
A tutorial overview of
forward-inverse modeling based on AccuRT



FIRST: Water BRDF Study
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Why are bidirectional effects important?

The Bidirectional Reflectance Distribution Function (BRDF) is defined as the
ratio of the reflected radiance to the incident power per unit surface area:

ρ(µ, φ;−µ′, φ′) =
dIrefl(τ

∗, µ, φ)

I(τ ∗,−µ′, φ′) µ′ dµ′dφ′ (1)

where dIrefl(τ
∗, µ, φ) is the reflected radiance in direction (µ, φ), while

I(τ ∗,−µ′, φ′) is the incident radiance in direction (−µ′, φ′).
Understanding bidirectional effects including sunglint is important for
several reasons:
1. Correct interpretation of ocean color data.
2. Comparing consistency of spectral radiance data derived from space
observations with a single instrument for a variety of illumination
and viewing conditions.

3.Merging data collected by different instruments operating simultane-
ously.

We present a new neural network method to correct for bidirectional
effects in water-leaving radiances for both clear and turbid (coastal)
waters.
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Bidirectional effect in oceanic water

The water-leaving radiance (Lw) or remote sensing reflectance (Rrs ∝ Lw)
depends on:
• Illumination conditions at the ocean surface
• Optical properties of the water, especially of embedded particles
• Sun-sensor geometry (i.e. solar zenith angle θ0, sensor zenith angle
θ, and relative azimuth angle ∆φ).
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Current BRDF correction algorithms

A BRDF correction algorithm was developed by Morel, Antoine and
Gentili in 2002 (denoted as MAG02) based on the following expression
for the normalized water-leaving radiance nLw:

nLw = Lw ×
R0

R
× f0(τa,W, IOP )

Q0(τa,W, IOP )
×
[
f (θ0, θ,∆φ, τa,W, IOP )

Q(θ0, θ,∆φ, τa,W, IOP )

]−1

However, the MAG02 algorithm:
• requires CHL to derive the f/Q correction factor
• does not work well in turbid (coastal) waters.

Our simulations show that:

•Differences in spectral Rrs val-
ues are significant between
clear (open ocean) and turbid
(coastal) waters,

• but very small between nadir-
and slant-viewing directions for
a given water type. 400 500 600 700 800 900
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Neural Network BRDF correction algorithm

• A trained Radial Basis Function Neural Network (RBF-NN) can con-
vert the spectral Rrs from the slant- to the nadir-viewing direction:

Rrs(λi, θ0) =

Nneu∑
j=1

aij × exp

[
− b2

Ninput∑
k=1

[Rrs(λk, θ0, θ,∆φ)− cjk]2
]

+ di
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Remote sensing reflectance simulation

• Simulate Rrs at both nadir- and slant-viewing directions (AccuRT)

Rrs(λ, θ0, θ,∆φ) =
[
L0+
u − L0+

u,blk_oc(λ, θ0, θ,∆φ)
]
/E0+

d (λ)

• Radiative transfer model setup

– 13 layers U.S. standard atmosphere with aerosols added in the
bottom 0-2 km.

– randomly selected aerosol models based on fraction of small-mode
aerosol particles (f) and relative humidity (RH).

– CCRR bio-optical model parameterized in terms of CHL, CDOM
and MIN.
∗ aCHL(λ) = A(λ)× CHLE(λ)

∗ bCHL(λ) = 0.407× CHL0.795 × (λ/660)ν − aCHL(λ)

∗ aCDOM(λ) = CDOM× exp
[
− 0.0176(λ− 443)

]
∗ aMIN(λ) = 0.031×MIN× exp

[
− 0.0123(λ− 443)

]
∗ bMIN(λ) = 0.518×MIN× (λ/555)−0.3749 − aMIN(λ)
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Neural network method validation – synthetic data

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

60

70

Percentage Error [%]

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 [
%

]
412nm

 

 

NN

MAG02

NN−case1

MAG02−case1

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

60

70

Percentage Error [%]

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 [
%

]

443nm

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

60

70

Percentage Error [%]

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 [
%

]

490nm

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

60

70

Percentage Error [%]

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 [
%

]

510nm

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

60

70

Percentage Error [%]

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 [
%

]
560nm

−30 −20 −10 0 10 20 30
0

10

20

30

40

50

60

70

Percentage Error [%]

R
e
la

ti
v
e
 f
re

q
u
e
n
c
y
 [
%

]

665nm

Comparison between MAG02 and RBF-NN method using synthetic dataset.
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Neural network method validation – NuRADS data

NuRADS is a compact camera system that takes images of the upward
radiance just below the ocean surface at various geometry angles and
multiple wavelengths centered at 411, 436, 487, 526, 548 and 616 nm.
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Neural network method validation – NuRADS data

• The NuRADS system was used in many field experiments and a large
quantity of in-situ data is available in NASA’s SeaBASS validation
data base.
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• BP09: March, 2008. N = 28

• SORTIE2: Jan., 2008. N = 13

• BIOSOPE: Oct., 2004. N = 11

• OCCV : May, 2009. N = 7

•Geometry range:

– θ: 0◦ – 45◦ with 5◦ intervals
– ∆φ: 0◦ – 180◦ with 10◦ inter-
vals
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Neural network method validation – NuRADS data
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Comparison between MAG02 and RBF-NN method using NuRADS data.
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Summary

•A neural network method was developed to correct for
bidirectional effects in remote sensing reflectances.
•The method was validated using synthetic data as well as
NuRADS field measurements.
•This BRDF correction method does not require any knowl-
edge of the inherent optical properties of the water.
• Its performance is similar to that of the MAG02 method
in chlorophyll-dominated (open ocean) water, but signifi-
cantly better in turbid (coastal) water.
•This BRDF correction method is expected to improve the
accuracy of marine parameters in turbid coastal waters in-
ferred from retrieval methods that rely on nadir-converted
remote sensing reflectances.
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NEXT: Sunglint Study
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roughness of turbid coastal and inland aquatic waters
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Atmosphere correction of glint

SeaDAS algorithm contains corrections of:
• 1-D direct beam reflectance

ITOA
glint (µ0, µ,∆φ) = F0(λ)T0(λ)T (λ)IGN

T0(λ)T (λ) = exp

{
−[τM(λ) + τA(λ)]

(
1

µ0
+

1

µ

)}
• diffuse light reflectance (skyglint)
(considered in a Rayleigh lookup table)

What is missed?

• diffuse light reflectance from aerosols mixed
with molecules in surface layer (forward scat-
tering)

• 2-D feature of sunglint
Glint contamination in MODIS image

Radiative transfer forward model

• Accurate computation of diffuse light reflectance (enhanced AccuRT)
• Consistent computation of aerosol and molecular scattering
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Radiative Transfer Model

DISORT 3 (implemented in AccuRT)

• 1-D Discrete-Ordinate Radiative Transfer model

• updated version 3 in 2015 – http://lllab.phy.stevens.edu/disort/

Modeling difficulty:

Phase function: p(u, u′,∆φ) ≈
M−1∑
m=0

(2− δ0m)pm(u, u′) cosm(∆φ)

BRDF: ρ(u, u′,∆φ) ≈
M−1∑
m=0

ρm(u, u′) cosm(∆φ)

The expansion of the phase function p(u, u′,∆φ) and the BRDF is symmetric
about the principal plane and intrinsically one-dimensional. Therefore:

• a 1-D BRDF is incapable of simulating the directional dependence of
realistically anisotropic surfaces.
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Radiative Transfer Model

Pseudo two-dimensional BRDF
• Use 2-D BRDF to compute the direct beam reflectance
• Use 1-D BRDF to compute the diffuse light reflectance

Iup,refl(τatm, µ
′, φ′) = µ0 ρ2−D(µ0, µ

′, φ′)F0 e
−τatm/µ0 +

∫ 2π

0

∫ 1

0

µ ρ1−D(µ, µ′,∆φ)Idown,inc(τatm, µ, φ)dµdφ

Gaussian rough sea surface
The surface slope variance follows a Gaussian distribution:
• 2-D Gaussian surface for direct beam reflectance

• 1-D Gaussian surface for diffuse light reflectance

p(zc, zu) =
1

2πσcσu
exp [−1

2
(
zc

2

σ2
c

+
zu

2

σ2
u

)] p(µn, σ) =
1

πσ2
exp (−tan2 θn

σ2
)

σ2

2
= σ2

c + σ2
u, u ≡ upwind, c ≡ crosswind

We did not parameterize σc,u and σ with wind speed!
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BRDF Measurement from airplane

The measurements were obtained under clear sky conditions from the NASA Cloud Absorption Radiometer (CAR)

deployed aboard the University of Washington Convair 580 (CV-580) research aircraft. The airplane flew in a circle

about 3 km in diameter, taking roughly 2-3 minutes to complete an orbit about 200 m above the surface.

19



Retrieval method

Forward model F(x): DISORT 3 with pseudo 2-D BRDF
Wavelength: 1, 036 nm, no water leaving radiance

•Molecular layer: $mol = 0.961, τmol = 0.00645

• Aerosols & molecules mixed layer: $mix = (βmol + βaer)/(γmol + γaer) = 0.9772

• Total optical thickness above airplane: τairplane = τmol + 0.9τmix

•Model output: upward radiance at arbitrary angle

Measurements y (bidirectional reflectance factor)

BRF(µ, φ, τairplane) = πIup(µ, φ, τairplane)/µ0Fs

with 1◦ interval in both viewing and azimuth angles.

Gauss-Newton/Levenberg Marquardt non-linear inversion algorithm

x = [σ2
c , σ

2
u, φwind, τmix]

T

xk+1 = xk +
[
JTkJk + γkI

]
JTk (F(xk)− y)
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Retrieved results
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Retrieved results
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Retrieved results
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Retrieved results
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Retrieved results

Retrieved water surface slopes, wind direction (◦), and wind speed (m/s)

Date σ2c σ2u wind speedc | wind speedu 1-D wind speed wind direction
10-Jul 0.00747 0.00399 2.29 | 1.23 1.61 31.09
17-Jul 0.01028 0.01162 3.79 | 3.68 3.70 1.92
26-Jul 0.02228 0.03278 10.04 | 10.37 10.17 357.25
02-Aug 0.00802 0.00602 2.61 | 1.90 2.16 313.48

To estimate wind speed, the Cox-Munk glint model is applied:

σ2
c = 0.003 + 0.00192 W ± 0.002

σ2
u = 0.000 + 0.00316 W ± 0.004

σ2
c + σ2

u = 0.003 + 0.00512 W ± 0.004
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Retrieved results

Retrieved aerosol optical thickness:
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Discussion: 2-D vs 1-D Gaussian surface
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•Model simulations based on a 1-D Gaussian BRDF are unable to
match the measured tilted elliptical pattern, but

• a 2-D Gaussian BRDF can reproduce the measurements.
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Discussion: reproducing reflectances at 472, 682 and 870 nm
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We are able to reproduce reflected radi-
ance in the visible bands, with

• surface roughness retrieved from near
infrared band at 1, 036 nm

• aerosol and ocean parameters re-
trieved using visible bands from off-
glint geometries.
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Summary and Conclusion

• AccuRT was modified to successfully simulate ocean glint.

•NASA CAR data set provides BRDF measurements in 1◦ intervals
for all geometries.

• A pseudo 2-D Gaussian surface BRDF model successfully reproduced
the measured tilted elliptical glint pattern (extension: this idea is ap-
plicable to any BRDF type).

• The tilted elliptical glint pattern shows the importance of a pseudo
2-D BRDF approach that depends on the wind direction.

• The diffuse light reflectance is also important in the visible channels.

For details see:

Z. Lin, W. Li, C. Gatebe, R. Poudyal, and K. Stamnes, Radiative transfer simulations of the two-dimensional ocean

glint reflectance and determination of the sea surface roughness, Applied Optics, 55, 1206-1215, 2016.
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Next: Remote sensing from geostationary platforms
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Generic problem: The small ocean signal!
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Simulated upward radiance in the nadir direction at (i) the top of the atmosphere,
(ii) just below the air-water interface, and (iii) just above the air-water interface.

Left: Clear (blue) water with chlorophyll concentration 0.1 mg m−3.

Right: Turbid (green) water with chlorophyll concentration 10 mg m−3.
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top of the atmosphere, (ii) just below the air-water interface, and (iii) just above
the air-water interface.
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Frequency of negative Rrs from SeaDAS standard AC

Percentage of negative remote sensing reflectance (Rrs) in 8 day averaged 4 km Aqua MODIS L3 data from 2003-2016 
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Standard Atmospheric Correction (AC) method

Standard AC algorithms describe the radiance measured by the satellite sensor as:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )        t r a g wc wL = L + L +T L + t L + t L

Lt total TOA radiance measured by satellite sensor.
Lr radiance due to Rayleigh scattering.
La radiance due to aerosols, including Rayleigh-aerosol interaction.
Lg radiance due to sun glint.
Lwc radiance due to whitecaps.
Lw water-leaving radiance.
T    direct atmospheric transmittance.
t    diffuse atmospheric transmittance.

The purpose of an AC algorithm is to derive Lw from Lt by removing all the other terms in the equation.

Issues with the standard AC algorithms
➢ Single scattering approximation

Solution: use coupled atmosphere-ocean radiative transfer model in simulations, such as AccuRT.

➢ NIR black ocean assumption fails in coastal water (inaccurate aerosol radiances)
Solution: NIR water-leaving radiance correction

SWIR – NIR algorithm
Machine learning algorithm
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Multilayer Neural Network (MLNN) Atmospheric Correction method
The most difficult task in standard AC algorithms is to accurately estimate and remove aerosol contribution to TOA radiance.

➢ Is it possible to retrieve water-leaving radiance without estimating aerosol radiances?
Yes, it is! The spectral similarity between Rayleigh corrected radiance (Lrc) and water-leaving radiance (Lw) implies
that AC can be accomplished by properly relating the two spectra.

6
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MLNN – Neural network structure

Two retrieval MLNNs were designed and trained:
One for remote sensing reflectance (Rrs = Lw/Ed0+) and another one for AOD.

Rrs MLNN (50X20X15)
Input: SZA, VZA, VAA, Lrc at multiple bands (9 for MODIS: 412, 443, 488, 531, 547, 667, 678, 748, 869 nm)
Output: normalized Rrs at visible bands.

AOD MLNN (50X20X15)
Input: SZA, VZA, VAA, Lrc at multiple bands (9 for MODIS 412, 443, 488, 531, 547, 667, 678, 748, 869 nm), RH
Output: AODs at the same bands as input.

Why build separate MLNNs for Rrs and AOD?

➢ Each MLNN is trained to learn only one type of spectral shape: therefore easier to train and more accurate.

➢ Errors in one MLNN may not necessarily affect the performance of the other MLNN.
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MLNN – Radiative transfer simulation

We used a well-tested coupled atmosphere-ocean radiative transfer model, AccuRT, to create synthetic datasets 
for neural network training and testing purposes.

➢ For the clear atmosphere, we used a 14-layer U.S. standard atmosphere profile.

➢ For aerosols, we used the set of aerosol models proposed by Ahmad et al. (2010), which is also implemented in 
the NASA SeaDAS data processing package.

➢ For the ocean, we implemented a flexible ocean IOP model parametrized in terms of aph(443), adg(443) and 
bbp(443). The spectral dependences of the 3 parameters are:

• aph(λ)= aph(443) X aph*(λ), where aph*(λ) is the normalized chlorophyll absorption spectrum.

• adg(λ)= adg(443) X exp[-S(λ-443)], combined absorption by detrital and dissolved matter

• bbp(λ)= bbp(443) X (λ/443)-η

8
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Normalized chlorophyll absorption spectra from IOCCG report #
5 and NOMAD database:
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MLNN – Training data generation
Training data should be representative of typical coastal waters. 5 coastal areas (red boxes) were selected and 8-day 
4 km L3 data from 2011-2016 were analyzed to create the input dataset for the RT simulations.

• SZA: 0°-70° random
• VZA: 0°-70° random
• VAA: 0°-180° random

• AOD(869): 0.005-0.35 from L3
• Fraction: 0-1 random
• RH: 20%-99% random

• aph(443): 0.001-95 [m-1]  from L3
• adg(443): 0.001-8 [m-1]  from L3
• bbp(443): 0.00002-0.2 [m-1]  from L3
• aph: random selection from 299 spectral 

measurements
• adg S: 0.008-0.026 random
• bbp_η: Gaussian random μ=1.0, σ=0.2
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MLNN – Validation based on AERONET-OC data

AERONET-OC v2.0 data (N=20,813) from 7 stations 
(green dots) : AAOT, COVE, MVCO, HLT, GDLT, 
GLORIA, LUCINDA

Time: 2002- 2015

Algorithms: 
SeaDAS NIR, SeaDAS NIR/SWIR, MLNN and C2RCC

MODIS collection 6 L1B data processed by NASA 
SeaDAS v7.3.2 and ESA SNAP software.                     

MODIS and AERONET-OC data Matchup
➢ Time difference < ± 1 hour, for redundant data, only the one with minimum time difference was accepted.
➢ MOIDS data from a 3X3 box (nine pixels) centered at the AERONET-OC station were processed. Pixels flagged by 

SeaDAS (i.e. cloud, glint, high solar or sensor zenith angles, etc.) were excluded.
➢ Pixels marked as out of scope by AANN (auto-associative neural network) were excluded.
➢ Boxes with less than six pixels available after screening were excluded.
➢ Boxes with significant spatial heterogeneity were excluded (CV > 0.2).  CV=standard deviation / mean value.

Data points available after matchup: N = 1709
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MLNN – Validation on AERONET-OC data (AOD)
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MLNN – Validation on AERONET-OC data (nLw)
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MLNN – MODIS image comparison
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MLNN – MODIS image comparison
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➢ The MLNN algorithm is applicable to heavily polluted continental aerosols and extremely turbid water conditions. 

VIIRS RGB, 03/09/2013 04:42 
UTC 

Beyond normal conditions (polluted continental aerosol and extremely turbid water)
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Rrs410

➢ MLNN algorithm significantly improves Rrs retrieval in areas with heavily polluted aerosols and turbid water. The 
standard SeaDAS algorithm produces a large number of negative Rrs (purple color) and large areas with no 
retrievals.

Beyond normal conditions (polluted continental aerosol and extremely turbid water)

SeaDAS

MLNN

Rrs443 Rrs551 Rrs671
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AOD443

➢ In  areas with heavily polluted aerosols and extremely turbid water, the MLNN algorithm improves AOD retrieval, 
whereas the standard SeaDAS algorithm produces unreasonable and abrupt transitions.

Beyond normal conditions (polluted continental aerosol and extremely turbid water)

SeaDAS

MLNN

AOD551 AOD671 AOD862
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Summary

• The Multilayer Neural Network (MLNN) algorithm improved the quality of retrieved Rrs values.

Overall, the MLNN algorithm reduced average percentage difference (APD) between MODIS retrieval and

AERONET-OC data by up to 13% in blue bands and 2%-7% in green and red bands compared to the

SeaDAS NIR algorithm.

• In highly absorbing coastal waters (Baltic Sea) the MLNN algorithm reduced APD by more than 60%,

and in highly scattering waters (Black Sea) it reduced APD by more than 25%.

• Image comparisons show that the MLNN algorithm is robust and resilient to contamination due

to sunglint and adjacency effects of land and cloud edges.

• The MLNN algorithm implicitly accounts for BRDF effects and is applicable in extreme conditions

such as heavily polluted continental aerosols, extreme turbid waters, and dust storms.

• The MLNN algorithm does not require SWIR bands, and is therefore suitable for all ocean color sensors.

• The MLNN algorithm is very fast and suitable for operational use.

• MLNN algorithm produces a seamless transition between turbid coastal water and clean open ocean water.

Reference

Y. Fan, W. Li, C. K. Gatebe, C. Jamet, G. Zibordi, T. Schroeder and K. Stamnes, Atmospheric correction over

coastal waters using multilayer neural networks, Remote Sensing of Environment, 199, 218-240, (2017).
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Geostationary specific issues:
1. Low solar elevations

The plane parallel approximation (PPA) breaks down for solar zenith
angles larger than about 75◦. How do we proceed?

• One option: use the pseudo-spherical approximation (PSA) [Eq. (2)]:

– the direct beam single scattering (solar pseudo-source) term is treated in
spherical geometry: e−τ/µ0 → e−τ Ch(r,µ0) ← PSA

– while the multiple scattering term is treated using the PPA:

µ
dL(τ, µ, φ)

dτ
= L(τ, µ, φ)−

multiple scattering︷ ︸︸ ︷
$(τ )

4π

∫ 2π

0

dφ′
∫ 1

−1

dµ′p(τ, µ′, φ′;µ, φ)L(τ, µ′, φ′)

−

single scattering︷ ︸︸ ︷
$(τ )

4π
p(τ,−µ0, φ0;µ, φ)F0 e

−τ Ch(µ0) . (2)
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2. Advantage of using a 2-D Gaussian distribution of
surface slopes

What about the air-water interface: 1-D or 2-D Gaussian?
Explore advantage of using a 2-D Gaussian distribution of surface slopes?
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Figure 1: Comparison of reflectances for model simulations assuming a 1-D Gaussian
BRDF (left), a 2-D Gaussian BRDF (middle), and measurements (right).

Use of
(1) a 2-D Gaussian surface slope distribution for singly scattered light, and
(2) a 1-D Gaussian surface slope distribution for multiply scattered light
is quite successful because the 2-D BRDF simulates the sunglint very well,
while the 1-D BRDF is sufficient to simulate the sky reflectance.
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3. Standard ocean color algorithms do not work well in coastal areas

Below (lower panels) is an example of the problem caused by the infamous
negative water-leaving radiance problem due to failure of the atmospheric
correction.

• Can the failing atmospheric correction be fixed? Or can it be

• alleviated by using simultaneous atmosphere/ocean retrievals based on
an RT model for the coupled atmosphere/ocean system (upper panels)?

Comparison between simultaneous (OC-SMART, top) and standard (SeaDAS,
bottom) retrievals for a MODIS image on 04/18/2014 over a coastal area in north-
ern part of Norway. From left to right: τ869, f , CHL, CDOM and bbp, respectively.
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Final thought: What about using vector (polarized) RT
simulations?

• Preliminary results∗ indicate that even for radiance-only measurements:
• the accuracy of the retrievals could be improved by using a vector
(polarized) forward RT model to compute the radiances used in the
inversion step.

Hence, for ocean color retrievals from geostationary platforms, we
should explore the advantage of using:

1. the pseudo-spherical approximation combined with
• polarized (vector) radiative transfer simulations,
• a 2-D Gaussian distribution of surface slopes,

2. neural networks and optimal estimation for:
• simultaneous retrieval of atmospheric and marine parameters, and
• assessments of retrieval accuracy and error budgets.

∗Stamnes, S., Y. Fan, N. Chen, W. Li, T. Tanikawa, Z. Lin, X. Liu, S. Burton, A. Omar, J. J. Stamnes, B. Cairns, and K. Stamnes,
Advantages of measuring the Q Stokes parameter in addition to the total radiance I in the detection of absorbing aerosols, Front.
Earth Sci., 6:34, 2018.
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Next: Practice Example
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Simulated RGB Pixels Examples (1)

Practice	with	AccuRT – simulate	the	color	of	the	ocean

Aqua	MODIS	RGB	03/10/2011
AccuRT simulated	RGB	pixels

(Solz=40°,Senz=10°,	Relaz=120°)
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Simulated RGB Pixels Examples (2)

Practice	with	AccuRT – simulate	the	color	of	the	ocean
AccuRT configuration	file	for	the	simulation:
Ø Main	configuration	file:	ocsim
Ø Ocean	configuration	file:	/ocsimMaterials/water_impurity_ccrr,	chl.txt,	tsm.txt							
Ø Aerosol	configuration	file:	/ocsimMaterials/aerosol

Tag	setting	in	‘ocsim’	(all	other	tags	use	default	values):
• SOURCE_TYPE	=	constant_one
• SOURCE_ZENITH_ANGLE	=	40
• STREAM_UPPER_SLAB_SIZE	=	40
• MATERIALS_INCLUDED_UPPER_SLAB	=	earth_atmospheric_gases aerosols
• MATERIALS_INCLUDED_LOWER_SLAB	=	pure_water water_impurity_ccrr
• DETECTOR_AZIMUTH_ANGLES	=	120
• DETECTOR_POLAR_ANGLES	=	10
• DETECTOR_WAVELENGTHS	=	469	555	645
• SAVE_RADIANCE	=	true
• REPEATED_RUN_SIZE	=	30
Tag	setting	in	‘water_impurity_ccrr’	:
• CHLOROPHYLL_CONCENTRATION		=	chl.txt
• MINERAL_CONCENTRATION		=	tsm.txt
• CDOM_ABSORPTION_443	=	1	0.1

Tag	setting	in	‘aerosol’	:
• FINE_MODE_FRACTION	=	0.4
• RELATIVE_HUMIDITY	=	0.7

MATLAB	script	for	data	preparation	and	image	plotting:
Ø ocparam.m creates	‘chl.txt’	and	‘tsm.txt’	
Ø plot_RGB_OC.m reads	the	simulation	data	and	plots	the	RGB	image.
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