types of water. The total absorption and scattering coe�cients due
to water impurities for the CCRR bio-optical model are given by

↵tot(�) = ↵MIN(�) + ↵pig(�) + ↵CDOM(�) (T.41)

�tot(�) = �MIN(�) + �pig(�). (T.42)

Scattering Phase Function

For pure water, we use the Rayleigh scattering phase function [see Eq. 3.27
and Fig. 6.4] with depolarization ratio ⇢ = 0.09, and thus f = (1 � ⇢)/(1 +
⇢) = 0.835. For mineral particles the average Petzold scattering phase func-
tion (§6.5.4) with a backscattering ratio of 0.019 is used to describe the scat-
tering phase function. For pigmented (phytoplankton) particles we may use
the FF scattering phase function [see Eq. 6.46 and Fig. 6.4] with a backscat-
tering ratio (see Eq. 6.47) equal to bFF = 0.006 (Mobley et al., 2002; Morel
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et al., 2002a). Mobley et al. (2002) showed that with proper choices of the
real part of the refractive index mr and the PSD slope ⇠, the FF scatter-
ing phase function is an excellent proxy for the well-known Petzold (1972)
measurements. In one particular study, Li et al. (2008) used mr = 1.069
and ⇠ = 3.38, which correspond to a backscattering ratio of bFF = 0.0067. As
noted by Mobley et al. (2002), this choice of {mr, ⇠} values is consistent with
a certain mixture of living microbes and resuspended sediments. We may use
Eq. 6.22 or Eq. 6.29 to compute Legendre expansion coe�cients (or moments
�`) of the scattering phase function. For strongly forward-peaked scattering
typical of the Petzold and FF scattering phase functions the moment-fitting
methods of Wiscombe (1977b) and Hu et al. (2000) are very useful for com-
puting �`,PETZ and �`,FF. Thus, in the CCRR bio-optical model adopted in
AccuRT the user must specify the three input parameters CHL, MIN, and
↵CDOM(443) in addition to the vertical location of the impurities.

T.1.5 Spectral averaging of absorption coe�cients

Since the scattering coe�cient is a smooth function of wavelength, no spec-
tral averaging is needed. In contrast, the absorption coe�cient varies rapidly
and erratically with wavelength making spectral averaging necessary.5

The Chandrasekhar Mean

The extraterrestrial (TOA) solar irradiance F s(�) decreases rapidly with
(decreasing) wavelength for � < 350 nm, and the ozone absorption cross
section increases rapidly between 350 nm and 250 nm. The steep gradients in
the solar irradiance and ozone absorption cross section suggest that it may be
useful to define a mean absorption cross section (called the Chandrasekhar
Mean6.) by weighting it with F s(�) as follows:

h↵ni ⌘
R �2

�1
d�↵n(�)F s(�)
R �2

�1
d�F s(�)

. (T.43)

Absorption by atmospheric gases

The TOA solar irradiance F0(�) ⌘ F s(�) will be attenuated due to absorp-
tion by gases in the atmosphere. The transmitted solar irradiance in the
5 In the following we describe an approach in which the IOPs are averaged over a spectral

bandwidth allowing for a single “quasi-monochromatic” computation. Note that a more
accurate (but also more computationally demanding) way to average over a bandwidth is to
compute radiances or irradiances at many monochromatic wavelengths, and then average the
computed quantities.

6 Two other definitions of the mean absorption cross section (the Planck and the Rosseland
mean) were given in Chapter 8 (§8.4)
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nadir direction at atmospheric depth level `, with ` = 0 at the TOA, can be
expressed as:

F`(�) = F0(�) e�⌧
`

(�). (T.44)

Hence, the atmospheric transmittance at level ` becomes

T`(�) =
F`(�)

F0(�)
= e�⌧

`

(�) (T.45)

and the corresponding optical depth is

⌧`(�) = � ln[T`(�)]. (T.46)

The irradiance measured by an instrument looking straight up at level `
with spectral response function w(�) and bandwidth �� can be written

F��
` =

R

�� w(�)F`(�)d�
R

�� w(�)d�
=

R

�� w(�)F0(�)T`(�)d�
R

�� w(�)d�
=

Z

��
w̃(�)F0(�)T`(�)d�

(T.47)
where w̃(�) = w(�)/

R

�� w(�)d� is the “normalized” response function.
Since T0(�) = 1 (TOA), the band-weighted transmittance at level ` be-
comes:

T ��
` =

F��
`

F��
0

=

R

�� w̃(�)F0(�)T`(�)d�
R

�� w̃(�)F0(�)d�
. (T.48)

Hence, the band-weighted absorption optical depth at level ` becomes:

⌧��
` = � ln[T ��

` ]. (T.49)

In AccuRT the band-weighted transmittance given by Eq. T.48 is evaluated
numerically using a spectral resolution of 1 cm�1.

Absorption by aerosol and cloud particles

Aerosol or cloud particles are assumed to consist of a polydispersion of ho-
mogeneous spheres with a specified wavelength-dependent refractive index.
Since Mie computations are computing-intensive, Mie-computed absorption
coe�cients are tabulated at user-specified center wavelengths, and linear
interpolation is used to obtain the absorption coe�cient within the user-
specified bandwidth.

Absorption by pure ice, impurities, inclusions, and snow grains

For pure ice, tabulated values of the imaginary part of the refractive index
mi (Warren and Brandt, 2008) are used to compute the absorption coe�-
cient (↵ = 4⇡mi/�), and linear interpolation is used to obtain the average
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absorption coe�cient within the user-specified bandwidth. Impurities (e.g.
algae and soot) are assumed to be uniformly distributed within the ice and
the absorption is given in terms of a user-specified imaginary part of the
refractive index. Brine pockets and air bubbles embedded in the ice as well
as snow grains are assumed to be spherical particles. For direct Mie cal-
culations, computed absorption coe�cients are tabulated at user-specified
center wavelengths, and linear interpolation is used to obtain the average
absorption coe�cient within the user-specified bandwidth. For the parame-
terized option, we use the absorption coe�cient of snow/ice particles given
by Eq. T.28, which depends on the refractive index of ice. We use tabulated
data for the real and the imaginary part of the refractive index of ice as a
function of wavelength (Warren and Brandt, 2008) and linear interpolation
to obtain values between wavelength grid points.

Absorption by liquid water

We use tabulated data for the absorption coe�cient of pure water as a
function of wavelength (Pope and Fry, 1997; Kou et al., 1993) and linear in-
terpolation to obtain values between tabulated wavelength grid points. The
absorption coe�cient is obtained at 100 evenly spaced wavelengths within
the user-specified wavelength bandwidth using liner interpolation between
tabulated values, and then the average is computed. The absorption coe�-
cient due to impurities in water is computed from a bio-optical model (see
Eq. T.41) at user-specified center wavelengths, and linear interpolation is
used to obtain the average absorption coe�cient within the user-specified
bandwidth.

Spectral solar irradiance

The solar irradiance is also averaged over 100 evenly spaced wavelengths
within each user-specified wavelength bandwidth.



Appendix U

Model Atmospheres

Reference atmospheric models have long been used for a variety of purposes:
validation of theoretical atmospheric models, intercomparison of radiation
codes, and design and mission planning for aerospace systems, to mention a
few applications. Standard atmospheres typically provide numerical values
for the thermodynamic variables (pressure, temperature, density, etc.) and
concentrations of minor species.

Atmospheric models may be considered to be the result of an ingestion of
the best available data sets available at the time – consequently the older
models (such as the 1976 U. S. Standard Atmosphere) do not represent the
current state-of-the-art knowledge. For our purposes they are most useful
for comparing the output of radiation codes, see for example Ellingson and
Fouquart (1991).

In Tables C.1 to C.6 we present six model atmospheres which contain,
among other variables, the temperature, and constituent concentrations for
H2O, CO2, O3 and NO2. With the exception of CH4 (not listed) these five
species are the most important infrared-active gases in Earth’s atmosphere.
It should be mentioned that the tabulated values of H2O and NO2 in the
upper stratosphere and mesosphere are not to be trusted as representative
of the Earth’s upper regions, since these models were created more than
40 years ago1. Modern remote sensing measurements of these constituents
provide much more accurate values of H2O, O3, and NO2,2 as well as other
species, such as NO and O.

1 McClatchey, R. A., R. W. Fenn, J. E. A. Selby, F. E. Volz, and J. S. Garing, Optical
properties of the atmosphere, Rep. AFCRL-71-0279, 85pp, Air Force Cambridge Res. Lab.,
Bedford, Mass, 1973.

2 COSPAR International Reference Atmosphere: 1986, Part II: Middle Atmosphere Models,
Adv. Space Res., 10, No. 12, 1990.
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Table C.1. AFGL Atmospheric Constituent Profiles, U.S. Standard Atmosphere 1976 (AFGL-TR-86-0110).

z(km) p(mb) T (K) air(cm�3) O3(cm�3) O2(cm�3) H2O(cm�3) CO2(cm�3) NO2(cm�3)

100.000 0.00032 195.100 1.187967E+13 4.756001E+06 1.902400E+12 4.756001E+06 2.318550E+09 2.021300E+03
95.000 0.00076 188.400 2.921760E+13 2.046800E+07 5.263200E+12 1.578960E+07 7.894800E+09 5.146240E+03
90.000 0.00184 186.900 7.130506E+13 4.995200E+07 1.355840E+13 6.065600E+07 2.212160E+10 1.305888E+04
85.000 0.00446 188.900 1.710073E+14 8.555000E+07 3.422000E+13 2.275630E+08 5.475200E+10 3.285120E+04
80.000 0.01050 198.600 3.829322E+14 1.149600E+08 8.008879E+13 7.855600E+08 1.256896E+11 7.740640E+04
75.000 0.02400 208.400 8.341139E+14 2.086750E+08 1.744523E+14 2.358028E+09 2.754510E+11 1.794605E+05
70.000 0.05220 219.600 1.721670E+15 5.169000E+08 3.601070E+14 6.030500E+09 5.685899E+11 3.980130E+05
65.000 0.10900 233.300 3.383947E+15 2.370200E+09 7.076740E+14 1.422120E+10 1.117380E+12 8.566580E+05
60.000 0.21900 247.000 6.421832E+15 7.068600E+09 1.343034E+15 3.052350E+10 2.120580E+12 1.831410E+06
55.000 0.42500 260.800 1.180302E+16 2.125800E+10 2.468290E+15 6.023100E+10 3.897300E+12 4.003590E+06
50.000 0.79780 270.700 2.134605E+16 6.621600E+10 4.464240E+15 1.116060E+11 7.048799E+12 9.462480E+06
47.500 1.09000 270.600 2.917498E+16 1.197200E+11 6.102800E+15 1.533000E+11 9.636000E+12 1.944720E+07
45.000 1.49100 264.200 4.087489E+16 2.147250E+11 8.548099E+15 2.137025E+11 1.349700E+13 4.703500E+07
42.500 2.06000 257.300 5.798815E+16 3.597860E+11 1.212827E+16 2.988545E+11 1.914990E+13 1.259251E+08
40.000 2.87100 250.400 8.304447E+16 6.066300E+11 1.736790E+16 4.175775E+11 2.742300E+13 3.348930E+08
37.500 4.15000 242.900 1.237464E+17 9.656401E+11 2.587420E+16 6.128100E+11 4.085400E+13 7.749880E+08
35.000 5.74600 236.500 1.759731E+17 1.380096E+12 3.680490E+16 8.628900E+11 5.811300E+13 1.282008E+09
32.500 8.01000 230.000 2.522415E+17 1.860945E+12 5.275160E+16 1.217830E+12 8.329200E+13 1.819804E+09
30.000 11.97000 226.500 3.827699E+17 2.509799E+12 8.004700E+16 1.809675E+12 1.263900E+14 2.359280E+09
27.500 17.43000 224.000 5.635873E+17 3.272892E+12 1.178760E+17 2.580300E+12 1.861200E+14 2.712840E+09
25.000 25.49000 221.600 8.331283E+17 4.266877E+12 1.742433E+17 3.689123E+12 2.751210E+14 3.118038E+09
24.000 29.72000 220.600 9.757872E+17 4.518265E+12 2.040885E+17 4.198950E+12 3.222450E+14 2.988090E+09
23.000 34.67000 219.600 1.143492E+18 4.768192E+12 2.390960E+17 4.804800E+12 3.775200E+14 2.951520E+09
22.000 40.47000 218.600 1.340895E+18 4.894274E+12 2.804780E+17 5.455230E+12 4.428600E+14 2.898720E+09
21.000 47.29000 217.600 1.574064E+18 4.769100E+12 3.291750E+17 6.260625E+12 5.197500E+14 2.772000E+09
20.000 55.29000 216.700 1.847990E+18 4.768571E+12 3.864410E+17 7.211100E+12 6.101700E+14 2.570110E+09
19.000 64.67000 216.700 2.161503E+18 4.390890E+12 4.520670E+17 8.327550E+12 7.137900E+14 2.292780E+09
18.000 75.65000 216.700 2.528494E+18 4.015110E+12 5.287700E+17 9.677249E+12 8.349000E+14 1.950630E+09
17.000 88.50000 216.700 2.957987E+18 3.513520E+12 6.186399E+17 1.139600E+13 9.768000E+14 1.536240E+09
16.000 103.50000 216.700 3.459340E+18 3.012286E+12 7.235580E+17 1.367490E+13 1.142460E+15 1.104378E+09
15.000 121.10000 216.700 4.047595E+18 2.634525E+12 8.464500E+17 2.025000E+13 1.336500E+15 6.925500E+08
14.000 141.70000 216.700 4.736121E+18 2.383717E+12 9.904510E+17 2.808805E+13 1.563870E+15 3.544772E+08
13.000 165.80000 216.700 5.541629E+18 2.132992E+12 1.159114E+18 6.017410E+13 1.830180E+15 2.467970E+08
12.000 194.00000 216.700 6.484174E+18 2.008345E+12 1.356201E+18 1.236803E+14 2.141370E+15 2.044035E+08
11.000 227.00000 216.800 7.583652E+18 1.630876E+12 1.586101E+18 2.741906E+14 2.504370E+15 1.988318E+08
10.000 265.00000 223.300 8.595457E+18 1.129443E+12 1.797818E+18 6.017959E+14 2.838660E+15 2.047276E+08
9.000 308.00000 229.700 9.711841E+18 8.910379E+11 2.031271E+18 1.538518E+15 3.207270E+15 2.254808E+08
8.000 356.50000 236.200 1.093179E+19 6.526804E+11 2.286460E+18 4.011698E+15 3.610200E+15 2.516200E+08
7.000 411.10001 242.700 1.226845E+19 6.151052E+11 2.566520E+18 7.024160E+15 4.052400E+15 2.824400E+08
6.000 472.20001 249.200 1.372429E+19 5.645776E+11 2.869570E+18 1.270574E+16 4.530900E+15 3.157900E+08
5.000 540.50000 255.700 1.531006E+19 5.772576E+11 3.201880E+18 2.140204E+16 5.055600E+15 3.523600E+08
4.000 616.59998 262.200 1.703267E+19 5.771448E+11 3.561360E+18 3.677232E+16 5.623200E+15 3.919200E+08
3.000 701.20001 268.700 1.890105E+19 6.274337E+11 3.952190E+18 6.017162E+16 6.240300E+15 4.349300E+08
2.000 795.00000 275.200 2.092331E+19 6.778279E+11 4.376460E+18 9.697315E+16 6.910200E+15 4.816201E+08
1.000 898.79999 281.700 2.310936E+19 6.779402E+11 4.834170E+18 1.404222E+17 7.632900E+15 5.319900E+08
0.000 1013.00000 288.200 2.545818E+19 6.777680E+11 5.325320E+18 1.973426E+17 8.408400E+15 5.860400E+08
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Table C.2. AFGL Atmospheric Constituent Profiles, Tropical (AFGL-TR-86-0110).

z(km) p(mb) T (K) air(cm�3) O3(cm�3) O2(cm�3) H2O(cm�3) CO2(cm�3) NO2(cm�3)

100.000 0.00029 190.700 1.097638E+13 4.392000E+06 1.756800E+12 4.392000E+06 2.141100E+09 1.866600E+03
95.000 0.00069 184.300 2.703802E+13 1.353000E+07 4.870800E+12 1.461240E+07 7.306201E+09 4.762560E+03
90.000 0.00172 177.000 7.038287E+13 3.662360E+07 1.338170E+13 5.986550E+07 2.183330E+10 1.288869E+04
85.000 0.00440 177.100 1.799476E+14 9.005000E+07 3.602000E+13 2.341300E+08 5.763200E+10 3.457920E+04
80.000 0.01100 184.800 4.311244E+14 1.423620E+08 9.016260E+13 9.059399E+08 1.414992E+11 8.714280E+04
75.000 0.02600 201.800 9.331769E+14 1.680840E+08 1.951642E+14 3.081540E+09 3.081540E+11 2.007670E+05
70.000 0.05800 218.900 1.919084E+15 5.760000E+08 4.012800E+14 8.640000E+09 6.336000E+11 4.435200E+05
65.000 0.12100 236.000 3.713515E+15 2.415400E+09 7.766440E+14 2.006640E+10 1.226280E+12 9.401481E+05
60.000 0.23900 253.100 6.839393E+15 7.528400E+09 1.430396E+15 4.106400E+10 2.258520E+12 1.950540E+06
55.000 0.45600 263.400 1.253894E+16 2.259000E+10 2.622950E+15 7.530000E+10 4.141500E+12 4.254450E+06
50.000 0.85400 270.200 2.289203E+16 6.414800E+10 4.788190E+15 1.374600E+11 7.560300E+12 1.014913E+07
47.500 1.16000 269.600 3.116377E+16 1.076055E+11 6.518710E+15 1.840210E+11 1.029270E+13 2.077254E+07
45.000 1.59000 264.800 4.349016E+16 1.958400E+11 9.095680E+15 2.480640E+11 1.436160E+13 5.004800E+07
42.500 2.20000 259.400 6.142774E+16 3.626730E+11 1.284723E+16 3.380850E+11 2.028510E+13 1.333899E+08
40.000 3.05000 254.000 8.697170E+16 6.527249E+11 1.818927E+16 4.525560E+11 2.871990E+13 3.507309E+08
37.500 4.26000 248.500 1.241638E+17 1.093840E+12 2.597870E+16 6.090700E+11 4.101900E+13 7.781180E+08
35.000 6.00000 243.100 1.787632E+17 1.735330E+12 3.739010E+16 8.229400E+11 5.903700E+13 1.302392E+09
32.500 8.52000 237.700 2.596105E+17 2.559030E+12 5.429820E+16 1.117140E+12 8.573400E+13 1.873158E+09
30.000 12.20000 232.300 3.803842E+17 3.540510E+12 7.956630E+16 1.522800E+12 1.256310E+14 2.345112E+09
27.500 17.63000 227.000 5.625204E+17 4.390620E+12 1.176461E+17 2.026440E+12 1.857570E+14 2.707549E+09
25.000 25.70000 221.400 8.407510E+17 4.543020E+12 1.758317E+17 2.734225E+12 2.776290E+14 3.146462E+09
24.000 30.00000 219.200 9.912712E+17 4.265600E+12 2.073280E+17 3.174400E+12 3.273600E+14 3.035520E+09
23.000 35.00000 217.000 1.168208E+18 3.974600E+12 2.443210E+17 3.390100E+12 3.857700E+14 3.016020E+09
22.000 40.90000 214.600 1.380402E+18 3.314400E+12 2.886290E+17 3.866800E+12 4.557300E+14 2.982960E+09
21.000 48.00000 210.700 1.650017E+18 2.971800E+12 3.450590E+17 4.375150E+12 5.448300E+14 2.905760E+09
20.000 56.50000 206.700 1.979793E+18 2.773400E+12 4.140290E+17 5.150600E+12 6.537300E+14 2.753590E+09
19.000 66.60000 202.700 2.379755E+18 2.261950E+12 4.976290E+17 6.190600E+12 7.857300E+14 2.523860E+09
18.000 78.90000 198.800 2.874567E+18 1.438500E+12 6.012930E+17 7.911750E+12 9.494100E+14 2.218167E+09
17.000 93.70000 194.800 3.483874E+18 8.715000E+11 7.285740E+17 1.010940E+13 1.150380E+15 1.809234E+09
16.000 111.00000 197.000 4.081019E+18 5.897296E+11 8.535560E+17 1.225200E+13 1.347720E+15 1.302796E+09
15.000 132.00000 203.700 4.693478E+18 5.899431E+11 9.816730E+17 1.878800E+13 1.550010E+15 8.031870E+08
14.000 156.00000 210.300 5.372756E+18 5.645850E+11 1.123793E+18 3.344494E+13 1.774410E+15 4.021996E+08
13.000 182.00000 217.000 6.074680E+18 5.646784E+11 1.270511E+18 6.018210E+13 2.006070E+15 2.705155E+08
12.000 213.00000 223.600 6.899532E+18 5.395476E+11 1.442936E+18 2.005612E+14 2.278320E+15 2.174760E+08
11.000 247.00000 230.100 7.774853E+18 5.144914E+11 1.626020E+18 5.684068E+14 2.567400E+15 2.038360E+08
10.000 286.00000 237.000 8.740364E+18 4.893947E+11 1.828123E+18 1.672426E+15 2.886510E+15 2.081786E+08
9.000 329.00000 243.600 9.782062E+18 4.894500E+11 2.045901E+18 4.011532E+15 3.230370E+15 2.271048E+08
8.000 378.00000 250.300 1.093812E+19 4.895745E+11 2.288550E+18 8.362515E+15 3.613500E+15 2.518500E+08
7.000 432.00000 257.000 1.217482E+19 5.143614E+11 2.545620E+18 1.570002E+16 4.019400E+15 2.801400E+08
6.000 492.00000 263.600 1.351859E+19 5.397117E+11 2.827770E+18 2.842653E+16 4.464900E+15 3.111900E+08
5.000 559.00000 270.300 1.497882E+19 5.646733E+11 3.132910E+18 5.015654E+16 4.946700E+15 3.447700E+08
4.000 633.00000 277.000 1.655144E+19 5.897016E+11 3.461040E+18 7.354296E+16 5.464800E+15 3.808800E+08
3.000 715.00000 283.700 1.825402E+19 6.401807E+11 3.818430E+18 1.571220E+17 6.029100E+15 4.202100E+08
2.000 805.00000 287.700 2.026599E+19 6.777576E+11 4.238520E+18 3.110952E+17 6.692400E+15 4.664400E+08
1.000 904.00000 293.700 2.229340E+19 7.027649E+11 4.662790E+18 4.348219E+17 7.362299E+15 5.131300E+08
0.000 1013.00000 299.700 2.448130E+19 7.029050E+11 5.120500E+18 6.352850E+17 8.085000E+15 5.635000E+08
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Table C.3. AFGL Atmospheric Constituent Profiles, Midlatitude Summer (AFGL-TR-86-0110).

z(km) p(mb) T (K) air(cm�3) O3(cm�3) O2(cm�3) H2O(cm�3) CO2(cm�3) NO2(cm�3)

100.000 0.00026 190.500 9.809267E+12 3.926400E+06 1.570560E+12 3.926400E+06 1.914120E+09 1.668720E+03
95.000 0.00062 178.300 2.538870E+13 1.778700E+07 4.573800E+12 1.372140E+07 6.860700E+09 4.472160E+03
90.000 0.00164 165.000 7.198993E+13 5.403000E+07 1.368760E+13 6.123400E+07 2.233240E+10 1.318332E+04
85.000 0.00448 165.100 1.965363E+14 1.121190E+08 3.934000E+13 2.616110E+08 6.294400E+10 3.776640E+04
80.000 0.01200 174.100 4.992227E+14 9.992000E+07 1.044164E+14 1.049160E+09 1.638688E+11 1.009192E+05
75.000 0.03000 196.100 1.108040E+15 2.107100E+08 2.317810E+14 3.271550E+09 3.659700E+11 2.384350E+05
70.000 0.06700 218.100 2.225005E+15 8.908001E+08 4.654430E+14 8.239900E+09 7.349100E+11 5.144370E+05
65.000 0.13900 240.100 4.193093E+15 3.356800E+09 8.769640E+14 1.846240E+10 1.384680E+12 1.061588E+06
60.000 0.27200 257.100 7.662644E+15 9.968400E+09 1.602612E+15 3.834000E+10 2.530440E+12 2.185380E+06
55.000 0.51500 269.300 1.385105E+16 2.494800E+10 2.896740E+15 7.415099E+10 4.573800E+12 4.698540E+06
50.000 0.95100 275.700 2.498363E+16 7.000000E+10 5.225000E+15 1.375000E+11 8.250000E+12 1.107500E+07
47.500 1.29000 275.200 3.395104E+16 1.189300E+11 7.101820E+15 1.868900E+11 1.121340E+13 2.263068E+07
45.000 1.76000 269.900 4.723040E+16 2.126700E+11 9.877339E+15 2.575670E+11 1.559580E+13 5.434900E+07
42.500 2.41000 263.700 6.619401E+16 3.908160E+11 1.384416E+16 3.510720E+11 2.185920E+13 1.437408E+08
40.000 3.33000 257.500 9.366532E+16 7.076615E+11 1.958957E+16 4.780230E+11 3.093090E+13 3.777319E+08
37.500 4.64000 251.300 1.337326E+17 1.164060E+12 2.796420E+16 6.690000E+11 4.415400E+13 8.375880E+08
35.000 6.52000 245.200 1.925923E+17 1.715030E+12 4.027430E+16 9.538649E+11 6.359100E+13 1.402856E+09
32.500 9.30000 239.000 2.818363E+17 2.284200E+12 5.893800E+16 1.367700E+12 9.306000E+13 2.033220E+09
30.000 13.20000 233.700 4.090977E+17 2.865800E+12 8.556460E+16 1.924180E+12 1.351020E+14 2.521904E+09
27.500 19.07000 228.450 6.046045E+17 3.630000E+12 1.264450E+17 2.692250E+12 1.996500E+14 2.910050E+09
25.000 27.70000 225.100 8.912839E+17 4.281120E+12 1.864071E+17 3.745980E+12 2.943270E+14 3.335706E+09
24.000 32.20000 223.900 1.041630E+18 4.168000E+12 2.177780E+17 4.168000E+12 3.438600E+14 3.188520E+09
23.000 37.60000 222.800 1.222319E+18 4.158200E+12 2.556070E+17 4.708550E+12 4.035900E+14 3.155340E+09
22.000 43.70000 221.600 1.428313E+18 4.144100E+12 2.986610E+17 5.144399E+12 4.715700E+14 3.086640E+09
21.000 51.00000 220.400 1.675986E+18 4.024800E+12 3.504930E+17 5.785650E+12 5.534100E+14 2.951520E+09
20.000 59.50000 219.200 1.966021E+18 3.934000E+12 4.111030E+17 6.491100E+12 6.491100E+14 2.734130E+09
19.000 69.50000 217.900 2.310146E+18 3.468000E+12 4.832080E+17 7.398400E+12 7.629600E+14 2.450720E+09
18.000 81.20000 216.800 2.712742E+18 2.715000E+12 5.674350E+17 8.552250E+12 8.959500E+14 2.093265E+09
17.000 95.00000 215.700 3.189961E+18 2.234400E+12 6.671280E+17 1.021440E+13 1.053360E+15 1.656648E+09
16.000 111.00000 215.700 3.727217E+18 2.238000E+12 7.795700E+17 1.230900E+13 1.230900E+15 1.189870E+09
15.000 130.00000 215.700 4.365209E+18 2.184000E+12 9.129120E+17 1.485120E+13 1.441440E+15 7.469280E+08
14.000 153.00000 215.700 5.137515E+18 2.262040E+12 1.074469E+18 2.570500E+13 1.696530E+15 3.845468E+08
13.000 179.00000 215.800 6.007772E+18 1.803600E+12 1.256508E+18 4.809600E+13 1.983960E+15 2.675340E+08
12.000 209.00000 222.300 6.809554E+18 1.519522E+12 1.424126E+18 2.006042E+14 2.248620E+15 2.146410E+08
11.000 243.00000 228.800 7.692404E+18 1.380251E+12 1.608882E+18 7.356209E+14 2.540340E+15 2.016876E+08
10.000 281.00000 235.300 8.649604E+18 1.128742E+12 1.809104E+18 2.139763E+15 2.856480E+15 2.060128E+08
9.000 324.00000 241.700 9.709126E+18 1.079448E+12 2.030644E+18 4.011736E+15 3.206280E+15 2.254112E+08
8.000 372.00000 248.200 1.085558E+19 9.910836E+11 2.269740E+18 7.019904E+15 3.583800E+15 2.497800E+08
7.000 426.00000 254.700 1.211414E+19 9.409968E+11 2.533080E+18 1.236240E+16 3.999600E+15 2.787600E+08
6.000 487.00000 261.200 1.350416E+19 8.657207E+11 2.823590E+18 2.040010E+16 4.458300E+15 3.107300E+08
5.000 554.00000 267.200 1.501707E+19 8.284536E+11 3.141270E+18 3.344175E+16 4.959900E+15 3.456900E+08
4.000 628.00000 273.200 1.664910E+19 8.031786E+11 3.481940E+18 6.352458E+16 5.497800E+15 3.831800E+08
3.000 710.00000 279.200 1.841852E+19 7.781146E+11 3.851870E+18 1.102851E+17 6.081900E+15 4.238900E+08
2.000 802.00000 285.200 2.036745E+19 7.528372E+11 4.259420E+18 1.972784E+17 6.725400E+15 4.687400E+08
1.000 902.00000 289.700 2.255121E+19 7.531609E+11 4.717130E+18 3.110146E+17 7.448100E+15 5.191100E+08
0.000 1013.00000 294.200 2.493898E+19 7.530432E+11 5.216640E+18 4.682496E+17 8.236800E+15 5.740800E+08
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Tabel C.4. AFGL Atmospheric Constituent Profiles, Midlatitude Winter (AFGL-TR-86-0110).

z(km) p(mb) T (K) air(cm�3) O3(cm�3) O2(cm�3) H2O(cm�3) CO2(cm�3) NO2(cm�3)

100.000 0.00041 218.600 1.349841E+13 5.404000E+06 2.161600E+12 5.404000E+06 2.634450E+09 2.296700E+03
95.000 0.00088 208.300 3.049454E+13 2.441600E+07 5.493600E+12 1.648080E+07 8.240400E+09 5.371520E+03
90.000 0.00198 199.500 7.188431E+13 5.755200E+07 1.366860E+13 6.114900E+07 2.230140E+10 1.316502E+04
85.000 0.00456 199.800 1.653032E+14 9.097000E+07 3.308000E+13 2.199820E+08 5.292800E+10 3.175680E+04
80.000 0.01030 210.100 3.550774E+14 8.171900E+07 7.425770E+13 7.106000E+08 1.165384E+11 7.177059E+04
75.000 0.02220 220.400 7.295469E+14 1.825250E+08 1.525909E+14 1.971270E+09 2.409330E+11 1.569715E+05
70.000 0.04700 230.700 1.475577E+15 4.726400E+08 3.086930E+14 4.874100E+09 4.874100E+11 3.411870E+05
65.000 0.09500 240.900 2.856266E+15 1.571900E+09 5.973220E+14 1.143200E+10 9.431400E+11 7.230740E+05
60.000 0.18800 250.800 5.429278E+15 5.433000E+09 1.135497E+15 2.444850E+10 1.792890E+12 1.548405E+06
55.000 0.36200 260.600 1.006111E+16 1.711900E+10 2.104630E+15 4.883950E+10 3.323100E+12 3.413730E+06
50.000 0.68300 265.700 1.861834E+16 5.123250E+10 3.893670E+15 9.221850E+10 6.147900E+12 8.253090E+06
47.500 0.94000 265.100 2.568206E+16 9.509000E+10 5.371300E+15 1.285000E+11 8.481000E+12 1.711620E+07
45.000 1.29000 258.500 3.614440E+16 1.663820E+11 7.559530E+15 1.808500E+11 1.193610E+13 4.159550E+07
42.500 1.80000 250.800 5.198245E+16 3.069180E+11 1.087218E+16 2.601000E+11 1.716660E+13 1.128834E+08
40.000 2.53000 243.200 7.534749E+16 5.202600E+11 1.575860E+16 3.732300E+11 2.488200E+13 3.038620E+08
37.500 3.60000 235.500 1.107193E+17 7.977600E+11 2.315720E+16 5.429200E+11 3.656400E+13 6.936080E+08
35.000 5.18000 227.900 1.646256E+17 1.169370E+12 3.442230E+16 7.987950E+11 5.435100E+13 1.199016E+09
32.500 7.56000 220.400 2.484403E+17 1.690480E+12 5.195740E+16 1.193280E+12 8.203800E+13 1.792406E+09
30.000 11.10000 217.400 3.698071E+17 2.257610E+12 7.735090E+16 1.757975E+12 1.221330E+14 2.279816E+09
27.500 16.46000 215.500 5.532155E+17 3.100160E+12 1.157024E+17 2.601920E+12 1.826880E+14 2.662816E+09
25.000 24.40000 215.200 8.212197E+17 4.191180E+12 1.717562E+17 3.821370E+12 2.711940E+14 3.073532E+09
24.000 28.60000 215.200 9.625772E+17 4.527510E+12 2.013297E+17 4.431180E+12 3.178890E+14 2.947698E+09
23.000 33.40000 215.200 1.124129E+18 4.837501E+12 2.351250E+17 5.118751E+12 3.712500E+14 2.902500E+09
22.000 39.10000 215.200 1.315971E+18 5.136300E+12 2.752530E+17 5.966010E+12 4.346100E+14 2.844720E+09
21.000 45.80000 215.200 1.541470E+18 5.400500E+12 3.224870E+17 6.943500E+12 5.091900E+14 2.715680E+09
20.000 53.70000 215.200 1.807356E+18 5.246100E+12 3.780810E+17 8.140500E+12 5.969700E+14 2.514510E+09
19.000 62.80000 215.200 2.113631E+18 4.864500E+12 4.420350E+17 9.517500E+12 6.979500E+14 2.241900E+09
18.000 73.60000 215.700 2.471380E+18 4.451400E+12 5.168570E+17 1.112850E+13 8.160900E+14 1.906683E+09
17.000 86.10000 216.200 2.884426E+18 4.040400E+12 6.031740E+17 1.298700E+13 9.523800E+14 1.497834E+09
16.000 100.70000 216.700 3.365754E+18 3.704800E+12 7.039120E+17 1.549280E+13 1.111440E+15 1.074392E+09
15.000 117.80000 217.200 3.928234E+18 3.537900E+12 8.215790E+17 1.847570E+13 1.297230E+15 6.722010E+08
14.000 137.80000 217.700 4.584612E+18 3.670400E+12 9.588920E+17 2.202240E+13 1.514040E+15 3.431824E+08
13.000 161.10001 218.200 5.347523E+18 3.764963E+12 1.118359E+18 2.675500E+13 1.765830E+15 2.381195E+08
12.000 188.20000 218.700 6.232793E+18 3.263198E+12 1.303533E+18 3.742200E+13 2.058210E+15 1.964655E+08
11.000 219.89999 219.200 7.266018E+18 2.635010E+12 1.519639E+18 7.271000E+13 2.399430E+15 1.905002E+08
10.000 256.79999 219.700 8.465970E+18 2.007864E+12 1.770648E+18 2.507712E+14 2.795760E+15 2.016336E+08
9.000 299.29999 225.700 9.604770E+18 1.506200E+12 2.008908E+18 5.350039E+14 3.171960E+15 2.229984E+08
8.000 347.29999 231.700 1.085652E+19 1.128354E+12 2.269740E+18 1.169622E+15 3.583800E+15 2.497800E+08
7.000 401.60001 237.700 1.223704E+19 9.666475E+11 2.560250E+18 2.843225E+15 4.042500E+15 2.817500E+08
6.000 462.70001 243.700 1.375168E+19 8.031712E+11 2.875840E+18 7.021728E+15 4.540800E+15 3.164800E+08
5.000 531.29999 249.700 1.541108E+19 7.278240E+11 3.222780E+18 1.270762E+16 5.088600E+15 3.546600E+08
4.000 608.09998 255.700 1.722488E+19 6.149508E+11 3.603160E+18 2.206720E+16 5.689200E+15 3.965200E+08
3.000 693.79999 261.700 1.920182E+19 6.150400E+11 4.016980E+18 4.013136E+16 6.342600E+15 4.420600E+08
2.000 789.70001 265.200 2.156753E+19 6.148142E+11 4.510220E+18 6.016504E+16 7.121400E+15 4.963400E+08
1.000 897.29999 268.700 2.418699E+19 6.776000E+11 5.057800E+18 8.358680E+16 7.986000E+15 5.566000E+08
0.000 1018.00000 272.200 2.708766E+19 7.531159E+11 5.665990E+18 1.170068E+17 8.946300E+15 6.235300E+08
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Table C.5. AFGL Atmospheric Constituent Profiles, Subarctic Summer (AFGL-TR-86-0110).

z(km) p(mb) T (K) air(cm�3) O3(cm�3) O2(cm�3) H2O(cm�3) CO2(cm�3) NO2(cm�3)

100.000 0.00025 190.400 9.434015E+12 3.776400E+06 1.510560E+12 3.776400E+06 1.840995E+09 1.604970E+03
95.000 0.00061 176.800 2.482574E+13 1.987200E+07 4.471200E+12 1.341360E+07 6.706800E+09 4.371840E+03
90.000 0.00161 161.600 7.215997E+13 6.498900E+07 1.371990E+13 6.137850E+07 2.238510E+10 1.321443E+04
85.000 0.00451 161.700 2.020125E+14 1.314300E+08 4.044000E+13 2.689260E+08 6.470400E+10 3.882240E+04
80.000 0.01250 170.600 5.306923E+14 9.559800E+07 1.109999E+14 1.062200E+09 1.742008E+11 1.072822E+05
75.000 0.03200 193.600 1.197172E+15 2.396000E+08 2.503820E+14 3.234600E+09 3.953400E+11 2.575700E+05
70.000 0.07100 216.600 2.374169E+15 9.504000E+08 4.965840E+14 7.840800E+09 7.840800E+11 5.488560E+05
65.000 0.14700 239.700 4.441822E+15 3.556000E+09 9.290050E+14 1.778000E+10 1.466850E+12 1.124585E+06
60.000 0.28800 262.700 7.940434E+15 9.535200E+09 1.660714E+15 3.575700E+10 2.622180E+12 2.264610E+06
55.000 0.53700 274.000 1.419501E+16 2.415700E+10 2.969890E+15 6.891850E+10 4.689300E+12 4.817190E+06
50.000 0.98700 277.200 2.578907E+16 6.452500E+10 5.394290E+15 1.277595E+11 8.517300E+12 1.143383E+07
47.500 1.34000 276.200 3.513929E+16 1.125120E+11 7.348440E+15 1.758000E+11 1.160280E+13 2.341656E+07
45.000 1.82000 273.600 4.818004E+16 2.024820E+11 1.007589E+16 2.410500E+11 1.590930E+13 5.544150E+07
42.500 2.48000 269.500 6.665071E+16 3.601800E+11 1.394030E+16 3.335000E+11 2.201100E+13 1.447390E+08
40.000 3.40000 262.100 9.395583E+16 6.581400E+11 1.965018E+16 4.701000E+11 3.102660E+13 3.789006E+08
37.500 4.72000 254.600 1.342751E+17 1.048320E+12 2.808960E+16 6.720000E+11 4.435200E+13 8.413440E+08
35.000 6.61000 247.200 1.936711E+17 1.492260E+12 4.050420E+16 9.690000E+11 6.395400E+13 1.410864E+09
32.500 9.40000 240.000 2.836798E+17 1.958910E+12 5.933510E+16 1.419500E+12 9.368700E+13 2.046919E+09
30.000 13.40000 235.100 4.128230E+17 2.354670E+12 8.633790E+16 2.065500E+12 1.363230E+14 2.544696E+09
27.500 19.23000 231.000 6.029470E+17 3.198020E+12 1.261106E+17 2.986830E+12 1.991220E+14 2.902354E+09
25.000 27.80000 228.100 8.827370E+17 3.975300E+12 1.846306E+17 4.328660E+12 2.915220E+14 3.303916E+09
24.000 32.28000 226.600 1.031776E+18 4.338600E+12 2.158970E+17 5.010049E+12 3.408900E+14 3.160980E+09
23.000 37.50000 225.200 1.206076E+18 4.465900E+12 2.522630E+17 5.829810E+12 3.983100E+14 3.114060E+09
22.000 43.60000 225.200 1.402264E+18 4.629900E+12 2.932270E+17 6.734400E+12 4.629900E+14 3.030480E+09
21.000 50.70000 225.200 1.630615E+18 4.406400E+12 3.410880E+17 7.670400E+12 5.385600E+14 2.872320E+09
20.000 59.00000 225.200 1.897560E+18 3.987900E+12 3.968910E+17 8.735400E+12 6.266700E+14 2.639610E+09
19.000 68.60000 225.200 2.206315E+18 3.753600E+12 4.614720E+17 9.936000E+12 7.286400E+14 2.340480E+09
18.000 79.80000 225.200 2.566530E+18 3.338400E+12 5.367120E+17 1.104240E+13 8.474400E+14 1.979928E+09
17.000 92.80000 225.200 2.984637E+18 2.987000E+12 6.242830E+17 1.209735E+13 9.857100E+14 1.550253E+09
16.000 108.00000 225.200 3.473499E+18 2.954600E+12 7.264840E+17 1.390400E+13 1.147080E+15 1.108844E+09
15.000 126.00000 225.200 4.052416E+18 2.838500E+12 8.474950E+17 1.622000E+13 1.338150E+15 6.934050E+08
14.000 146.00000 225.200 4.695657E+18 2.819400E+12 9.820909E+17 1.879600E+13 1.550670E+15 3.514852E+08
13.000 170.00000 225.200 5.467545E+18 2.735500E+12 1.143439E+18 2.434595E+13 1.805430E+15 2.434595E+08
12.000 197.70000 225.200 6.358433E+18 2.608830E+12 1.329867E+18 3.817800E+13 2.099790E+15 2.004345E+08
11.000 230.00000 225.200 7.397267E+18 2.257610E+12 1.547018E+18 9.844661E+13 2.442660E+15 1.939324E+08
10.000 267.70001 225.200 8.609776E+18 1.628424E+12 1.800744E+18 3.653184E+14 2.843280E+15 2.050608E+08
9.000 310.79999 232.200 9.694616E+18 1.377542E+12 2.027509E+18 1.261130E+15 3.201330E+15 2.250632E+08
8.000 359.00000 239.200 1.087039E+19 9.916032E+11 2.273920E+18 4.347648E+15 3.590400E+15 2.502400E+08
7.000 413.00000 246.100 1.215487E+19 9.409409E+11 2.541440E+18 9.692736E+15 4.012800E+15 2.796800E+08
6.000 474.00000 253.100 1.356432E+19 8.907348E+11 2.836130E+18 1.804810E+16 4.478100E+15 3.121100E+08
5.000 541.00000 260.100 1.506498E+19 8.034624E+11 3.151720E+18 3.344744E+16 4.976400E+15 3.468400E+08
4.000 616.00000 265.500 1.680459E+19 7.531996E+11 3.515380E+18 5.685160E+16 5.550600E+15 3.868600E+08
3.000 700.00000 270.900 1.871548E+19 7.280351E+11 3.914570E+18 9.027860E+16 6.180900E+15 4.307900E+08
2.000 792.90002 276.300 2.078497E+19 7.028321E+11 4.347200E+18 1.404000E+17 6.864000E+15 4.784000E+08
1.000 896.00000 281.700 2.303737E+19 6.776700E+11 4.817450E+18 2.005581E+17 7.606500E+15 5.301500E+08
0.000 1010.00000 287.200 2.547116E+19 6.148188E+11 5.327410E+18 3.043506E+17 8.411700E+15 5.862700E+08
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Table C.6. AFGL Atmospheric Constituent Profiles, Subarctic Winter (AFGL-TR-86-0110).

z(km) p(mb) T (K) air(cm�3) O3(cm�3) O2(cm�3) H2O(cm�3) CO2(cm�3) NO2(cm�3)

z(km) p(mb) T(K) air(cm-3) o3(cm-3) o2(cm-3) h2o(cm-3) co2(cm-3) no2(cm-3)
100.000 0.00042 218.500 1.402170E+13 5.612000E+06 2.244800E+12 5.612000E+06 2.735850E+09 2.385100E+03
95.000 0.00091 211.000 3.113413E+13 2.492800E+07 5.608800E+12 1.682640E+07 8.413200E+09 5.484160E+03
90.000 0.00202 202.300 7.239309E+13 5.795200E+07 1.376360E+13 6.157400E+07 2.245640E+10 1.325652E+04
85.000 0.00450 213.100 1.529470E+14 1.148250E+08 3.062000E+13 2.036230E+08 4.899200E+10 2.939520E+04
80.000 0.00966 223.900 3.124891E+14 4.065100E+07 6.535430E+13 6.254000E+08 1.025656E+11 6.316540E+04
75.000 0.02000 234.700 6.172040E+14 2.038080E+08 1.290784E+14 1.667520E+09 2.038080E+11 1.327840E+05
70.000 0.04000 245.400 1.180585E+15 5.905000E+08 2.468290E+14 3.897300E+09 3.897300E+11 2.728110E+05
65.000 0.07900 248.400 2.303495E+15 1.498250E+09 4.817450E+14 9.220000E+09 7.606500E+11 5.831650E+05
60.000 0.15500 250.900 4.474483E+15 4.254100E+09 9.359020E+14 2.015100E+10 1.477740E+12 1.276230E+06
55.000 0.29900 259.100 8.358255E+15 1.338240E+10 1.748076E+15 4.056540E+10 2.760120E+12 2.835396E+06
50.000 0.57190 259.300 1.597458E+16 4.157400E+10 3.341910E+15 7.915050E+10 5.276700E+12 7.083570E+06
47.500 0.79000 253.200 2.259827E+16 6.783000E+10 4.725491E+15 1.130500E+11 7.461300E+12 1.505826E+07
45.000 1.11300 247.000 3.263698E+16 1.339060E+11 6.825940E+15 1.633000E+11 1.077780E+13 3.755900E+07
42.500 1.57000 240.800 4.722316E+16 2.410260E+11 9.877339E+15 2.363000E+11 1.559580E+13 1.025542E+08
40.000 2.24300 234.700 6.921943E+16 4.086930E+11 1.447743E+16 3.463500E+11 2.285910E+13 2.791581E+08
37.500 3.23000 228.500 1.023831E+17 6.406250E+11 2.142250E+16 5.125000E+11 3.382500E+13 6.416500E+08
35.000 4.70100 222.300 1.531661E+17 9.504599E+11 3.203970E+16 7.664999E+11 5.058900E+13 1.116024E+09
32.500 6.91000 218.500 2.290543E+17 1.352280E+12 4.790280E+16 1.146000E+12 7.563600E+13 1.652532E+09
30.000 10.20000 216.000 3.420253E+17 1.848420E+12 7.154070E+16 1.711500E+12 1.129590E+14 2.108568E+09
27.500 15.13000 213.600 5.130379E+17 2.515660E+12 1.073006E+17 2.567000E+12 1.694220E+14 2.469454E+09
25.000 22.56000 211.200 7.736723E+17 3.638740E+12 1.618078E+17 3.871000E+12 2.554860E+14 2.895508E+09
24.000 26.49000 211.800 9.058741E+17 4.169900E+12 1.894585E+17 4.532500E+12 2.991450E+14 2.773890E+09
23.000 31.09000 212.400 1.060176E+18 4.774500E+12 2.217490E+17 5.251950E+12 3.501300E+14 2.737380E+09
22.000 36.47000 213.000 1.240132E+18 5.212200E+12 2.593690E+17 6.080900E+12 4.095300E+14 2.680560E+09
21.000 42.77000 213.600 1.450273E+18 5.804000E+12 3.032590E+17 7.037350E+12 4.788300E+14 2.553760E+09
20.000 50.14000 214.200 1.695418E+18 6.278900E+12 3.546730E+17 8.145601E+12 5.600100E+14 2.358830E+09
19.000 58.75000 214.800 1.981004E+18 6.144200E+12 4.142380E+17 9.414500E+12 6.540600E+14 2.100920E+09
18.000 68.82000 215.400 2.314093E+18 5.674200E+12 4.840440E+17 1.088520E+13 7.642800E+14 1.785636E+09
17.000 80.58000 216.000 2.702000E+18 5.137600E+12 5.651360E+17 1.257360E+13 8.923200E+14 1.403376E+09
16.000 94.31000 216.600 3.153632E+18 4.734000E+12 6.596040E+17 1.451760E+13 1.041480E+15 1.006764E+09
15.000 110.30000 217.200 3.678134E+18 4.417200E+12 7.693290E+17 1.674855E+13 1.214730E+15 6.294510E+08
14.000 129.10001 217.200 4.305051E+18 3.877200E+12 9.003720E+17 1.938600E+13 1.421640E+15 3.222384E+08
13.000 151.00000 217.200 5.035342E+18 3.275350E+12 1.053151E+18 2.242355E+13 1.662870E+15 2.242355E+08
12.000 176.60001 217.200 5.889016E+18 2.357200E+12 1.231637E+18 3.535800E+13 1.944690E+15 1.856295E+08
11.000 206.70000 217.200 6.892749E+18 2.414300E+12 1.441682E+18 6.898000E+13 2.276340E+15 1.807276E+08
10.000 241.80000 217.200 8.063216E+18 2.420700E+12 1.686421E+18 1.613800E+14 2.662770E+15 1.920422E+08
9.000 282.89999 217.200 9.433762E+18 1.982400E+12 1.972960E+18 2.809344E+14 3.115200E+15 2.190080E+08
8.000 330.79999 220.600 1.086105E+19 1.130480E+12 2.271830E+18 3.678408E+14 3.587100E+15 2.500100E+08
7.000 385.29999 227.300 1.227754E+19 8.912709E+11 2.568610E+18 1.806630E+15 4.055700E+15 2.826700E+08
6.000 446.70001 234.100 1.382058E+19 6.148818E+11 2.890470E+18 3.276327E+15 4.563900E+15 3.180900E+08
5.000 515.79999 240.900 1.550802E+19 5.899152E+11 3.243680E+18 6.687568E+15 5.121600E+15 3.569600E+08
4.000 593.20001 247.700 1.734551E+19 5.647208E+11 3.628240E+18 1.371093E+16 5.728800E+15 3.992800E+08
3.000 679.79999 252.700 1.948443E+19 5.395650E+11 4.075500E+18 2.273700E+16 6.435000E+15 4.485000E+08
2.000 777.50000 255.900 2.200604E+19 5.143872E+11 4.602180E+18 3.142254E+16 7.266600E+15 5.064600E+08
1.000 887.79999 259.100 2.481759E+19 5.146847E+11 5.191560E+18 4.011660E+16 8.197200E+15 5.713200E+08
0.000 1013.00000 257.200 2.852662E+19 5.144710E+11 5.966950E+18 4.011275E+16 9.421500E+15 6.566500E+08


