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1 Introduction
Reliable, accurate, and efficient modeling of electromagnetic radiation transport in
turbid media has important applications in studies of Earth’s climate by remote
sensing. For example, such modeling is needed to develop forward-inverse methods
used to quantify types and concentrations of aerosol and cloud particles in the atmo-
sphere, as well as dissolved organic and particulate biogeochemical matter in lakes,
rivers, coastal, and open-ocean waters, and to simulate the performance of remote
sensing detectors deployed on aircraft, balloons, and satellites. Accurate radiative
transfer modeling is also required to compute irradiances and scalar irradiances that
are used to compute warming/cooling and photolysis rates in the atmosphere, solar
energy disposition in the cryosphere including frozen fresh water (lakes and rivers),
sea ice, and glaciers, as well as primary production rates in the water.

Accurate, efficient, and easy-to-use radiative transfer (RT) simulation tools, such
as AccuRT, are important because they (i) can be used to generate irradiances at
any user-specified location in the atmosphere-water system as well as radiances at
any user-specified location and direction for user-specified inherent optical properties
(IOPs); (ii) will provide accurate results for given input parameters; (iii) will prevent
time being wasted on developing tools that in comparison with AccuRT may be
less reliable, less general, and more prone to produce erroneous results that may
be difficult to spot; (iv) will lead to significant progress in research areas such as
remote sensing algorithm development, climate research, and other atmospheric and
hydrologic applications.

Currently available tools for atmospheric applications include: (i) SBDART,
Streamer, and LibRadtran, which apply to the atmosphere only; there is no cou-
pling to the underlying surface including solid (snow/ice) and liquid water – surface
input is a boundary condition; (ii) Hydrolight, which applies to ocean (natural wa-
ters) only, provides water-leaving radiance, but no top-of-the-atmosphere (TOA)

2



radiance; there is no coupling to the atmosphere – atmospheric input is a bound-
ary condition. Therefore, AccuRT was designed to provide a reliable, well-tested,
robust, versatile, and easy-to-use RT tool for coupled systems. This document de-
scribes theAccuRT tool for RT simulations in atmosphere-water systems consisting
of two slabs with different refractive indices. Note that in this document the word
“water” is frequently used generically to describe the solid phase (i.e. snow and ice)
as well as the liquid phase. The computer code AccuRT accounts for reflection
and transmission at the interface between the two slabs, and allows for each slab to
be divided into a number of layers sufficiently large to resolve the variation in the
inherent optical properties (IOPs) with depth in each slab.

1.1 Notation
Radiative transfer practitioners in the atmosphere, water (ocean) and cryosphere
(snow/ice) communities use different nomenclatures and terminologies. This sit-
uation can be confusing and frustrating to students and researchers alike who are
addressing interdisciplinary problems in environmental optics where radiative trans-
fer in both the atmosphere and the underlying surface are important. To alleviate
this state of affairs we will adopt the notation of Stamnes and Stamnes (2015) [1]
throughout this document (z is the vertical position in the plane-parallel medium
under consideration, Θ is the scattering angle, and φ is the azimuth angle):

1. the absorption coefficient will be denoted by the Greek letter α(z) in units of
[m−1];

2. the scattering coefficient will be denoted by the Greek letter β(z) in units of
[m−1];

3. the extinction coefficient will be denoted by the Greek letter γ(z) = α(z)+β(z)
in units of [m−1];

4. the corresponding cross sections in units of [m2] will be denoted by a subscript
n: αn(z), βn(z), γn(z);

5. the volume scattering function will be denoted by vsf(z, cos Θ, φ) in units of
[m−1sr−1];

6. the single-scattering albedo will be denoted by $(z) = β(z)/(α(z) + β(z)).
The corresponding notation used in the Ocean Optics community is a instead of α,
b instead of β, and c instead of γ. Since α, β, and γ are the 3 first letters in the
greek alphabet it should be easy to recall the connection with a, b, and c.

2 User Interface – Input/Output
The AccuRT tool is user-friendly so that the user only needs to specify the physical
input required and the output desired.
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2.1 Input parameters
The user must specify the physical properties of each of the two slabs that consti-
tute the coupled system, the radiative energy input at the top of the upper slab
(top-of-the-atmosphere, TOA), and the boundary conditions at the bottom of the
lower slab (water bottom). Each of the two slabs is assumed to be a plane-parallel,
vertically stratified structure in which the scattering and absorption properties, i.e.
the inherent optical properties (IOPs) defined in Section 3 below, are allowed to
vary only in the vertical direction, denoted by z. In order to resolve changes in
the IOPs as a function of vertical position z, each slab is divided into a number
of adjacent horizontal layers such that the IOPs are constant within each layer,
but allowed to vary from one layer to the next. The atmosphere-water interface is
assumed to be flat in the present version of AccuRT. A wind-roughened interface
will be included in an upcoming version.

To facilitate the specification of IOPs in the atmosphere-water system, AccuRT
uses the concept of materials, which are radiatively-significant constituents in the
atmosphere-water system. Examples of currently available materials are aerosols,
earth_atmospheric_gases, clouds, snow, ice, water_impurity_ccrr and
pure_water. These materials automatically account for the wavelength depen-
dence of the IOPs so that all the user needs to do is to decide upfront – in the main
configuration file – which of these materials to include in each horizontal layer.

The user must specify:

1. beam irradiance in [W m−2] – a default solar spectrum is available (main
configuration file);

2. wavelength range, # of center wavelengths and widths in [nm] – a discrete set
of wavelengths is allowed (main configuration file);

3. solar zenith angle(s) in degrees (main configuration file);

4. the number of “discrete ordinate streams” used to solve the radiative transfer
equation (RTE) as described in Section 4 (main configuration file);

5. materials used (main configuration file).

Specifications required for the upper slab:

1. layer boundaries, ground-level altitude (sea-level is default) defined in Sec-
tion 3.3.3 (main configuration file);

2. atmospheric type (atmNo, defined in Section 3.3.3) (earth_atmospheric_gases
configuration file);

3. aerosol particle types (a bi-modal log-normal volume distribution is allowed)
for each layer defined in Section 3.3.4 (aerosols configuration file);

4. cloud particles as described in Section 3.3.5 (clouds configuration file);
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5. snow particles as described in Section 3.4 (snow configuration file);

Specifications required for the lower slab:

1. layer boundaries (main configuration file);

2. ice material as described in Section 3.4 (ice configuration file);

3. refractive index as a function of wavelength in the lower slab (water) – set to
“one” in the upper slab (atmosphere) (pure_water configuration file);

4. water impurities (water_impurity_ccrr configuration file);

5. water bottom albedo and emissivity (main configuration file).

2.2 Spectral input and resolution
The input solar spectrum at the TOA is ATLAS3 (shifted to air wavelengths) for
200 < λ < 407 nm, ATLAS2 for 407.8 < λ < 419.9 nm, and MODTRAN (v3.5) for
419.9 < λ < 800 nm. Between 200 and 800 nm the solar irradiance has a spectral
resolution of 0.05 nm. For λ > 800 nm (http://rredc.nrel.gov/solar/spectra/
am1.5/ASTMG173/ASTMG173.html) the ASTM G173-03 spectrum is adopted with a
spectral resolution of 1 nm between 800 and 1,700 nm and 5 nm between 1,700 and
4,000 nm.

2.3 Output parameters
Once the input parameters specified above have been defined, the AccuRT code
will solve the RTE as described in Section 4, and provide two types of output:

• irradiances and mean intensities (scalar irradiances) at a set of user-specified
vertical positions in the coupled system;

• radiances in a number of user-specified directions at a set of user-specified
vertical positions in the coupled system.

Thus, the user specifies:

1. the vertical positions at which output is desired (main configuration file);

2. the type of output (main configuration file):

• hemispherical and scalar irradiances only;
• radiances only;
• hemispherical and scalar irradiances as well as radiances;

3. the directions in which radiances are requested (main configuration file).
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3 Inherent Optical Properties (IOPs)

3.1 General Definitions
The optical properties of a medium can be categorized as inherent or apparent.
An inherent optical property (IOP) depends only on the medium itself, and not on
the ambient light field within the medium [2]. An apparent optical property (AOP)
depends also on the illumination, i.e. on light propagating in particular directions
inside and outside the medium∗.

The absorption coefficient α(z) and the scattering coefficient β(z) are important
IOPs, defined as [3]

α(z) = 1
I i

(
dIα

dz

)
[m−1] (1)

β(z) = 1
I i

(
dIβ

dz

)
[m−1]. (2)

Here I i is the incident radiance entering a volume element dV = dAdz of the
medium of cross sectional area dA and thickness dz, and dIα > 0 and dIβ > 0
are respectively the radiances that are absorbed and scattered in all directions as
the light propagates the distance dz, which is the thickness of the volume element
dV along the direction of the incident light. If the distance dz is measured in [m],
the unit for the absorption or scattering coefficients defined in Eq. (1) and Eq. (2)
becomes [m−1].

The angular distribution of the scattered light is given in terms of the volume
scattering function (vsf), which is defined as

vsf(z, Ω̂′, Ω̂) = 1
I i
d2Iβ

dz dω
= 1
I i
d

dz

(
dIβ

dω

)
[m−1 sr−1]. (3)

Here Ω̂′ and Ω̂ are unit vectors, and d2Iβ is the radiance scattered from an incident
direction Ω̂′ into a cone of solid angle dω around the direction Ω̂ as the light prop-
agates the distance dz along the direction Ω̂′. The plane spanned by Ω̂′ and Ω̂ is
called the scattering plane, and the scattering angle Θ is given by cos Θ = Ω̂′ · Ω̂.
Integration of Eq. (3) over all scattering directions yields

β(z) = 1
I i
d

dz

∫
4π

(
dIβ

dω

)
dω = 1

I i

(
dIβ

dz

)

=
∫

4π
vsf(z, Ω̂′, Ω̂) dω =

∫ 2π

0

∫ π

0
vsf(z, cos Θ, φ) sin Θ dΘ dφ [m−1] (4)

∗Apparent optical properties (1) depend both on the medium (the IOPs) and on the geometric
(directional) structure of the radiance distribution, and (2) display enough regular features and
stability to be useful descriptors of a water body [2]. Hence, a radiance or an irradiance would
satisfy only the first part of the definition, while a radiance or irradiance reflectance, obtained by
division of the radiance or the upward irradiance by the downward irradiance, would satisfy also
the second part of the definition.
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where Θ and φ are respectively the polar angle and the azimuth angle in a spherical
coordinate system in which the polar axis is along Ω̂′. As indicated in Eq. (4), the vsf
[vsf(z, cos Θ, φ)] is generally a function of both Θ and φ, but for randomly oriented
scatterers one may assume that the scattering potential is spherically symmetric
implying that there is no azimuthal dependence, so that vsf = vsf(z, cos Θ). Then
one finds, with x = cos Θ

β(z) = 2π
∫ π

0
vsf(z, cos Θ) sin Θ dΘ = 2π

∫ 1

−1
vsf(z, x) dx [m−1]. (5)

A normalized vsf, denoted by p(z, cos Θ) and referred to hereafter as the scattering
phase function, may be defined as follows

p(z, cos Θ) = 4π vsf(z, cos Θ)∫
4π vsf(z, cos Θ) dω = vsf(z, cos Θ)

1
2
∫ 1
−1 vsf(z, cos Θ) d(cos Θ)

, (6)

so that
1

4π

∫
4π
p(z, cos Θ) dω = 1

2

∫ 1

−1
p(z, x) dx = 1. (7)

The scattering phase function has the following physical interpretation. Given that
a scattering event has occurred, p(z, cos Θ) dω/4π is the probability that a light
beam traveling in the direction Ω̂′ is scattered into a cone of solid angle dω around
the direction Ω̂.

The scattering phase function [p(z, cos Θ)] describes the angular distribution of
the scattered light, while the scattering coefficient β(z) describes the total amount
of scattered light integrated over all scattering directions. A convenient measure
of the “shape” of the scattering phase function is the average over all scattering
directions (weighted by p(z, cos Θ)) of the cosine of the scattering angle Θ, i.e.

g(z) = 〈cos Θ〉 = 1
4π

∫
4π
p(z, cos Θ) cos Θ dω

= 1
2

∫ π

0
p(z, cos Θ) cos Θ sin Θ dΘ = 1

2

∫ 1

−1
p(z, cos Θ) cos Θ d(cos Θ). (8)

The average cosine g(z) is called the asymmetry factor of the scattering phase func-
tion. Equation (8) yields complete forward scattering if g = 1, complete backward
scattering if g = −1, and g = 0 if p(z, cos Θ) is symmetric about Θ = 90◦. Thus,
isotropic scattering also gives g = 0. Similarly, the probability of scattering into the
backward hemisphere, is given by the backscattering ratio (or backscatter fraction)
b, defined as

b(z) = 1
2

∫ π

π/2
p(z, cos Θ) sin Θ dΘ = 1

2

∫ 1

0
p(z,−x) dx. (9)

The scattering phase function p(z, cos Θ) depends on the refractive index as well
as the size and shape of the scattering particles, and will thus depend on the physical
situation and the practical application of interest. Two different scattering phase
functions, which are useful in practical applications, are discussed below.
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3.2 Types of Scattering Phase Functions

3.2.1 Rayleigh Scattering Phase Function

When the size d of the scatterers is small compared with the wavelength of light
(d < 1

10λ), the Rayleigh scattering phase function gives a good description of the
angular distribution of the scattered light. The Rayleigh scattering phase function
for unpolarized light is given by

p(cos Θ) = 3
3 + f

(1 + f cos2 Θ) (10)

where the parameter f = 1−ρ
1+ρ , and ρ is the depolarization ratio, attributed to the

anisotropy of the scatterer (molecule) [4, 5, 6, 7]. Originally this scattering phase
function was derived for light radiated by an electric dipole [8]. Since the Rayleigh
scattering phase function is symmetric about Θ = 90◦, the asymmetry factor is g =
0. If the Rayleigh scattering phase function is expanded in Legendre polynomials,
the expansion coefficients χ` [see Eq. (85) below] are simply given by χ0 = 1, χ1 = 0,
χ2 = 2f

5(3+f) , and χ` = 0 for ` > 2.
Using ρ = 0.04 for air, we get f = 1−ρ

1+ρ = 0.923, and using ρ = 0.09 for water, we
get f = 1−ρ

1+ρ = 0.835. Hence, for Rayleigh scattering the phase function moments
become:

• χ0 = 1, χ1 = 0, χ2 = 0.0941 and χ` = 0 for ` > 2 for air, and

• χ0 = 1, χ1 = 0, χ2 = 0.0871, and χ` = 0 for ` > 2 for water.

3.2.2 Henyey-Greenstein Scattering Phase Function

In 1941 Henyey and Greenstein [9] proposed the one-parameter scattering phase
function given by [oppressing the dependence on the position z]

p(cos Θ) = 1− g2

(1 + g2 − 2g cos Θ)3/2 (11)

where the parameter g is the asymmetry factor defined in Eq. (8). The Henyey–
Greenstein (HG) scattering phase function has no physical basis, but is very useful
for describing a highly scattering medium, such as turbid water or sea ice, for which
the actual scattering phase function is unknown. The HG scattering phase function
is convenient for Monte Carlo simulations and other numerical calculations because
it has an analytical form. In deterministic plane-parallel RT models it is also very
convenient because the addition theorem of spherical harmonics can be used to
expand the scattering phase function in a series of Legendre polynomials [1, 3], as
reviewed in Section 4.1.1. For the HG scattering phase function, the expansion
coefficients χ` in this series [see Eq. (85) below] are simply given by χ` = g`, where
g = χ1 is the asymmetry factor defined in Eq. (8). The HG scattering phase function
is useful for scatterers with sizes comparable to or larger than the wavelength of
light.
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3.3 Atmosphere
The stratified vertical structure of the bulk properties of an atmosphere is a conse-
quence of hydrostatic balance. For an atmosphere in a state of rest, the pressure p(z)
must support the weight of the fluid above it. By equating pressure forces and grav-
itational forces, one finds that dp(z) = −g ρ(z) dz where g is the acceleration due
to gravity (assumed to be constant), ρ(z) is the air density, and dp is the differential
change in pressure over the small height interval dz. Combining dp(z) = −gρ(z)
with (i) the ideal gas law p(z) = n(z)kT (z), where k is Boltzmann’s constant and
n(z) = N/V (z) with V being the volume of a gas at temperature T containing N
molecules, and (ii) ρ(z) = M̄n(z), where M̄ is the mean molecular weight, one finds
dp(z)
p(z) = − dz

H(z) , where H(z) = kT (z)/M̄g is the atmospheric scale height. Upon
integration, one finds

p(z) = p(z0) exp
[
−
∫ z

z0
dz′/H(z′)

]
. (12)

The ideal gas law allows us to write similar expressions for the density ρ(z) and the
concentration n(z). Clearly, from a knowledge of the surface pressure p(z0) and the
variation of the scale height H(z) with height z, Eq. (12) allows us to determine the
bulk gas properties at any height. Equation (12) applies to well-mixed gases, but
not to short-lived species such as ozone, which is chemically created and destroyed,
or water, which undergoes phase changes on short time scales. Assuming that g, T ,
and M̄ (and hence H) are constants, we may integrate Eq. (12) to obtain:

p(z)
p(z0) ≈ e−(z−z0)/H ,

n(z)
n(z0) ≈ e−(z−z0)/H ,

ρ(z)
ρ(z0) ≈ e−(z−z0)/H . (13)

Thus, the scale height H is an e-fold height for density.
Going back to the ideal gas law: pV = NkT ⇔ pDA = NkT , where A is the

area of a vertical column, and D its height, we may define an equivalent depth
as:

D ≡ NkT
p

. (14)

where N = N/A is the column amount [molecules m−2].

3.3.1 Gases in the Earth’s atmosphere

The total number of air molecules in a 1 m2 wide vertical column extending from sea
level to the top of the atmosphere is about 2.15×1029. In comparison, the total col-
umn amount of ozone in the same vertical column is about 1.0×1023. The equivalent
depth in millicentimeters (10−5 m) that a layer of ozone gas in the atmosphere would
occupy if it were compressed to standard pressure (1,013 [hP]; 1 hP (hectoPascal) =
1 N m−2) at standard temperature (0 ◦C) is called the Dobson unit (DU). Thus, one
DU refers to a layer of ozone that would be 10 µm = 10−5 m thick under standard
temperature and pressure. The conversion is 1 DU = 2.69×1020 molecules m−2. The
1976 US Standard Atmosphere contains about 348 DU of ozone gas [10].
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AccuRT has a material called earth_atmospheric_gases that allows the
user to choose between the six model atmospheres described by Anderson et al.
(1986) [10]. These model atmospheres are included in a band model based on
LowTran/ModTran, and they are tabulated in Appendix C in Thomas and Stamnes
(1999) [3] as follows:
Table C1: AFGL atmospheric constituent profiles, US Standard atmosphere 1976
Table C2: AFGL atmopsheric constituent profiles, tropical
Table C3: AFGL atmospheric constituent profiles, midlatitude summer
Table C4: AFGL atmospheric constituent profiles, midlatitude winter
Table C5: AFGL atmospheric constituent profiles, subarctic summer
Table C6: AFGL atmospheric constituent profiles, subarctic winter.

These atmospheric models are based on the best data available when they were
published [10], and they contain profiles of temperature, pressure and concentrations
of several gaseous constituents including H2O, CO2, O3, CH4, and NO2. These five
species are the most important infrared-significant gases in the Earth’s atmosphere.

The clear atmosphere (no clouds or aerosols) molecular scattering and gaseous
absorption coefficients as a function of wavelength and level in the atmosphere are
generated as specified below. Corresponding scattering and absorption coefficients
for aerosol particles are also given below.

3.3.2 Vertical Structure

The atmosphere is divided into a sufficient number of layers to resolve the vertical
variation in the IOPs. A default vertical structure is provided in the main configu-
ration file.

3.3.3 Molecular IOPs

The earth_atmospheric_gases material
The earth_atmospheric_gases material provides specification of absorption co-
efficients α(λ) (or cross sections αn(λ)) for the radiatively-significant atmospheric
gases including ozone and water vapor. Currently there are two options: the user
may select either the gasIOP material or the Air material, both of which are
defined below. A specification with moderate spectral resolution based on “fixed-
wavenumber” sampling of 1 cm−1 (and a nominal resolution of 2 cm−1), is suffi-
cient for many purposes, because the radiative transfer process is assumed to be
“quasi-monochromatic” within this spectral band [3]. For wavenumbers larger than
17, 905 cm−1 (λ < 558.5 nm), we use a lower spectral resolution of 20 cm−1, for which
the radiative transfer process is assumed to be “quasi-monochromatic” [3].
The gasIOP material for spectral absorption and scattering
The material called gasIOP provides computation of absorption coefficients for
gases based on the LowTran/ModTran band model. The gasIOP material also
provides computation of molecular (Rayleigh) scattering coefficients. The user only
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needs to specify the spectral interval of interest and the spectral resolution in [nm]
or a set of discrete wavelength bands as discussed above, in the main configuration
file.
The Air material for spectral absorption and scattering
Alternatively, for wavelengths in the ultraviolet and visible spectral ranges, one may
use number density profiles of gas absorption cross sections to compute absorption
coefficients, and the total amount of molecules to compute Rayleigh (molecular)
scattering coefficients. In the current version of the Air material, which includes
only ozone absorption in addition to molecular scattering, the atmosphere is essen-
tially transparent for wavelengths longer than 900 nm, where Rayleigh scattering
and ozone absorption is negligible. The Air option is useful for applications in
which only ozone absorption is deemed to important.

3.3.4 Aerosol IOPs (see aerosols material)

If we know the size distribution and the refractive index of the aerosol particles, we
may use available aerosol models to generate aerosol IOPs. One option is to use the
aerosol models employed in the Sea-viewing Wide Field-of-view Sensor (SeaWiFS)
Database Analysis System (SeaDAS), and described by Ahmad et al. (2010) [11].
Another option is to use the OPAC models described by Hess et al. (1998) [12].
For atmospheric correction of ocean color imagery, Gordon and co-workers [13, 14]
selected 16 candidate aerosol models consisting of several types of particles, each
having its own characteristic chemical composition, size distribution, and hygro-
scopicity.

It is customary to assume a log-normal distribution of aerosol sizes as proposed
by Davies (1974) [15]. Based on AERONET data (Holben et al., 1998, 2001 [16, 17]),
Ahmad et al. (2010) [11] adopted a bi-modal log-normal volume size distribution:

v(r) = dV (r)
dr

= 1
r

dV (ln r)
d ln r =

2∑
i=1

Vi√
2πσi

1
r

exp
−

 ln r − ln rvi√
2σi

2 (15)

where the subscript i represents the mode, Vi is the total volume of particles with
mode i, rvi is the mode radius, also called the volume geometric mean radius, and
σi is the geometric standard deviation. Note that since the numerator in the expo-
nential of Eq. (15), ln(r/rvi), is dimensionless, so is σi. Since∫ ∞

0

dr√
2πσ

1
r

exp
−

 ln r − ln rv√
2σ

2 = 1

integration over all sizes for both modes, yields:∫ ∞
0

v(r) dr = V1 + V2 = V.

In terms of the number density, Eq. (15) becomes

n(r) = dN(r)
dr

= 1
r

dN(r)
d(ln r) =

2∑
i=1

Ni√
2πσi

1
r

exp
−

 ln r − ln rni√
2σi

2 (16)
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where the number of particles Ni and the mean geometric (or mode) radius rni are
related to Vi and rvi as follows

ln rni = ln rvi − 3σ2
i (17)

Ni = Vi
4
3πr

3
ni

exp(−4.5σ2
i ), (18)

and integration over all sizes for both modes, yields:∫ ∞
0

n(r) dr = N1 +N2 = N.

If we use the subscript i = f to denote the fine mode, and the subscript i = c to
denote the coarse mode, we have V = Vf + Vc, and the volume fraction of fine mode
particles becomes fv = Vf/V.

A change in the relative humidity (RH) will affect the size of the particle as well
as the refractive index. The particle radius can be determined as a function of RH
from the wet-to-dry mass ratio:

r(aw) = r0

[
1 + ρ

mw(aw)
m0

]1/3
(19)

where the water activity aw of a soluble aerosol at radius r [µm] can be expressed
as

aw = RH exp
[−2σVm
RwT

1
r(aw)

]
. (20)

Here r0 is the dry particle radius (RH = 0), ρ is the particle density relative to that
of water, mw(aw) is the mass of condensed water, m0 is the dry particle mass (RH =
0), σ is the surface tension on the wet surface, Vm is the specific volume of water, Rw
is the gas constant for water vapor, and T is the absolute temperature [K] (Hänel,
1976 [18]). Similarly, the change in refractive index with RH can be determined
from (Hänel, 1976 [18])

m̃c = m̃c,w + (m̃c,0 − m̃c,w)
[
r0

rRH

]3
(21)

where m̃c,w and m̃c,0 are the complex refractive indices of water and dry aerosols,
respectively, and r0 and rRH are the radii of the aerosols in the dry state and at
the given RH, respectively. From these formulas we note that the magnitude of the
particle growth and the change of refractive index with increasing RH depend on the
size r0 of the dry aerosol but also on the type of aerosol through the water uptake
[the ratio mw(aw)/m0 in Eq. (19)] (Hänel, 1976 [18], Shettle and Fenn, 1979 [19],
Yan et al., 2002 [20]).
Relationship between effective radius and mode radius
The particle size distribution may also be characterized by an effective radius

reff =
∫ rmax
rmin n(r)r3 dr∫ rmax
rmin n(r)r2 dr

(22)
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and an effective variance

veff =
∫ rmax
rmin (r − reff)2n(r)r2 dr

r2
eff
∫ rmax
rmin n(r)r2 dr

(23)

where r2
eff is included in the denominator of Eq. (23) to make veff dimensionless

(Hansen and Travis, 1974 [21]). The effective radius, reff, can be used to describe
the IOPs in an approximate manner as will be discussed below for cloud as well as
snow/ice materials. For a single mode, the lognormal size distribution is given by
[see Eq. (16)]

n(r) = dN(r)
dr

= N√
2πσ

1
r

exp
−

 ln r − ln rn√
2σ

2
where rn is the mode radius, n(r) is the number density or PSD in units of [m−3 ·m−1]
and N =

∫∞
0 n(r) dr [m−3] is the total number of particles per unit volume since

∫ ∞
0

dr√
2πσ

1
r

exp
−

 ln r − ln rn√
2σ

2 = 1. (24)

With the change of variable x = ln(r/rn)√
2σ , Eq. (24) becomes

1√
π

∫ +∞

−∞
exp(−x2) dx = 1. (25)

To determine how the effective radius reff is related to the mode radius rn, we make
the change of integration variable x = 1√

2σ ln(r/rn) in Eq. (22), so that dx = 1√
2σ

dr
r

and exp[
√

2σx] = r
rn
. Further we have

xmax = 1√
2σ

ln(rmax/rn)→ +∞ when rmax → +∞

xmin = 1√
2σ

ln(rmin/rn)→ −∞ when rmin → 0.

Thus, Eq. (22) becomes

reff = rn

∫+∞
−∞ exp[−(x2 − 3

√
2σx)]dx∫+∞

−∞ exp[−(x2 − 2
√

2σx)]dx
(26)

which on completing the square in each of the exponents and making use of Eq.
(25) leads to

reff = rn exp[2.5σ2]. (27)
Proceeding in a similar manner, one finds that the effective variance veff is related

to the variance σ2 as follows [21]:

veff = exp [σ2]− 1. (28)
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IOPs of a polydispersion – Integrating over the size distribution
Assuming that the aerosols consist of spherical particles and that we have computed
the IOPs for a particle with specified refractive index and a given size, we may
compute the absorption and scattering coefficients and the scattering phase function
for a polydispersion of particles by integrating over the size distribution:

αp(λ) =
∫ rmax

rmin
πr2Q′α(r)n(r) dr (29)

βp(λ) =
∫ rmax

rmin
πr2Q′β(r)n(r) dr (30)

pp(λ,Θ) =
∫ rmax
rmin pp(λ,Θ, r)n(r) dr∫ rmax

rmin n(r) dr (31)

where

• the absorption or scattering “efficiency”, respectivelyQ′α(r) orQ′β(r), is defined
as the ratio of the absorption or scattering cross section for a spherical particle
of radius r to the geometrical cross section πr2,

• n(r) is the particle size distribution, and r is the radius of each particle.

aerosols material
The aerosols material provides a user-friendly way to specify the aerosol properties
as a function of wavelength. The user specifies the location of the aerosols as well as
the refractive index of the two modes, the effective radii, and the variances; the rest
is taken care of automatically with linear interpolation between wavelengths. A Mie
code ([22, 23]) is used to compute the IOPs of aerosol particles [Q′α(r), Q′β(r), and
pp(λ,Θ, r) in Eqs. (29)–(31)], and a numerical integration is employed to integrate
over the log-normal size distributions to obtain αp(λ), βp(λ), and pp(λ,Θ). Finally,
the moment-fitting algorithm of Hu et al. (2000) [24] is used to compute Legendre
expansion coefficients [see Eq. (85)] χ`,Mie for the Mie scattering phase function.

In the current version of the aerosols material, Eq. (15) is used to specify the
bi-modal log-normal volume size distribution, whereas Eqs. (19)–(21) are not used.
Thus, the user must specify the fine mode volume fraction fv = Vf/V , where V =
Vf + Vc, the volume mode radii rvf and rvc as well as the corresponding standard
deviations σf and σc in addition to the refractive index of the particles relative to
air (assumed to be the same for both modes).

In analogy to the liquid water content defined in Eq. (34) below, we may intro-
duce the aerosol mass content (AMC) for each mode defined as

AMC = ρa

∫ rmax

rmin

(4π
3

)
r3n(r) dr ≡ ρafV [kg ·m−3] (32)

where n(r) is the aerosol size distribution [m−3 ·m−1], ρa is the bulk aerosol density
[kg ·m−3], and fV is the aerosol volume fraction (not to be confused with the fine
mode volume fraction, fv) given by:

fV ≡
∫ rmax

rmin

(4π
3

)
r3n(r) dr = AMC/ρa (dimensionless). (33)
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Typical values of atmospheric aerosol densities are ρa ≈ 1 g · cm−3 = 1×106 g ·m−3.
Hence, an AMC value of 10−6 g ·m−3 would yield fV = 10−12.

3.3.5 Cloud IOPs (see clouds material)

Clouds consist of liquid water droplets or ice (frozen water) particles. The liquid
water droplets making up warm clouds can be assumed to be spherical in shape,
whereas ice crystals have a variety of non-spherical shapes. If we assume for sim-
plicity that all cloud particles consist of spherical water droplets or spherical ice
particles, we can use Mie theory to compute their IOPs because their refractive
index is known. Hence, we may use Eqs. (29)–(31) to compute αp(λ), βp(λ), and
pp(λ,Θ) in much the same manner as we did for aerosols.

The real part of the refractive index of pure water needed in the Mie computa-
tions is adopted from Segelstein (1981) [25], while the imaginary part is calculated
from the absorption coefficient αw(λ) obtained from data published by Smith and
Baker (1981) [26], Sogandares and Fry (1997) [27], Pope and Fry (1997) [28] for
wavelengths between 340 and 700 nm, and by Kou et al. (1993) [29] for wavelengths
between 720 and 900 nm.

It is customary to introduce the liquid water content (LWC) defined as

LWC ≡ ρw

∫ rmax

rmin

(4π
3

)
r3n(r) dr ≡ ρw fV [kg ·m−3] (34)

where n(r) is the cloud droplet size distribution [m−3 ·m−1] and ρw is the liquid water
mass density [kg ·m−3] and fV stands for the dimensionless liquid (cloud) particle
volume fraction defined in a similar manner as AMC in Eq. (33), i.e. fV = LWC/ρw.
For a liquid water cloud a typical value of the LWC is about 0.5 g ·m−3, implying
that fV = 5 × 10−7, for a density of water ρw = 106 g ·m−3. In Eq. (22) for the
effective radius:

reff =
∫ rmax
rmin n(r)r3 dr∫ rmax
rmin n(r)r2 dr

the numerator is proportional to the concentration or LWC, while the denominator
is related to the scattering coefficient:

βc =
∫ ∞

0
dr(πr2)Qβ(r) n(r) dr [m−1].

If the size of the droplet is large compared to the wavelength λ, then Qβ(r) → 2.
Therefore, in the visible spectral range where 2πr/λ� 1, we find:

βc ≈
3
2

1
ρw

LWC
reff

= 3
2
fV

reff
[m−1]. (35)

For ice cloud particles assumed to be spherical in shape a similar expression for the
scattering coefficient is obtained with fV being the ice particle volume fraction. For
a liquid water cloud with fV = 5× 10−7 and reff = 5× 10−6 m, we get βc = 3

2
fV
reff

=
0.15 m−1, and hence an optical thickness of 15 for a 100 m thick cloud layer.
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Parameterized cloud IOPs
Equation (35) suggests that cloud IOPs can be parameterized in terms of the effective
radius and the volume fraction fV. In fact, the cloud IOPs can be computed from
the following simple algebraic expressions [30]:

γc/fV = a1r
b1
eff + c1 (36)

1−$c = a2r
b2
eff + c2 (37)

gc = a3r
b3
eff + c3. (38)

Here γc is the cloud extinction coefficient, $c = βc/γc is the single-scattering albedo,
and gc is the asymmetry factor. This parameterization scheme has not yet been
implemented in AccuRT.

3.4 Snow and Ice IOPs (see snow and ice materials)

3.4.1 General Approach

Assuming that snow grains and sea ice inclusions consist of spherical particles, we
may obtain their IOPs from Mie computations, which require the refractive index
and the size distribution of the particles as input. Then, the inherent optical proper-
ties (IOPs), i.e. the absorption and scattering coefficients and the scattering phase
function, αp(λ), βp(λ), and pp(λ,Θ), can be obtained from Eqs. (29)–(31). This
approach leads to computed snow albedo values that agree surprisingly well with
available observations. The following reasons why one does not make large errors
by assuming spherical particles have been put forward by Craig Bohren as quoted
by Grenfell et al. (1994) [31]: The orientationally averaged extinction cross section
of a convex particle that is large compared with the wavelength is one-half its surface
area. The absorption cross section of a large, nearly transparent particle is propor-
tional to its volume almost independent of its shape. The closer the real part of the
particle’s refractive index is to 1, the more irrelevant the particle shape. The asym-
metry parameter of a large particle is dominated by near-forward scattering, which
does not depend greatly on particle shape. Based on these arguments, two options
are provided:

1. Direct Mie calculations based on user-specified information about the particle
refractive index and size assuming a lognormal size distribution;

2. A fast, yet accurate parameterization based on Mie calculations.

Direct Mie calculations (see snow and ice materials)
For this option we assume that snow grains and ice inclusions (air bubbles and brine
pockets) consist of homogeneous spheres with a single-mode log-normal volume size
distribution [see Eq. (15)], and we use the refractive index data base for ice compiled
by Warren and Brandt (2008) [32]. The user specifies the effective radius reff and the
width of the distribution σ, from which the geometrical mean radius rn is computed
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using Eq. (27). rn and σ constitute the only input required for the Mie code described
in Section 3.3.4, which will compute absorption and scattering coefficients as well the
scattering phase function. An option to use only the first moment of the scattering
phase function in conjunction with the Henyey-Greenstein scattering phase function
is also provided. This option is useful because the Mie scattering phase function is
unrealistic for non-spherical snow grains and ice inclusions.
Parameterization based on Mie calculations (see snow and ice materials)
Sea ice optical properties were described by Jin et al. (1994) [33], and refined by
Hamre et al. (2004) [34] and Jiang et al. (2005) [35]. Here we follow the most recent
development of Stamnes et al. (2011) [36], who created a generic tool [ISIOP] for
computing ice/snow IOPs (τ , $, and g). The ISIOP tool can be used to generate
ice/snow IOPs for any desired wavelength from ice/snow physical parameters: real
and imaginary parts of the ice/snow refractive index, brine pocket concentration
and effective size (sea ice), air bubble concentration and effective size (sea ice),
volume fraction and absorption coefficient of sea ice impurities, asymmetry factors
for scattering by snow grains, brine pockets, and air bubbles, and sea ice thickness.

For a specific value of r, we can compute Q′α(r), Q′β(r), and pp(λ,Θ, r) using
Mie theory, but evaluation of Eqs. (29)–(31) requires knowledge of the particle size
distribution n(r), which is usually unknown. Eqs. (29)–(31) can be considerably
simplified by making the following assumptions [36]:

• The particle distribution is characterized by an effective radius given by Eq. (22),
which obviates the need for an integration over r.

• The particles are weakly absorbing, so that

Q′α(r) ≡ Q′α ≈
16π reff m̃i,p

3λ
1
mrel

[m3
rel − (m2

rel − 1)3/2] (39)

where m̃i,p is the imaginary part of the refractive index of the particle, λ is the
wavelength in vacuum, and mrel = m̃r,p/m̃r,med is the ratio of the real part of
the refractive index of the particle (m̃r,p) to that of the surrounding medium
(m̃r,med).

• The particles are large compared to the wavelength (2πr/λ� 1) which implies

Q′β(r) ≡ Q′β = 2. (40)

The scattering phase function may be represented by the one-parameter Henyey-
Greenstein scattering phase function, which depends only on the asymmetry
factor

g ≡ 〈cos Θ〉 = 1
2

∫ 1

−1
p(Θ) cos Θ d(cos Θ). (41)
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With these assumptions, Eqs. (29)–(31) become:

αp(λ) = α(λ) 1
mrel

[
1− (m2

rel − 1)3/2
]
fV (42)

βp(λ) = 3
2
fV

reff
(43)

pp(λ,Θ) = 1− g2

(1 + g2 − 2g cos Θ)3/2 . (44)

Here α(λ) = 4πm̃i,p/λ is the absorption coefficient of the material of which the
particle is composed, and fV ≡ 4π

3
∫
n(r)r3dr ≈ 4

3πr
3
effne, where ne = # of particles

per unit volume with radius reff. Note that Eq. (43) is identical to Eq. (35). Thus, it
is clear that fV represents the volume fraction of the particles as defined in Eq. (33).
Typical values of fV for air bubbles and brine pockets in sea ice are shown in Fig. 1.

As can be seen from Fig. 2, in a narrow wavelength range around 2,800 nm
mrel < 1.0. Then Q′α [Eq. (39)] and αp [Eq. (42)] will become complex numbers.
To mitigate this problem, we take the absolute value of Q′α and αp using complex
arithmetic.
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Figure 1: Volume fraction of brine pockets (fbr
V ) and air bubbles (fbu

V ) (squares).
Scattering coefficients of brine pockets (βbr) and air bubbles (βbu) (circles). The two
curves to the left represent air bubbles, and the two curves to the right represent
brine pockets. After Hamre et al. (2004) [34]).
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Figure 2: Upper panel: Spectral reflectance at normal incidence from an air-ice
interface. Lower panel: Real part, imaginary part, and effective real value of the
refractive index (see Section 4.1.2).

3.4.2 Extension of particle IOP parameterization to longer wavelengths

For wavelengths λ ≤ 1.2 µm, the absorption and scattering efficiency for snow grains,
brine inclusions in sea ice, and air bubbles in ice may be parameterized by Eqs. (39)
and (40), and the asymmetry factor g can be held constant with wavelength and
set equal to 0.85, 0.89, and 0.997 for air bubbles, snow grains, and brine pockets,
respectively, and we may use the Henyey-Greenstein scattering phase function in
Eq. (44). To extend the validity to near infrared wavelengths, we may use the
following modified parameterizations, which are based in part on fits to results from
Mie calculations [36]:

Qα = 0.94[1− exp(−Q′α/0.94)]; Qβ = 2−Qα; g = g
(1−Qα)0.6

0 (45)
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where Q′α is given by Eq. (39). Here g is the asymmetry factor of the scattering
phase function, and g0 is the asymmetry factor for non-absorbing particles. For large
particles (r > ∼ 50 µm) g0 depends only on the real part of the refractive index.
For a medium consisting of several absorbing and scattering constituents the total
absorption and scattering efficiencies are just the sum of those due to the separate
constituents. The optical thickness τ and single-scattering albedo $ for a slab of
thickness h become [36]:

τ = πr2
effNh(Qα +Qβ); $ = Qβ

Qα +Qβ

(46)

where N is the total number of particles per unit volume, and Qα and Qβ are the
total absorption and scattering efficiencies, each equal to the sum of those due to
the separate constituents. In highly scattering media such as snow and sea ice we
may use the Henyey-Greenstein scattering phase function

p(cos Θ) = 1− g2

(1 + g2 − 2g cos Θ)3/2 (47)

where g is the asymmetry parameter (−1 < g < 1) and Θ the scattering angle, to
describe the angular scattering behavior. The modified parameterizations, which
are represented by the dash-dot curves in Fig. 3 (Parameterizion 2), work well for
all wavelengths for Qα, while for Qβ and g they work well for wavelengths shorter
than about 2.8 µm, but deviate significantly from predictions by Mie theory for
longer wavelengths. Thus, for wavelengths longer than 2.8 µm one should prefer-
ably use results from the computationally less efficient Mie theory. Note that for
wavelengths shorter than 2.8 µm, where the parameterizations work well, the vari-
ations in m̃r,p and m̃i,p are large. Thus, one would expect these parameterizations
to be representative for most types of large particles [36].

3.4.3 Impurities, air bubbles, brine pockets, and snow

If the volume fraction of impurities within a snow grain or brine pocket is not too
large, which is the case for typical situations occurring in nature, scattering by
impurities can be ignored, so that their effects can be included by simply adding
the imaginary part m̃i,imp of the refractive index for impurities to m̃i,p in Eq. (39).
For typical impurities in snow and ice, the wavelength dependence of m̃i,imp can be
parameterized as

m̃i,imp(λ) = m̃i,imp(λ0) (λ0/λ)η (48)

where η would be close to zero for black carbon, but larger for other impurities, and
m̃i,imp(λ0 = 440 nm) has values that depend on the type of impurity. Equation (48)
is based on the observation that non-algal impurities tend to have a smooth increase
towards shorter wavelengths in the absorption coefficient [37, 38, 39, 40], which is
connected to the imaginary part of the refractive index through α = 4π m̃i,imp/λ.
For snow, the number of snow grain particles per unit volume is N = 1

4
3πr

3
eff

ρs
ρi
, where
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using Parameterization 1 [Eqs. (39)], which is valid for wavelengths shorter than
about 1.2 µm [34], and Parameterization 2 [Eqs. (45)], which is valid also in the
near infrared for λ < 2.8 µm (adapted from Stamnes et al., 2011 [36]).

reff is the effective particle radius, while ρs and ρi are the mass densities of snow and
pure ice, respectively. The optical thickness and the single-scattering albedo can be
calculated from Eqs. (45) and (46), using the refractive indices of pure ice [32] and
impurities [Eq. (48)]. We assumed that sea ice consists of pure ice with embedded
brine pockets, air bubbles, and impurities. To include the effects of the embedded
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components, we first calculated the absorption coefficient α for sea ice

α = πr2
brNbrQα,br +

[
1− 4

3πr
3
brNbr −

4
3πr

3
buNbu

] 4π(m̃i,p + fimpm̃i,imp)
λ

(49)

where fimp is the volume fraction of impurities, Nbr and Nbu are the number con-
centrations of brine pockets and air bubbles, respectively, rbr and rbu are the cor-
responding effective radii, and Qα,br is the absorption efficiency for brine pockets.
The two terms on the right side of Eq. (49) represent the absorption coefficients of
brine pockets and surrounding ice (including impurities), respectively. In Eq. (49),
we have used the general relation α = 4π m̃i,p/λ, where λ is the wavelength in vac-
uum, and the expression inside the square brackets is the volume fraction of the ice
surrounding all brine pockets and bubbles.

The air bubbles were assumed to be non-absorbing (Qα,bu = 0), and the impuri-
ties were assumed to be uniformly distributed in the ice with m̃i,p and m̃i,imp being
the imaginary parts of the refractive indices for pure ice and impurities, respectively.
For brine pockets, which are in the liquid phase, the refractive index of sea water
was used. The volume fraction fimp of impurities typically lies in the range between
1×10−7 and 1×10−5. The scattering coefficient β of sea ice is given by

β = βbr + βbu; βbr = πr2
brNbrQβ,br; βbu = πr2

buNbuQβ,bu (50)

where βbr and βbu are the scattering coefficients for brine pockets and air bubbles,
respectively, and Qβ,br and Qβ,bu are the corresponding scattering efficiencies. Here
we have ignored the scattering coefficient for pure sea ice because it is very small
compared to either βbr or βbu. The optical thickness τ , the single-scattering albedo
$, and the asymmetry factor g for sea ice now become

τ = (α + β)h; $ = β

α + β
; g = βbrgbr + βbugbu

βbr + βbu
(51)

where h is the sea ice thickness.

3.5 Water IOPs – Bio-optical Models
In open ocean water, it is customary to assume that the IOPs of particulate matter
can be parameterized in terms of the chlorophyll concentration. In coastal waters,
we assume that the IOPs depend on the presence of inorganic (mineral) particles,
organic (algae) particles, and Colored Dissolved Organic Matter CDOM in addition
to pure water. Here we adopt a bio-optical model used in the CoastColour Round
Robin (CCRR) effort, described in the document “Coastcolor-RRP-V1.2.doc” [41].

3.5.1 The pure_water material for pure water IOPs

As mentioned in Section 3.3.5, for pure water we adopt the real part of the refractive
index of pure water from Segelstein (1981), and we use the absorption coefficient
αw(λ) based on data published by Smith and Baker (1981) [26], Sogandares and
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Fry (1997) [27], Pope and Fry (1997) [28] for wavelengths between 340 and 700 nm,
and by Kou et al. (1993) [29] for wavelengths between 720 and 900 nm. Pure water
scattering coefficients βw(λ) are based on data published by Morel (1974) [6], and
the Rayleigh scattering phase function is given by Eq. (10) with depolarization ratio
ρ = 0.09, and thus f = (1− ρ)/(1 + ρ) = 0.835 (see Section 3.2.1).

3.5.2 The water_impurity_ccrr material

The CCRR bio-optical model [41] consists of the 3 input parameters CHL, MIN,
and αCDOM(443), which are allowed to vary. As currently implemented, the CCRR
model may be used for wavelengths between 280 and 900 nm. The absorption by
algae particles is extrapolated below 400 nm and above 700 nm as indicated in
Fig. 4. It should be noted that according to this decomposition into three basic
components, the “mineral particle” component can include also non-algae particles
whose absorption does not covary with that of the algae particles. [41]
Mineral particles (see water_impurity_ccrr material)
The absorption coefficient for mineral particles at 443 nm is given by (Babin et al.,
2003a) [42]†:

αMIN(443) = 0.041× 0.75×MIN
and its spectral variation is described by (Babin et al., 2003a [42]; data file provided
by CCRR [41]):

αMIN(λ) = αMIN(443)[exp(−0.0123(λ− 443))]. (52)

The scattering coefficient at 555 nm is given by (Babin et al., 2003b [43]):

βMIN(555) = 0.51×MIN

and the spectral variation of the attenuation coefficient is (data file from CCRR
[41]):

γMIN(λ) = γMIN(555)× (λ/λ0)−c; c = 0.3749, λ0 = 555 nm (53)

where

γMIN(555) = αMIN(555) + βMIN(555)
= [0.041× 0.75 exp(−0.0123(555− 443)) + 0.51]×MIN = 0.52×MIN.

The spectral variation of the scattering coefficient for mineral particles follows from

βMIN(λ) = γMIN(λ)− αMIN(λ). (54)

The average Petzold phase function with a backscattering ratio of 0.026, as tabulated
by Mobley (1994) [2], is used to describe the scattering phase function for mineral
particles.
†Note on units: αMIN(λ)/MIN = 0.041 has units [m2g−1], so that if MIN has units of [g m−3],

then the units of αMIN(λ) will be [m−1].
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Algae particles (see water_impurity_ccrr material)
The absorption coefficient for pigmented particles (algae particles or phytoplankton)
can be written (Bricaud et al., 1998 [44]):

αpig(λ) = Aφ(λ)× [CHL]Eφ(λ) (55)

where Aφ(λ) and Eφ(λ) are given by Bricaud et al. (1998) [44], and where CHL
is the chlorophyll concentration, which represents the concentration of pigmented
particles (algae particles or phytoplankton). The functions Aφ(λ) and Eφ(λ) are
displayed in Fig. 4. The attenuation coefficient for pigmented particles at 660 nm
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Figure 4: Spectral variation of the numerical coefficients Aφ(λ) (left) and Eφ(λ)
(right) in Eq. (55). The blue color indicates original data provided by Bricaud et
al. (1998) [44]. The red color indicates extrapolated values.

is given by (Loisel and Morel, 1998 [45]):

γpig(660) = γ0 × [CHL]η; γ0 = 0.407; η = 0.795

and its spectral variation is taken to be (Morel et al., 2002 [46]):

γpig(λ) = γpig(660)× (λ/660)ν (56)

where

ν =

0.5× [log10 CHL− 0.3] 0.02 < CHL < 2.0
0 CHL > 2.0.

The spectral variation of the scattering coefficient for pigmented particles follows
from the difference:

βpig(λ) = γpig(λ)− αpig(λ). (57)

The scattering phase function for pigmented particles is assumed to be described by
the Fournier-Forand phase function (see below) with a backscattering ratio equal to
0.006 (Mobley et al., 2002 [47], Morel et al., 2002 [46]).
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Colored Dissolved Organic Matter (CDOM) (see water_impurity_ccrr
material)
The absorption by CDOM is given by (Babin et al., 2003b [43]):

αCDOM(λ) = αCDOM(443)× exp[−0.0176(λ− 443)]. (58)

Total Absorption and Scattering Coefficients (see water_impurity_ccrr
material)
The total absorption and scattering coefficients due to water impurities for the
CCRR IOP model are given by:

αtot(λ) = αMIN(λ) + αpig(λ) + αCDOM(λ) (59)
βtot(λ) ≡ βp(λ) = βMIN(λ) + βpig(λ). (60)

Scattering Phase Function for Particles (see water_impurity_ccrr mate-
rial)
Many measurements have shown that the particle size distribution (PSD) function
in oceanic water can be accurately described by an inverse power law (Junge dis-
tribution) F (r) = Cr/r

ξ, where F (r) is the number of particles per unit volume
per unit bin width, and r [µm] is the radius of the assumed spherical particle. Cr
[cm−3 ·µmξ−1] is the Junge coefficient, and ξ is the PSD slope, which typically varies
between 3.0 and 5.0 (Diehl and Haardt, 1980 [48]; McCave, 1983 [49]). By assuming
an inverse power law (Junge distribution) for the PSD, Fournier and Forand (1994)
[50] derived an analytic expression for the scattering phase function of oceanic water
(hereafter referred to as the FF scattering phase function). This FF scattering phase
function is given by (Mobley et al., 2002) [47]

pFF(Θ) = 1
4π(1− δ)2δν

ν(1− δ)− (1− δν) + 4
u2 [δ(1− δν)− ν(1− δ)]


+ 1− δν180

16π(δ180 − 1)δν180
[3 cos2 Θ− 1] (61)

where ν = 0.5(3 − ξ), u = 2 sin(Θ/2), δ ≡ δ(Θ) = u2

3(m̃r−1)2 , δ180 = δ(Θ = 180◦) =
4

3(m̃r−1)2 , Θ is the scattering angle, and m̃r is the real part of the refractive index.
Setting x = cos Θ, and integrating the FF scattering phase function over the

backward hemisphere, one obtains the backscattering ratio or backscatter fraction
defined in Eq. (9), i.e. [47]

bFF = 1
2

∫ π

π/2
pFF(cos Θ) sin Θ dΘ = 1

2

∫ 1

0
pFF(−x) dx

= 1− 1− δν+1
90 − 0.5(1− δν90)
(1− δ90)δν90

(62)
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where δ90 = δ(Θ = 90◦) = 4
3(m̃r−1)2 sin2(45◦) = 2

3(m̃r−1)2 . Equation (62) can be solved
for ν in terms of bFF and δ90, implying that ν and thus ξ can be determined if the
real part of the refractive index m̃r and the backscatter ratio bFF are specified. As
a consequence, the FF scattering phase function can be evaluated from a measured
value of bFF if the real part of the refractive index m̃r is known.

To describe the angular variation of the scattering, we use the FF scatter-
ing phase function for phytoplankton and the Rayleigh scattering phase function
[Eq. (10)] for scattering by pure water. It was shown by Mobley et al. (2002) [47]
that with proper choices of m̃r and ξ the FF scattering phase function is an ex-
cellent proxy for the well-known Petzold (1972) [51] measurements. In a previous
study, Li et al. (2008) [52] used m̃r = 1.0686, and ξ = 3.38, which correspond to a
backscattering ratio of 0.0056 [see Fig. 2 in Mobley et al. (2002) [47]]. As noted by
Mobley at al. (2002) [47], this choice of {m̃r, ξ} values is consistent with a certain
mixture of living microbes and resuspended sediments. As already mentioned, in
the CCRR bio-optical model adopted here, the Petzold scattering phase function
with a backscattering ratio of 0.026 is used to represent mineral (non-algal) particles.
These scattering phase functions are shown in Fig. 5. We use the moment-fitting

Figure 5: Rayleigh, Fournier-Forand and Petzold phase functions used to represent
scattering by water molecules, pigmented particles, and non-algal particles, respec-
tively, in AccuRT.

program of Hu et al. (2000) [24] to create Legendre expansion coefficients χ`,PET
and χ`,FF for the Petzold and FF scattering phase functions. Thus, the IOP total
scattering phase function Legendre expansion coefficients are given by:

χ` = βpig(λ)χ`,FF + βMIN(λ)χ`,PET + βw(λ)χ`,water
βpig(λ) + βMIN(λ) + βw(λ) . (63)
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Thus, in thewater_impurity_ccrrmaterial of AccuRT the user must specify the
3 input parameters CHL, MIN, and αCDOM(443) in addition to the vertical location
of the impurities. Optimally a profile of CHL, MIN, and CDOM with depth may be
provided that will automatically linearly interpolate the impurities to fit the layers
specified in the main configuration file.

3.5.3 The water_impurity_sbc and water_impurity_gsm materials

Based on field measurements obtained in the Santa Barbara Channel (SBC) and
compiled in the NOMAD data base (Werdell and Bailey, 2005 [53]), Li et al. (2008)
[52] constructed a bio-optical model for the SBC coastal waters. Although this SBC
bio-optical model is not a general model, it is representative for a coastal water
scenario. Another frequently used bio-optical model is the GSM model (Garver et
al., 1997 [54], Maritorena et al., 2002 [55]), which is included in NASA’s SeaDAS
software package. GSM is a global model which has the same structure as the SBC
model, but with different coefficients.

In the SBC model, the water body, in addition to pure water, is assumed to be
described by 3 parameters that can be varied (and thus retrieved): the chlorophyll
concentration [CHL] (which represents the concentration of pigmented particles),
the CDOM absorption coefficient at 443 nm [αCDOM(443)], and the total scattering
coefficient at 443 nm [βtot(443)]. The IOPs of the SBC model are described by:

αSBC
pig (λ) = aSBC1 (λ)[CHL]a2(λ) (64)

αSBC
CDOM(λ) = αSBC

CDOM(443) exp[−0.012(λ− 443)] (65)
βSBC
tot (λ) = βSBC

tot (443)(λ/443). (66)

Similarly, for the GSM model the IOPs are described by

αGSM
pig (λ) = aGSM

1 (λ)[CHL] (67)
αGSM
CDOM(λ) = αGSM

CDOM(443) exp[−0.0206(λ− 443)] (68)
βGSM
tot (λ) = βGSM

tot (443)(λ/443)1.0337. (69)

Note that the wavelength dependent factors aSBC1 (λ) and a2(λ) in Eq. (64) as well
as aGSM

1 (λ) in Eq. (67) are determined from field measurements compiled in the
NOMAD data base. For simplicity we will assume here that αSBC

pig (λ) = αGSM
pig (λ) ≡

αCCRR
pig (λ), so that the difference between the 3 models lies in the treatment of

scattering and CDOM absorption.
For both the SBC and GSM models, CDOM represents a combination of colored

dissolved organic matter and mineral particles. Hence, values of αSBC
CDOM(443) in

Eq. (65) and αGSM
CDOM(443) in Eq. (68) should be compared to the sum αCCRR

CDOM(443)+
0.041 × 0.75 MIN. The total suspended particle scattering coefficient is βSBC

tot (λ)
and βGSM

tot (λ) in the SBC and GSM model, respectively, each being comparable to
βtot(λ) = βMIN(λ) + βpig(λ) in the CCRR model.

The most significant difference between these 3 models is that the SBC and GSM
models do not separately include mineral particles although the total scattering
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coefficient does include the total suspended particle scattering. Another difference
is that the CCRR model is based on three different reference wavelengths, namely
443 nm for αMIN, 555 nm for γMIN, and 660 nm for αpig, while the SBC and the
GSM models are based only on 443 nm as a reference wavelength.

3.6 Vacuum material
This material has refractive index m̃c,vac = m̃r,vac + im̃i,vac = 1.0, and no absorption
or scattering. It is useful for simulating a transparent slab (atmosphere or water).
If selected as the only material in the lower slab, that slab will be transparent with
refractive index 1.0. If selected as the first of several materials in the lower slab, then
that slab will have refractive index 1.0, but the scattering and absorption properties
will be as specified separately.

3.7 Spectral averaging of absorption coefficients
Since the the scattering coefficient is a smooth function of wavelength, no spectral
averaging is necessary. In contrast, the absorption coefficient varies rapidly and
erratically with wavelength making spectral averaging necessary.

3.7.1 The Chandrasekhar Mean

The TOA solar irradiance decreases rapidly with (decreasing) wavelength for λ <
350 nm, and the ozone absorption cross section increases rapidly between 350 nm
and 250 nm. The steep gradients in the solar irradiance and ozone absorption cross
section suggest that it may be useful to define a mean absorption cross section
(called the Chandrasekhar Mean [3]) by weighting it with the extraterrestrial solar
irradiance F0(λ) as follows:

〈αn〉 ≡
∫ λ2
λ1
αn(λ)F0(λ) dλ∫ λ2
λ1
F0(λ) dλ

. (70)

For rapid energy budget calculations the spectral resolution adopted in k-distribution
band models [3] is a useful option that will be included in future versions of AccuRT.

3.7.2 Absorption by atmospheric gases

The TOA solar irradiance F0(λ) will be attenuated due to absorption by gases in the
atmosphere. The transmitted solar irradiance in the nadir direction at atmospheric
depth level ` (with ` = 0 at the TOA) can be expressed as:

F`(λ) = F0(λ) e−τ`(λ). (71)

Hence, the atmospheric transmittance at level ` becomes

T`(λ) = F`(λ)
F0(λ) = e−τ`(λ) (72)
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and the corresponding optical depth is

τ`(λ) = − ln[T`(λ)]. (73)

The irradiance measured by an instrument at level ` with spectral response function
w(λ) and bandwidth ∆λ can be written

F∆λ
` =

∫
∆λw(λ)F`(λ) dλ∫

∆λw(λ) dλ =
∫
∆λw(λ)F0(λ)T`(λ) dλ∫

∆λw(λ) dλ =
∫

∆λ
w̃(λ)F0(λ)T`(λ) dλ (74)

where w̃(λ) = w(λ)/
∫

∆λw(λ)dλ is the “normalized” response function. Since T0(λ) =
1 (at TOA), the band-weighted transmittance at level ` becomes:

T ∆λ
` = F∆λ

`

F∆λ
0

=
∫

∆λ w̃(λ)F0(λ)T`(λ) dλ∫
∆λ w̃(λ)F0(λ) dλ . (75)

Hence, the band-weighted absorption optical depth at level ` becomes:

τ∆λ
` = − ln[T ∆λ

` ]. (76)

In gasIOP the band-weighted transmittance given by Eq. (75) is evaluated numer-
ically using a spectral resolution of 1 cm−1.

3.7.3 Absorption by aerosol and cloud particles

Aerosol and cloud particles are assumed to consist of a polydispersion of homoge-
neous spheres with a specified wavelength-dependent refractive index. Since Mie
computations are computing-intensive, Mie-computed absorption coefficients are
tabulated at user-specified center wavelengths, and linear interpolation is used to
obtain the absorption coefficient within the user-specified bandwidth of the center
wavelength.

3.7.4 Absorption by pure ice, ice impurities, ice inclusions (brine pock-
ets and bubbles) and snow grains

For pure ice, tabulated values of the imaginary part of the refractive index m̃i [32]
are used to compute the absorption coefficient (α = 4π m̃i/λ), and linear interpo-
lation is used to obtain the average absorption coefficient within the user-specified
bandwidth. Impurities (e.g. algae and soot) are assumed to be uniformly distributed
within the ice and the absorption is given in terms of a user-specified imaginary part
of the refractive index. Brine pockets and air bubbles embedded in the ice as well
as snow grains are assumed to be spherical particles. For the direct Mie calculation
option, Mie-computed absorption coefficients are tabulated at user-specified center
wavelengths, and linear interpolation is used to obtain the average absorption coef-
ficient within the user-specified bandwidth. For the parameterized option, we use
the absorption coefficient of snow/ice particles given by Eq. (42), which depends on
the refractive index of ice. We use tabulated data for the real and the imaginary
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part of the refractive index of ice as a function of wavelength [32] and linear interpo-
lation to obtain values between wavelength grid points. The absorption coefficient
is computed by Eq. (42) at 100 evenly spaced wavelengths within the user-specified
bandwidth, and then the average value is computed.

3.7.5 Absorption by liquid water

We use tabulated data for the absorption coefficient of pure water as a function
of wavelength [28, 29] and linear interpolation to obtain values between tabulated
wavelength grid points. The absorption coefficient is obtained at 100 evenly spaced
wavelengths within the user-specified wavelength bandwidth using linear interpola-
tion between tabulated values, and then the average is computed. The absorption
coefficient due to impurities in water is computed from a bio-optical model [see
Eq. (59)] at user-specified center wavelengths, and linear interpolation is used to
obtain the average absorption coefficient within the user-specified bandwidth.

3.7.6 Solar spectrum

The solar spectrum is also averaged over 100 evenly spaced wavelengths within each
user-specified wavelength bandwidth.

Please note that a more accurate (but also more computationally demanding)
way to average over a bandwidth is to compute radiances or irradiances at many
monochromatic wavelengths, and then average the computed quantities.

4 Radiative Transfer

4.1 Radiative Transfer Equation – unpolarized case
Consider a coupled system consisting of two adjacent slabs (atmosphere overlying a
water body) separated by a plane, horizontal interface across which the refractive
index changes abruptly from a value m̃c,1 in one of the slabs (hereafter slab1 will
refer to the atmosphere) to a value m̃c,2 in the other slab (hereafter slab2 will refer
to a water body). If the IOPs in each of the two slabs vary only in the vertical
direction denoted by z, where z increases upward, the corresponding vertical optical
depth, denoted by τ(z), is defined by

τ(z) =
∫ ∞
z

[α(z′) + β(z′)] dz′ (77)

where the absorption and scattering coefficients α and β are defined in Eqs. (1)
and (2). Note that the vertical optical depth is defined to increase downward from
τ(z = ∞) = 0 at the top of the atmosphere. In either of the two slabs, assumed
to be in local thermodynamic equilibrium so that they emit radiation according to
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the local temperature T (τ(z)), the diffuse radiance distribution I(τ, u, φ) can be
described by the radiative transfer equation (RTE)

µ
dI(τ, u, φ)

dτ
= I(τ, u, φ)− S(τ, u′, φ′) (78)

where

S(τ, u′, φ′) = S∗(τ, u′, φ′)− [1−$(τ)]B(τ)

− $(τ)
4π

∫ 2π

0
dφ′

∫ 1

−1
p(τ, u′, φ′;u, φ)I(τ, u′, φ′)du′. (79)

Here u is the cosine of the polar angle θ, φ is the azimuth angle, $(τ) = β(τ)/[α(τ)+
β(τ)] is the single-scattering albedo, p(τ, u′, φ′;u, φ) is the scattering phase function
defined by Eq. (6), and B(τ) is the thermal radiation field given by the Planck
function. The differential vertical optical depth is [see Eq. (77)]

dτ(z) = −[α(τ) + β(τ)] dz (80)

where the minus sign indicates that τ increases in the downward direction, whereas
z increases in the upward direction, as noted above. The scattering angle Θ and the
polar and azimuth angles are related by

Ω̂′ · Ω̂ = cos Θ = cos θ cos θ′ + sin θ′ sin θ cos(φ′ − φ).

By definition, θ = 180◦ is directed toward nadir (straight down) and θ = 0◦ toward
zenith (straight up). Thus, u = cos θ varies in the range [−1, 1] (from nadir to
zenith). For cases of oblique illumination of the system, φ = 180◦ is defined to be
the azimuth angle of the incident light.

The single-scattering source term S∗(τ, µ′, φ′) in Eq. (79) in slab1 (with complex
refractive index m̃c,1 = m̃r,1 + im̃i,1) is different from that in the lower slab (slab2,
with refractive index m̃c,2 = m̃r,2 + im̃i,2). In slab1 it is given by

S∗1(τ, u, φ) = $(τ)F0

4π p(τ,−µ0, φ0;u, φ)e−τ/µ0

+ $(τ)F0

4π ρF(−µ0; m̃c,1, m̃c,2)p(τ, µ0, φ0;u, φ)e−(2τ1−τ)/µ0 , (81)

where τ1 is the vertical optical depth of the atmosphere, ρF(−µ0; m̃c,1, m̃c,2) is the
Fresnel reflectance at the slab1-slab2 interface, µ0 = cos θ0, with θ0 being the zenith
or polar angle of the incident beam of illumination, and where m̃r,2 > m̃r,1. Note
that the real part of the refractive index of the medium in slab1 has been assumed to
be smaller than that of the medium in slab2, as would be the case for air overlying
a water body. The first term on the right-hand side of Eq. (81) is due to first-order
scattering of the attenuated incident beam of irradiance F0 (normal to the beam),
while the second term is due to first-order scattering of the attenuated incident
beam that is reflected at the slab1-slab2 interface. In slab2 the single-scattering
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source term consists of the attenuated incident beam that is refracted through the
interface, i.e.

S∗2(τ, u, φ) = $(τ)F0

4π
µ0

µ0n
TF(−µ0; m̃c,1, m̃c,2)

× p(τ,−µ0n, φ0;u, φ)e−τ1/µ0e−(τ−τa)/µ0n , (82)

where TF(−µ0; m̃c,1, m̃c,2) is the Fresnel transmittance through the interface, and
µ0n is the cosine of the polar angle θ0n in slab2, which is related to θ0 = arccosµ0
by Snell’s law.

For a two-slab system with source terms as given by Eqs. (81) and (82), a solution
based on the discrete-ordinate method [56, 57] of the RTE in Eq. (78) subject to
appropriate boundary conditions at the top of slab1, at the bottom of slab2, and
at the slab1-slab2 interface, was first developed by Jin and Stamnes [58] (see also
Thomas and Stamnes [3]).

4.1.1 Isolation of azimuth dependence

The azimuth dependence in Eq. (78) may be isolated by expanding the scattering
phase function in Legendre polynomials, P`(cos Θ), and making use of the addition
theorem for spherical harmonics [3]

p(cos Θ) = p(u′, φ′;u, φ) =
2N−1∑
m=0

(2− δ0,m)pm(u′, u) cosm(φ′ − φ), (83)

where δ0,m is the Kronecker delta, i.e. δ0,m = 1 for m = 0 and δ0,m = 0 for m 6= 0,
and

pm(u′, u) =
2N−1∑
`=m

(2l + 1)χ`Λm
` (u′)Λm

` (u). (84)

Here
χ` = 1

2

∫ 1

−1
P`(cos Θ)p(cos Θ) d(cos Θ) (85)

is an expansion coefficient and Λm
` (u) is given by

Λm
` (u) ≡

√√√√(`−m)!
(`+m)!P

m
` (u) (86)

where Pm
` (u) is an associated Legendre polynomial of order m. Expanding the

radiance in a similar way,

I(τ,u, φ) =
2N−1∑
m=0

Im(τ,u) cosm(φ− φ0), (87)

where φ0 is the azimuth angle of the incident light, one finds that each Fourier
component satisfies the following RTE (see Thomas and Stamnes [3] for details)

µ
dIm(τ, u)

dτ
= Im(τ, u)− $(τ)

2

∫ 1

−1
pm(τ, u′, u) Im(τ, u) dµ− S∗m(τ, u), (88)

where m = 0, 1, 2, . . . , 2N − 1 and pm(µ′, µ) is given by Eq. (84).
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4.1.2 The interface between the two slabs

When a beam of light is incident upon a plane interface between two slabs of different
refractive indices, one fraction of the incident light will be reflected and another
fraction will be transmitted or refracted. For unpolarized light incident upon the
interface between the two slabs, the Fresnel reflectance ρF is given by

ρF = 1
2(ρ⊥ + ρ‖) (89)

where ρ⊥ is the reflectance for light polarized with the electric field perpendicular to
the plane of incidence, and ρ‖ is the reflectance for light polarized with the electric
field parallel to the plane of incidence [3, 59, 60]. Thus, one finds

ρF = 1
2

∣∣∣∣∣µ1 −mratµt
µ1 +mratµ2

∣∣∣∣∣
2

+
∣∣∣∣∣µ2 −mratµ1

µ2 +mratµ1

∣∣∣∣∣
2
 , (90)

where µ1 ≡ µair = cos θ1, θ1 being the angle of incidence, µ2 ≡ µocn = cos θ2, θ2
being the angle of refraction determined by Snell’s law (m̃r,1 sin θ1 = m̃r,2 sin θ2),
and mrat = m̃c,2/m̃c,1. Similarly, the Fresnel transmittance becomes

TF = 2mrelµiµt

∣∣∣∣∣ 1
µi +mratµt

∣∣∣∣∣
2

+
∣∣∣∣∣ 1
µt +mratµi

∣∣∣∣∣
2
 , (91)

where mrel = m̃r,2/m̃r,1.
Effective refractive index
For light normally incident on a plane interface between air and water or air and ice
with complex refractive index m̃c (assuming m̃air = 1.0), the reflectance is given by

ρF = 1
2(ρ⊥ + ρ‖) =

∣∣∣∣m̃c − 1
m̃c + 1

∣∣∣∣2 . (92)

For most wavelengths of solar radiation reaching the surface of the Earth, the
imaginary part of m̃c for liquid water or ice is very small, implying that we may
assume m̃c to have a real value larger than 1.0. However, at some wavelength bands
in the near infrared the real part of m̃c may be less than 1.0, and the imaginary
part of m̃c may be sufficiently large to have an influence on the reflectance and
transmittance. To account for this influence we may use an effective real refractive
index m̃eff which, when substituted for m̃c in Eq. (92), gives the correct reflectance
at normal incidence. Substituting m̃c = m̃eff in Eq. (92), we find

m̃eff =
1 +√ρF

1−√ρF
(93)

where ρF is obtained from Eq. (92) with the correct complex refractive index m̃c.
Note that m̃eff equals the real part of m̃c for most wavelengths. As can be seen from
Fig. 2, for wavelengths in the solar spectrum between 300 nm and 4,000 nm the real
part of the refractive index is larger than 1.0 except for a narrow wavelength range
around 2,800 nm in which the imaginary part is non-zero.

33



4.2 Discrete-Ordinate Solution of the RTE – unpolarized
case

To solve Eq. (88) for a coupled (two-slab) system one needs to take into account the
boundary conditions at the top of slab1 and at the bottom of slab2 as well as the
reflection and transmission at the slab1-slab2 interface. In addition, the radiation
field must be continuous across interfaces between horizontal layers with different
IOPs within each of the two slabs (with constant refractive index). Such horizontal
layers are introduced to resolve vertical variations in the IOPs within each slab.

The integro-differential RTE [Eq. (88)] may be transformed into a system of
coupled, ordinary differential equations by using the discrete-ordinate approximation
to replace the integral in Eq. (88) by a quadrature sum consisting of 2N1 terms in
slab1 and 2N2 terms in slab2, where N1 terms are used to represent the radiance in
different directions in the downward hemisphere in slab1 that refracts through the
interface into slab2. In slab2, N2 terms are used to represent the radiance in the
downward hemisphere. Note that N2 > N1 because additional terms are needed in
slab2 with real part of the refractive index m̃r,2 > m̃r,1 to represent the downward
radiance in directions inside the region of total internal reflection.

Seeking solutions to the discrete ordinate approximation of Eq. (88), one obtains
the Fourier component of the radiance at any vertical position both in slab1 and
slab2. The solution for the pth layer of slab1 is given by (dropping the superscript
m) [3]

Ip(τ,±µti) =
N1∑
j=1

{
C−jpg

t
−jp(±µti)ek

t
jpτ + C+jpg

t
jp(±µti)e−k

t
jpτ + Up(τ,±µti)

}
(94)

where ±µi ≡ ±|ui|, i = 1, . . . , N1 and p is less than or equal to the number of layers
in slab1. The solution for the qth layer of slab2 is given by [3]

Iq(τ,±µbi) =
N2∑
j=1

C−jqg
b
−jq(±µbi)ek

b
jqτ + C+jqg

b
jq(±µbi)e−k

b
jqτ + Uq(τ,±µbi) (95)

where i = 1, . . . , N2. The superscripts t and b are used to denote top slab1 and bottom
slab2 parameters, respectively, the plus (minus) sign is used for radiances stream-
ing upward (downward), and ktjp, g

t
jp, k

b
jq, and gbjq are eigenvalues and eigenvectors

determined by the solution of an algebraic eigenvalue problem, which results when
one seeks a solution of the homogeneous version of Eq. (88) (with S∗m(τ, u) = 0)
in the discrete-ordinate approximation. The terms Up(±µti) and Uq(±µbi) are the
particular solutions. The coefficients C±jp and C±jq are determined by boundary
conditions at the top of slab1 and at the bottom of slab2, the continuity of the basic
radiance (the radiance divided by the square of the real part of the refractive index)
at each interface between internal layers in each of the slabs, and Fresnel’s equations
at the slab1-slab2 interface.

The numerical code AccuRT [58, 61] computes radiances at any optical depth,
polar, and azimuth angle by solving the RTE in Eq. (88) for each layer of the two
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slabs by using the discrete-ordinate method to convert the integro-differential RTE
into a system of coupled ordinary differential equations. The AccuRT method can
be summarized as follows:

1. Slab1 and slab2 are separated by a plane interface at which the refractive index
changes from m̃c,1 = m̃r,1 + im̃i,1 in slab1 to m̃c,2 = m̃r,2 + im̃i,2 in slab2, where
m̃c,2 depends on the wavelength.

2. Each of the two slabs is divided into a sufficiently large number of homogenous
horizontal layers to adequately resolve the vertical variation in its IOPs.

3. Fresnel’s equations for the reflectance and transmittance are applied at the
slab1-slab2 interface, in addition to the law of reflection and Snell’s Law to
determine the magnitude and directions of the reflected and refracted rays.

4. Discrete-ordinate solutions to the RTE are computed separately for each layer
in the two slabs.

5. Finally, boundary conditions at the top of slab1 and the bottom of slab2 are
applied, in addition to continuity conditions at layer interfaces within each of
the two slabs.

Fourier components of the radiances at a vertical location given by the pth layer in
slab1 or the qth layer in slab2 are computed from Eqs. (94)-(95), and the azimuth-
dependent diffuse radiance distribution from Eq. (87). Upward and downward
hemispherical irradiances and scalar irradiances are then calculated by integrat-
ing the azimuthally-averaged (zeroth-order, m = 0) Fourier component I0

p (τ,+µi)
or I0

p (τ,−µi) over polar angles.
The downward hemispherical irradiance Et(τ) and downward scalar irradiance

It(τ) in slab1 consist of direct components Et
dir and Itdir, respectively, given by

Et
dir(τ) = µ0F0e

−τ/µ0 and Itdir(τ) = F0e
−τ/µ0 (96)

and diffuse components Et
d,diff and Itd,diff

Et
d,diff(τ) = 2π

∫ 1

0
I t,0d,diff(τ, µ)µ dµ and Itd,diff(τ) = 2π

∫ 1

0
I t,0d,diff(τ, µ) dµ (97)

where I t,0d,diff(τ, µ) is the azimuthally-averaged diffuse downward radiance at optical
depth τ ≤ τ1 in slab1. Similarly, the upward diffuse irradiance Et

u,diff and the upward
diffuse scalar irradiance Itu,diff in slab1 are

Et
u,diff(τ) = 2π

∫ 1

0
I t,0u,diff(τ, µ)µ dµ and Itu,diff(τ) = 2π

∫ 1

0
I t,0u,diff(τ, µ) dµ (98)

and the net hemispherical irradiance Et
net(τ), and total scalar irradiance Ittot(τ), are

Et
net(τ) = Et

u,diff(τ)−[Et
dir(τ)+Et

d,diff(τ)] and Ittot(τ) = Itdir(τ)+Itd,diff(τ)+Itu,diff(τ).
(99)
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In slab2, the corresponding downward (direct and diffuse), upward, and net
(total) irradiances become:

Eb
dir(τ) = µ0F0e

[−τ1/µ0−τ/µ0n] and Ibdir(τ) = F0e
[−τ1/µ0−τ/µ0n] (100)

Eb
d,diff(τ) = 2π

∫ 1

0
Ib,0d,diff(τ, µ)µ dµ and Ibd,diff(τ) = 2π

∫ 1

0
Ib,0d,diff(τ, µ) dµ (101)

Eb
u,diff(τ) = 2π

∫ 1

0
Ib,0u,diff(τ, µ)µ dµ and Ibu,diff(τ) = 2π

∫ 1

0
Ib,0u,diff(τ, µ) dµ (102)

Eb
net(τ) = Eb

u,diff(τ)− [Eb
dir(τ) + Eb

d,diff(τ)] and
Ibtot(τ) = Ibdir(τ) + Ibd,diff(τ) + Ibu,diff(τ)

(103)

where the downward and upward azimuthally-averaged radiances in slab2 are given
by Ib,0d,diff(τ, µ) and Ib,0u,diff(τ, µ), and µ0n is the cosine of the polar angle θ0n in slab2,
which is related to θ0 = arccosµ0 by Snell’s law. The total scalar irradiance, which
is simply 4π times the mean radiance (Itot = 4πĪ), is sometimes referred to as
the actinic flux by photochemists, although we may want to avoid using the term
flux, which should be reserved for the hemispherical flow of energy or momentum.
Instead we may refer to the total scalar irradiance as the actinic radiation field
to avoid confusion.

5 Summary
We have described a computational tool for radiative transfer simulations in a cou-
pled system consisting of two adjacent horizontal slabs with different refractive in-
dices. The computer code accounts for reflection and transmission at the interface
between the two slabs, and allows for each slab to be divided into a number of layers
sufficiently large to resolve the variation in the inherent optical properties (IOPs)
with depth in each slab.

The user interface of the computer code is designed to make it easy to specify the
required input including wavelength range, solar forcing, and layer-by-layer IOPs
in each of the two slabs as well as the two types of desired output:

• irradiances and mean intensities (scalar irradiances) at a set of user-specified
vertical positions in the coupled system;

• radiances in a number of user-specified directions at a set of user-specified
vertical positions in the coupled system.
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6 Acronyms
Air Material for absorption band model based on cross sections in the UV and visible spectral

ranges

aerosols particulate matter in the atmosphere except cloud particles

AOP Apparent Optical Property

AccuRT Accurate Radiative Transfer Tool for Coupled Systems

CDOM Colored Dissolved Organic Matter

CCRR CoastColour Round Robin, http://www.coastcolour.org/round_robin.html

DISORT DIScrete Ordinate Radiative Transfer (code)

clouds particulate matter in the atmosphere: liquid water and ice particles in clouds

earth_atmospheric_gases profiles of atmospheric molecular absorption and scattering optical
depths

gasIOP Band model for absorption by atmospheric gases

ice ice material

IOP Inherent Optical Property

ISIOP Tool for computing ice and snow IOPs

LowTran Low resolution (20 cm−1) atmospheric transmittance code

materials Radiatively-significant constituents like gases and particles in the atmosphere and dis-
solved and particulate matter in the water

ModTran Moderate resolution (2 cm−1) atmospheric transmittance code

NASA National Aeronautics and Space Administration

NOMAD NASA bio-Optical Marine Algorithm Data set

pure_water absorption and scattering by pure water

RTE Radiative Transfer Equation

SeaDAS SeaWiFS Database Analysis System

SeaWiFS Sea-viewing Wide Field-of-view Sensor

snow snow material

totabsCoef output; double precision; total water matter absorption coefficient [m−1]

totscatCoef output; double precision; total water matter scattering coefficient [m−1]

TOA top of the atmosphere

SBC Santa Barbara Channel

water_impurity_ccrr absorption and scattering by dissolved and particulate matter in the
water

water_impurity_gsm absorption and scattering by dissolved and particulate matter in the
water

water_impurity_sbc absorption and scattering by dissolved and particulate matter in the wa-
ter
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